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Abstract—Dynamic Frequency and Voltage Scaling is a pro-
mising technique to save energy in real-time systems. In this work
we present a novel light-weight energy-efficient EDF scheduler
designed for processors with discrete frequencies which performs
on-line intra- and inter-task frequency scaling at the same time.
An intra-task scheduling scheme based on cycle counters of a
processor allows the application of our approach to shared code
of library functions and to task setups where only sparse intra-
task information is available. Our ‘Intra-Task Characteristics
Aware EDF’ (ItcaEDF) scheduler which aims to run with a
low frequency by eliminating idle time and inter- and intra-task
slack times was evaluated in an compiler, WCET analysis, and
simulation framework. Our experiments show that state-of-the-
art intra-task as well as inter-task frequency scaling approaches
are clearly outperformed by our approach.

I. INTRODUCTION

Real-time systems like mobile multimedia devices have
to meet high demands which are often competing. They
require high performance under real-time constraints (for
audio en-/decoding, e.g.), but also have to deal with limited
resources like energy. Dynamic Voltage and Frequency Scaling
(DVS/DFS) is an effective instrument to control the trade-off
between system performance and energy-efficiency. Here, the
operating system or the applications can decide whether the
system should run at a higher frequency for higher perfor-
mance but also with more power consumption – or at a lower
frequency to save energy. When the timing behavior of real-
time systems is specified by deadlines for individual tasks in
the system, DFS (Dynamic Frequency Scaling) algorithms try
to decrease the processor frequency under the constraint that
deadlines are still guaranteed.

The concept of Dynamic Voltage and Frequency Scaling
which changes the supply voltage and the processor frequency
during run time has been proposed in many publications,
e.g., [1], [2], [3], [4], [5], [6], [7], as a technique to reduce
energy consumption for systems with and without real-time
constraints. Existing approaches to DVS can be divided into
inter-task voltage scheduling and intra-task voltage scheduling.

Approaches to inter-task voltage scaling make use of the
fact that computation times of tasks are usually not fixed due
to different execution paths during run time. Whereas standard
scheduling approaches for real-time systems are based on fixed
worst-case execution times for the tasks, inter-task voltage
scaling makes use of ‘inter-task slack times’, which occur
when a task instance terminates earlier than expected for the
worst-case. For instance, Lee and Shin [8] adjusted the EDF
scheduler [9] to the voltage scaling context. They presented
an energy-efficient on-line EDF algorithm which requires
only constant time for each context switch. In their approach
voltage scaling is only performed when a task starts or resumes
after another task which leaves some ‘inter-task slack time’ to
the following task. [8] assumes a processor model which is

able to provide a continuous spectrum of frequencies (limited
by a maximum frequency fmax).
Whereas in many cases inter-task voltage scaling ap-
proaches succeed in reducing energy consumption, there are
application scenarios where inter-task voltage scaling is less
effective: Since voltage scaling can be applied only between
two activations of different tasks, the granularity of inter-task
voltage scaling may not be high enough, especially when the
system consists of a small number of relatively long-running
tasks (with one task as an extreme case).
In contrast to inter-task voltage scaling, intra-task volt-
age scaling algorithms perform voltage scaling during the
execution of single tasks (and not between two activations
of different tasks). Typically, there are many points in the
program for a single task where frequency scaling is performed
in case that execution time was saved (relative to the worst-
case execution time). In that way, slack time for downsizing
the processor frequency can be used much earlier than by inter-
task voltage scaling and at a higher granularity. Compared
to inter-task methods this may potentially lead to a more
homogeneous distribution of used processor frequencies and
thus to higher energy savings.1 In [10] control flow analysis
determines execution paths in a program whose traversal will
save cycles and result in earlier task termination. Depending on
the number of saved cycles the executable code is instrumented
at Voltage Scaling Edges (VSEs). Voltage scaling edges are
restricted to branches in the control flow. At each edge the
processor frequency is decreased by a given factor and the
system can save energy. The basic concept has been further
optimized by identifying earlier voltage scaling points using
data flow information of the program [11] and by using profile
information to estimate probabilities of branches [12].
The intra-task algorithms mentioned above concentrate on
single-task environments and they consider processors with a
continuous frequency range. Thus, these algorithms are able
to enforce that a task’s execution completes exactly at its
deadline, provided that there is a frequency scaling point at
each branch in the control flow. However, this is not a realistic
scenario:

• Usually, processors do not offer a continuous frequency
range, but a set of discrete frequencies. On processors
with discrete frequencies the frequency required by the
intra-task algorithm may not be available and the proces-
sor has to run at some higher speed, thus the task may
finish before its deadline.

• Moreover, in real applications it does not make sense to

1Idle times, which indicate a non-optimal voltage scaling strategy, can
not always be avoided by inter-task methods: In the extreme case, the slack
produced by a task running much shorter than the worst case execution time
can not be used by other tasks, since no instances of other tasks have been
released at the finishing time of that task (even if processor utilization is
maximal assuming worst-case timing).
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place a frequency scaling point at every branch in the
control flow because of the overhead both for frequency
scaling itself and for computing saved cycles and scaling
factors at run time. For that reason an additional slack
may occur.

• Finally, there may also be other reasons for the situation
that a task is not able to keep account of every cycle
it has saved compared to worst-case estimations during
worst-case execution time (WCET) analysis: Especially
for more complex architectures including caches and
pipelines the execution times really needed may be
smaller than the WCET assumptions, though tasks fail
to detect these saved cycles at frequency scaling points.

Based on these observations the idea of our approach was to
combine the advantages of inter-task and intra-task frequency
scaling in an on-line real-time scheduler. More precisely, we
propose a multi-level approach to DFS for a set of periodic
tasks: The first level tries to eliminate idle times in case that
the processor is not fully utilized. The optimal frequency for
the task set is dynamically recalculated whenever tasks are
created or removed. Whereas the first level is only based on
worst-case execution times, the second and the third level take
into account that the actual computation times are often much
lower that the worst-case times: At level two we perform intra-
task frequency scaling for each task individually. Finally, slack
times produced by intra-task frequency scaling are used by
inter-task frequency scaling at level three.
The idea of combining intra- and inter-task frequency
scheduling has already been previously followed by Seo et
al. [13], but in a completely different context: Seo et al. con-
sider a fixed and finite set of aperiodic tasks (potentially
including task dependencies) and they compute an optimal
schedule using an off-line algorithm. Preemption is not al-
lowed in their model, i.e., the schedule consists of starting
times si and ending times ei for each task τi. Intra-task
scheduling is then based on branching probabilities and for
a task τi it computes (under the assumption of a continuous
frequency range) a frequency distribution which minimizes the
average case energy consumption provided that the execution
time will be exactly ei − si.
In contrast, our approach handles dynamic sets of periodic
tasks which are scheduled by an on-line algorithm. Moreover,
our scheduler allows preemption and voltage scaling is per-
formed for processors with a discrete set of frequencies. The
contributions of our paper are as follows:

• We make intra-task frequency scaling applicable in a
multi-task environment and we make use of it in a tight
interaction with inter-task scheduling. We provide an on-
line algorithm suitable for dynamically changing sets of
periodic tasks and we support preemptive task execution.

• Thereby, we provide a simplified scheme for comput-
ing information necessary for rescaling in the intra-task
context. This scheme is based on a cycle counter in the
processor hardware and it makes it possible to directly in-
strument different execution paths within (nested) loops.

• Our scheme for code instrumentation is also suitable for
shared code in libraries used by different tasks.

• We provide a method based on a realistic processor
model with a set of discrete frequencies instead of a
continuous range of frequencies. The method can directly
be integrated into an operating system if overhead for
context switches and for frequency scaling is considered
according to Section III-F.

The paper is organized as follows. We first give some
preliminaries and definitions for inter- and intra-task real-time
scheduling in Section II. Section III presents the concepts and
implementation of our three-level approach. Experimental re-
sults are described in Section IV. Finally, Section V concludes
the paper.

II. PRELIMINARIES

A. Processor and Hardware Model

The processor model used in this paper providesm different
operating configurations S = {s1, ..., sm} with si = (fi, vi).
Each pair (fi, vi) consists of a frequency fi and a voltage vi

with fi < fj for 1 ≤ i < j ≤ m. Therefore, the minimum and
maximum possible frequencies are f1 and fm, respectively.
The hardware also provides a cycle counter ČCLK which
is automatically incremented during task execution and a
frequency-independent clock providing the real time t.

B. Energy Model

In order to evaluate the energy-efficiency of our scheduler,
we use the assumptions that the power consumption in CMOS
circuits scales quadratically to the supply voltage (P ∝ f ·v2)
[14]. Therefore, we compute the (dynamic) energy consump-
tion E of the system by E = const ·

∑

si∈S cfi
· v2

i provided
that cfi

cycles have been executed at frequency fi or voltage
vi, respectively.

C. Earliest Deadline First

An Earliest Deadline First (EDF) scheduler [9] always exe-
cutes the task with the earliest deadline. A task τi is specified
by its computation cycles Či and its period Ti. The symbol ˇ
will be used to denote variables containing cycle-based values.
Thus, a task set is specified by Γ = {τi(Či, Ti), i = 1, .., n}.
We assume that the relative deadline Di of a task is the same
as the period Ti, the absolute deadline di for a task instance
increments with Ti for each instance.
In real-time systems, the worst-case execution cycles Či

of a task τi for a specific processor internally depends on
the task code and can be determined by static code analysis,
for example. However, the period Ti of a task is externally
specified by the system designer for a task function. Moreover,
the worst-case computation time Ci of a task τi can be derived
from the computation cycles Či if the execution frequency f
of the processor is known: Ci = Či · f

−1. The worst-case
finishing (ending) time is ei, e.g., a task which is activated at
tstart has an absolute completion time ei = tstart + Ci if it
is not preempted.
The utilization factor U of a processor under a given set Γ
of n independent periodic tasks is defined as U =

∑n

i=1

Ci

Ti

.
Such a task set is schedulable with EDF if and only if U ≤ 1.

D. Intra-task scheduling

Intra-task scheduling aims to save power by lowering the
processor frequency and simultaneously by eliminating inter-
nal task slack times. Such slack times always occur whenever
there is a branching in the control flow of a task and the
actual execution path involves fewer cycles than the worst-
case execution path. In the following, we will give a brief
overview of intra-task voltage scaling based on [10].
Consider the example code and corresponding Control Flow
Graph (CFG) in Figure 1. Each node represents a basic block.
The nodes include the number of cycles for the execution
of the corresponding blocks. The values in brackets indicate



1: while cond do
2: // max. 3 itera-

tions
3: if cond1 then
4: b1;
5: end if
6: b2;
7: end while
8: if cond2 then
9: b3;
10: end if
11: b4;

bwh

5

bif,1

5

b1

100

b2

5

bif,2

5

b3

50

b4

20

start

max. 3
itera-
tions

[425,310,195,80]

[420,305,190]

[415,300,185]

[315,200,85]

[75]

[70]

[20]

Fig. 1. Example code and corresponding Control Flow Graph (CFG) with
timing information: The nodes represent basic blocks including their execution
cycles. The values in brackets next to each node give the remaining worst-case
execution cycles for each loop iteration.

the remaining worst-case execution cycles when entering a
specific block. Multiple values refer to nodes which can be
executed several times, i.e., which are part of a loop.
In the case that condition cond is not true, block bif,2 will
be directly executed after block bwh. If this situation occurs
before any execution of the while-loop, the remaining worst-
case execution cycles (ČRWEC ) after block bwh decrease from
ČRWEC(bif,1) = 425 − 5 = 420 to ČRWEC(bif,2) = 75
cycles. The frequency within the task can be reduced by the
scaling factor β(bwh → bif,2) = 75

420
, because the current

frequency was chosen in a way that the execution of 420
cycles will be finished in time, but only 75 cycles are needed.
Now the processor frequency S(bif,2) at block bif,2 is updated
according to S(bif,2) = S(bwh) · β(bwh → bif,2).
However, this scaling factor changes, if the while-loop
is executed 1,2 or at most 3 times. As this information is
not known in advance, the authors in [10] use so-called L-
Type Voltage Scaling Edges (VSE) which calculate the scaling
factor β(bwh → bif,2) during run time depending on the
number of loop iterations.
A second type are B-Type VSEs and they are used for if-
statements (line 8 in our example code). As the number of
saved cycles does not depend on loop iterations the scaling
factor is β(bif,2 → b4) = 20

70
. Here, we only need 20 cycles,

but remaining 70 cycles were in the budget of the task. Note
that this simple scheme for B-Type VSEs can not be used, if
we consider branches within loops (line 3, e.g.). In that case
the number of remaining cycles depends on the iteration count
of the outer loop and the scaling factor β(bif,1 → b2) has to be
dynamically computed at run time. (The scaling factor is equal
to 315

415
, 200

300
, or 85

185
, depending on whether the loop is iterated

for the first, second, or third time). Of course, the computation
of the right scaling factor becomes even more involved if the
branch is within a larger number of nested loops.
In contrast, our scheduler accepts relative information about
the number of saved cycles in order to simplify frequency
scaling. As we will describe in more detail in Section III-B1a,
our scheme not only simplifies the instrumentation of code,
but also makes instrumentation of shared code possible. This
scheme is used in an overall approach which integrates intra-
task frequency scaling and inter-task frequency scaling for
preemptive environments with a dynamic number of tasks and
a processor model with discrete frequencies.

III. ENERGY-EFFICIENT INTRA- AND INTER-TASK
FREQUENCY SCALING

Our method for real-time scheduling which is presented in
this section aims at obtaining a homogeneous distribution of

processor frequencies at a level which is as low as possible
and thus minimizes energy consumption. In order to guarantee
temporal constraints, the utilization of idle times, intra- and
inter-task slack times has to be performed without violating
deadlines of tasks.

A. Idle-time Elimination

For EDF, a real-time schedule contains idle times iff U < 1.
These idle times can be minimized if a processor is run with
a lower frequency fα (and indirectly with lower voltage and
power consumption). Schedulability is still guaranteed when
executing all n tasks with a frequency fα according to

n
∑

i=1

Či/fα

Ti

= 1⇔ fα =

n
∑

i=1

Či

Ti

.

The frequency fα is the lowest frequency to run the pro-
cessor without violating real-time constraints provided that
computation cycles Či are fixed to their worst-case estima-
tion. However, computation cycles of task execution are not
constant – they can be reduced by branching conditions or
premature abort of loops during run time. In that case we
can decrease the processor frequency even more in order to
execute less cycles in the same time according to the intra- and
inter-task slack-time elimination scheme as described below.

B. Intra-Task Slack-time Elimination

In Section II-D, we have given a brief introduction to intra-
task frequency scaling. In our work the intra-task frequency
scaling is supported by the operating system which takes slack
times into account for processors with discrete frequencies.
Our approach differs from [10] with respect to three issues:

• We use a simplified scheme for computing remaining
worst-case execution cycles. This scheme is based on an
estimation of worst-case execution cycles for the task as
a whole (by static analysis), relative information about
saved execution cycles within the control flow, and a cycle
counter of the processor. This scheme has the additional
advantage that our method is suitable for shared code in
libraries used by different tasks.

• The computation of frequencies is not based on scaling
factors which take into account the previous estimation
for worst-case remaining cycles and a new estimation due
to saved cycles (as in [10]), but it is changed in order to
be able to make use of inter-task slack time and of intra-
task slack time which remain due to a discrete set of
processor frequencies.

• The computation of worst-case remaining execution cy-
cles Ři of a task τi, the computation of new processor
frequencies, and the according change of frequencies can
be seamlessly integrated into an operating system.

1) Keeping track of remaining worst-case execution cycles:
As a basis for frequency rescaling we need an estimation of
worst-case remaining execution cycles Ři of tasks τi. As de-
scribed in Sect. II-D the computation of worst-case remaining
execution cycles Ři or the scaling factor, respectively, as given
in [10] may need rather involved computations at run time.
Especially if a frequency scaling point is located in several
nested loops, an estimation of worst-case remaining execution
cycles Ři will need the current number of iterations for each
of the outer loops which were performed so far (in order to
be able to compute the worst-case remaining iteration counts
based on the respective maximal iteration counts).



Our scheme for computing remaining worst-case execution
cycles is much simpler: It starts with an estimation of worst-
case execution cycles for the task as a whole which is
obtained by static analysis. In order to keep track of the
remaining worst-case execution cycles Ři, the processor has
to provide a cycle counter ČCLK which is incremented during
program execution. For each task τi, the operating system then
maintains a task-specific cycle counter Čact,i derived from

ČCLK . Based on the initial number of worst-case execution
cycles for τi, the number of cycles used for τi, and the number
of cycles saved in τi (compared to the worst-case estimation),
the remaining worst-case execution cycles Ři are computed.
The number of cycles saved in τi is updated at frequency
scaling points by additional code as will be described below.
In more detail, the counter Čact,i is reset to 0 whenever Ři is
updated (see also Section III-E). This happens in the following
three cases: 1.) A task τi is activated – here, Ři is initialized
to Či. 2.) A task τi is preempted. Assume that τi has already
executed Čact,i cycles since the last update, then the remaining

cycles are updated with Ři ← Ři − Čact,i. 3.) Information
on saved cycles is evaluated during task execution. Here,
the remaining execution cycles Ři are updated at Frequency
Scaling Points (FSP).
a) R-type Frequency Scaling Points: We call the Fre-

quency Scaling Points (FSPs) mentioned above R-type FSPs,
because they give relative information about saved cycles in
the control flow. Consider that the executed task traverses the
edge bif,1 → b2 in Figure 1. The block b1 would be omitted in
this case and 100 cycles are saved. Such relative information
is independent of the number of (potentially nested) loop
iterations performed so far. Whenever a task τi reaches a R-
type FSP which saves ČR cycles, it updates the remaining
cycles Ři:

Ři ← Ři − Čact,i − ČR if R-type FSP

It is easy to see that the scheme based on cycle counters and
relative information can be implemented with low overhead for
computing the remaining worst-case execution cycles. Another
key advantage consists in the fact that it is suitable for shared
code in libraries used by different tasks. In this case absolute
information about remaining worst-case execution cycles can
not be written into the shared code, because the information
differs depending on the context in which the shared code is
used. Thus, the annotation scheme from [10] is not applicable.
In our scheme shared code contains only relative information
about saved cycles and the remaining worst-case execution
cycles are computed based on this as described above.
b) A-type Frequency Scaling Points: For completeness,

we mention a further optimization for special cases within
non-shared code. For these cases we introduce A-type FSPs
which keep absolute information about remaining worst-case
execution cycles. Consider the edge bwh → bif,2 in Figure
1. Here, the number of remaining cycles can directly be
determined (75 cycles). An A-type FSP can only be used if
the corresponding edge is not located inside a loop or inside
shared code. The absolute number of remaining worst-case
execution cycles is directly updated by

Ři ← ČA if A-type FSP.

A-type FSPs make sense when R-type FSPs do not provide
perfect knowledge about saved cycles (e.g., if not all branches

in the control flow are annotated with R-type FSPs or if worst-
case execution time computation is imprecise due to advanced
features of processors like caches and pipelines).2

C. Inter-Task Slack-time Elimination

In the previous Sect. III-A and III-B we determined the
frequency fα to eliminate idle times and explained how the
remaining execution cycles Ři of a task can be updated during
run time. Now we will look into the question of how to
compute frequencies based on worst-case remaining cycles. To
be able to use frequency scaling in a multi-task environment in
combination with inter-task frequency scaling we do not use
the old estimation for the intra-task scaling factor as a basis for
computing the new frequency, but we use a ‘remaining time’
tremain,i which depends on inter-task slack-time elimination
and on effects of intra-task slack-time elimination with discrete
frequencies. Here, the lowest possible frequency to run a
single task τi with Ři remaining cycles and a remaining time
tremain,i is f = Ři/tremain,i = Ři/(ei − t) with an ending
time ei and the current time t.
In order to determine ei and to consider inter-task slack-time
we use the same principle as the EDF based frequency scaling
algorithm given in [8]. Whenever the actual completion time
of a task is less than its worst-case completion time ei, the
additional slack time is implicitly passed to the subsequent
task. The (absolute) worst-case completion time ei can be
calculated incrementally whenever a task τi starts, preempts
(another task) or resumes at current time t. The computation
of ei makes use of execution times Ci which are reserved for
tasks τi. Ci results from the worst-case execution cycles Či

by Ci = Či · f
−1
α where fα is the frequency determined as

described in Sect. III-A. (If all tasks run with frequency fα

and use their worst-case execution cycles, then the processor
utilization U exactly equals 1 and EDF scheduling is able to
find a feasible schedule.) The absolute worst-case completion
times ei are computed as follows:

ei =































t + Ci if τi preempts task τj

ei + ek − tpi if τi was preempted at t
p
i

and resumes after task τk

ek + Ci if τi starts after τk

and di ≥ dk ∧ t < ek

t + Ci otherwise

(1)

In cases 2 and 3 this scheme ensures that a possible slack
is used by the following task. The difference of ei − t gives
the available time for task τi and thus, the lowest possible
frequency is f = Ři/(ei − t). The absolute worst-case com-
pletion time ei is used during intra-task slack-time elimination
to further decrease the frequency whenever it detects saved
cycles at frequency scaling points.
The correctness of the overall approach follows from the
correctness of [8] together with the observation that intra-task
frequency scaling never increases the computation time of a
task τi.

D. Split Frequency Rescaling

In [15], Ishihara and Yasuura considered the problem of
minimizing energy consumption for variable voltage proces-
sors. They proved that the two voltages which minimize energy

2For shared code, A-type FSPs can be transformed into R-type FSPs where
ČR is computed depending on the number of saved cycles.



consumption under a time constraint are immediate neighbors
to the videal – the optimal voltage for a continuous voltage
processor. A similar scheme is applied for discrete frequencies
in [16], so that a task with a deadline constraint is firstly
executed with a lower frequency and later switched to a higher
frequency to meet its deadline for the worst-case. In contrast
to [16] we also perform splitting at each frequency scaling
point. More precisely, we split the time needed to execute
the remaining worst-case execution cycles Ř = Řa + Řb

which should be executed with frequency f into two time
intervals executed at the largest frequency fa ≤ f and the
smallest frequency fb ≥ f . We conclude under the constraints
Ř = Řa + Řb and Ř · f−1 ≥ Řa · f

−1

a + Řb · f
−1

b that we
have to switch to the higher frequency fb when the number
of remaining execution cycles is

Řb =

⌈

Ř ·
f−1 − f−1

a

f−1

b − f−1
a

⌉

.

Therefore, the tasks starts with fa and, if there are only Řb

cycles left, the scheduler switches to the higher frequency fb.
For a real processor, this frequency switch can be triggered
with a previously set timer.
Note that split frequency rescaling aims to eliminate slack
times due to discrete frequencies and – in the ideal case –
no inter-task slack should occur. However, this goal can not
always be achieved, as the computed ideal frequency can be
lower than the lowest available frequency f1 and therefore, a
task instance would still produce slack after its completion.
Another reason to consider inter-task slack would be the
application of this approach for complex architectures, e.g.
with caches. Firstly, static analysis tools tend to overestimate
worst-case execution times. Secondly, a task can not detect all
saved cycles as their number depends on the preceding cache
accesses.

E. Integration into Operating System

There are two procedures which implement our overall
approach based on the concepts for idle, intra- and inter-task
slack-time elimination. The first procedure is called whenever
a new task arrives or is removed from the task set: it verifies
if the new task set is feasible (U ≤ 1) and calculates the
frequency fα and the reserved computation time Ci = Či ·f

−1

α

for each task τi. The second procedure is given in Algorithm
1 which combines the concepts of inter- and intra-task slack
time elimination whenever there is a context switch or program
execution reaches a FSP. Essentially, it updates the values for
the remaining cycles Ři and the absolute finishing time ei of
each task τi. Please note that for each context switch and each
execution at an intra-task frequency scaling point the needed
computations can be performed in constant time.

F. Overhead Considerations

In order to include overhead due to intra-task frequency
scaling points and inter-task context switches a fixed number
of cycles can be added to the worst-case execution cycles Či

of a task τi as discussed in the following.
For inter-task overhead we consider the worst-case number
of cycles ČCS for a context switch. Each context switch is
always connected with an activation or termination of a task,
i.e., the overhead can be estimated by 2 ·ČCS per task instance.
This consideration includes a switch between tasks, a switch
from and to a (possibly virtual) idle task, and preemption

Algorithm 1 Called on inter- or intra-task scheduling

calculate_frequency(τi)
if intra-task scaling of τi then
// task τi saved some cycles at a FSP
if absolute FSP then

Ři ← ČA

else
Ři ← Ři − Čact,i − ČR

end if
else if inter-task scaling of τi then
if τi preempts τj then

ei ← t + Ci

Ři ← Či

Řj ← Řj − Čact,j // Čact,j since last switch
else if ri resumes after some task τk then

ei ← ei + ek − t
p
i // τi was preempted at t

p
i

else
// τi starts execution after some task τk has finished
if di ≥ dk and t < ek then

ei ← ek + Ci

else
ei ← t + Ci

end if
Ři ← Či

end if
end if
Čact,i ← 0

f ←
Ři

ei−t

determine Ři,b with next lower frequency fa and higher frequency

fb and set timer which switches to frequency fb when Ři,b cycles
are left
set_frequency(fa)

of a task. Hence, an upper bound for the additional system

utilization UCS can be determined by UCS = 2ČCS
fCS

∑n
i=1

1

Ti

,

assuming that scheduler routines are executed with a frequency
of at least fCS.
Of course, tools for WCET estimation are also able to ana-
lyze code with intra-task instrumentation and thus, additional
cycles for intra-task overhead due to frequency scaling points
can be determined. However, only conditional branches in the
CFG where the overhead for processing a FSP is smaller than
the number of saved cycles will be instrumented. This will lead
to an incomplete instrumentation in practical applications.

IV. EXPERIMENTS

For our experiments we implemented a simulation frame-
work which determines the energy efficiency with different
task sets and hardware configurations. In order to evaluate
the effectiveness of our approach, we implemented various
well-known DVS schedulers, e.g., LaEDF [4] and OLDVS
[8], and compared the results to our scheduler implementation
ItcaEDF (Intra-Task Characteristics Aware EDF). Before we
discuss the results in Section IV-C we will give a more detailed
description of our simulation framework and system setup.

A. Simulation Framework

Our experiments were performed with a compiler and
simulation framework written in C++. As our approach utilizes
intra-task slack due to unused execution paths during program
execution, it was not only necessary to model task execution
times but also their control flow. To achieve this, task behavior
is described in a language based on ANSI C in order to
define task behavior including control flow, task semantics and
temporal characteristics. Syntax extensions make to possible



to specify execution times for statements and to annotate code
with flow facts like upper bounds for loops. These extensions
are used for both integrated path-based WCET analysis and
simulation. Finally, in our framework we implement frequency
scaling points with a code instrumentation scheme, i.e., af-
ter path-based WCET analysis we instrument the task with
additional statements giving hints about the number of saved
cycles ČR. The number of saved cycles at a FSP is constant for
conditional branches in the CFG. For loops, it is dynamically
computed depending on the worst-case numbers of iterations
and the actual numbers of iterations.

B. System and Task Setup

In our simulations we use a processor model with four
different operating configurations S = {(250 kHz, 2V),
(500 kHz, 3V), (750 kHz, 4V), (1MHz, 5V)}. The energy
consumption is computed assuming each cycle needs an
energy amount proportional to the square of the operating
voltage. As we are only interested in the relative energy
consumption of the DVS schedulers, we assume that idling
the processor consumes no energy as discussed in [4]. In the
following we will provide details on how we generated task
sets in our implementation.
Firstly, we choose an overall worst-case utilization factor

U ≤ 1. This utilization factor is randomly split under the
given number of tasks, so that U =

∑

τi∈Γ
Ui and ∀τi, τj :

1

l
·Uj ≤ Ui ≤ l·Uj for a given l ∈ R. We choose l = 2 to avoid
exceeding differences in task characteristics. Subsequently, the
system determines a period Ti ∈ [100ms, 1000ms] and com-
putes the worst-case execution time according to Ci = Ui ·Ti.
Finally, this worst-case execution time is realized by a nested
loop:

for i = 1, .., imax = bouter do
// randomly determine jmax ∈ [binner,min, binner,max]
// automatically inserted intra-task frequency scaling point
for j = 1, .., jmax ≤ binner do
// computation with fixed number of cycles Či,loop

end for
end for

The real worst-case numbers of cycles Či,loop needed in the
nested loop and the final overall worst-case utilization factor
were computed so that Ci · fm = binner · bouter · Či,loop.
In this paper we specifically set bouter = 5 and binner = 10
and therefore, the inner loop including the FSP is executed
five times. The values of binner,min and binner,max were varied to
realize different ranges for the actual execution time (AET) to
worst-case execution time (WCET) ratio. For example, values
of binner,min = 4 and binner,max = 8 can be used to force an
average fraction of 0.6 for the actual workload of a task.

C. Results

The simulation results are given in Figure 2 for different
task scenarios. Each diagram shows a histogram for the energy
efficiency of a specific scheduler. On the x-axis we have
the worst-case utilization factor of the corresponding task set
and on the y-axis the energy consumption for the different
methods as a fraction of the energy consumption for an EDF
based execution with the highest possible frequency fm. In the
experiments we varied the number of executed tasks n and the
‘actual workload’. The ‘actual workload’ denotes the fraction c
of the actual execution time (AET) to the worst-case execution

time (WCET) of a task as described above. The diagrams in
this paper refer to scheduling with either n = 2 or n = 8
tasks and an actual workload either in the interval [0.8, 1.0] or
[0.4, 0.8].
We separated the results for the different schedulers into two
blocks, respectively. Before we discuss the results we will give
a short overview of the compared energy-efficient scheduling
methods. The first block consists of real-time DVS schedulers
known from literature:

• StaticEDF: StaticEDF uses a constant frequency depend-
ing on the worst-case utilization U of the task set.

• OrigIntra: Original Intra-Task DVS which uses fixed
ratios for frequency rescaling [10].

• OLDVS: Slack passing scheme which gives unused com-
putation to the subsequent task [8].

• OLDVS*: Improved OLDVS variant for discrete fre-
quency processors which splits execution time in two
parts executed with the next lower and next higher
discrete frequency [16].

• LaEDF: Speculative Look-ahead EDF scheduler which
scales to the lowest possible frequency by deferring as
much work as possible after the next deadline [4].

The second block consists of inter-task schedulers which
include intra-task voltage scaling according to the scheme
presented in this paper. Here, the last method ItcaEDF is
our proposed approach which outperforms all other DVS
schedulers:

• IntraLaEDF: Variant of LaEDF combined with our intra-
task approach. Rescaling with deferring work after the
next deadline is done at each frequency scaling point and
at each context switch.

• IntraOLDVS: OLDVS combined with our intra-task
approach.

• ItcaEDF (Intra-Task Characteristics Aware EDF):
The proposed on-line algorithm which integrates our
intra-task approach and split frequency rescaling (see
Sect. III-D).

In all configurations the minimal energy consumption de-
pends on the lowest available frequency. Therefore for utiliza-
tion factors smaller than the ratio f1/fm = 0.25 all frequency
scaling techniques gave the same energy consumption as all
tasks already start with the lowest possible frequency. The en-
ergy consumption increases with higher worst-case utilization
factors. As expected, StaticEDF shows a stepwise increase
of energy consumption (according to the discrete frequency
distribution), because only worst-case execution times and
no occurring slack is considered. (Energy consumptions for
U = 0.10, 0.20, U = 0.30, 0.40, 0.50, U = 0.60, 0.70, and
U = 0.80, 0.90, respectively, are identical.)
Considering the first block of schedulers known from lit-
erature, neither OrigIntra nor OLDVS show an overall good
performance. OrigIntra performs comparatively well when the
actual workload is low (see second and fourth histogram),
since it is able to rescale with a high granularity at task-
internal frequency scaling points. However, OrigIntra shows
high energy consumption when the actual workload is large
(i.e., not far away from the worst-case workload, see first and
third histogram), as the occurring slack for a single task is
too small in order to scale to a lower frequency and slack
is not accumulated between tasks (since it is not passed to
a subsequent task). OLDVS shows only moderate savings
compared to StaticEDF, since frequency scaling with slack



passing to the subsequent task is performed only at context
switches with a lower granularity. The original OLDVS sched-
uler is improved by the split frequency scaling of OLDVS*
which provides a better support for discrete frequencies on
the one hand and on the other hand works more optimistically
by selecting the lower of the two neighbor frequencies first.
The most optimistic (or in other words most aggressive)
method is LaEDF which works especially well when the
actual workload is low and the number of tasks is high (see
fourth diagram). However, when the workload is too high, the
speculative scheme of LaEDF (which defers as much work as
possible after the next deadline) seems to be too aggressive
and the likelihood that, for example, a preempting task has
to choose a higher frequency is increased (see first and third
diagram). When the number of tasks is low (see first and
second diagram) LaEDF also may suffer from the fact that
the number of context switches becomes smaller and there are
less opportunities for frequency scalings.
Considering the last blocks, our proposed ItcaEDF approach
clearly outperforms the other schedulers in all task setups. For
instance, considering a worst-case utilization of U = 0.8, a
AET/WCET ratio between 0.4 and 0.8, and two tasks (see
diagram 2), ItcaEDF improved the normalized energy con-
sumption by 28% compared to OLDVS* and 34% compared
to LaEDF. Increasing the number of tasks to 8 (see diagram 4)
results in a energy reduction of 16% compared to LaEDF and
31% compared to OLDVS*. Apparently, in our scheduler the
deep integration of intra-task code instrumentation into inter-
task frequency scaling really pays off. The intra-task frequency
scaling points both provide timing information to reflect the
actual work load of the system more accurately and give a
higher granularity for efficient scheduling with DVS. ItcaEDF
avoids working too aggressively (as LaEDF in some cases),
since the only case of an optimistic frequency selection occurs
when a not existing continuous frequency is approximated by
two discrete frequencies and the lower one is selected first.
However this decision is confirmed by the observation that the
need for using the second (higher) frequency is often canceled
in the future, when the actual workload is low and additional
slack occurs after the frequency splitting.
For completeness, we also considered schedulers where
our intra-task code instrumentation scheme is integrated into
OLDVS directly (without frequency splitting) and into LaEDF
(the corresponding bars in the histograms are labeled In-
traOLDVS and IntraLaEDF, respectively). As expected, In-
traOLDVS (in comparison to OLDVS) profits from the detec-
tion of reduced remaining worst-case execution cycles during
task run time, but it is outperformed by ItcaEDF. Somewhat
surprisingly, the results for IntraLaEDF show that it is not al-
ways a good idea to combine an inter-task scheduler with intra-
task code instrumentation: LaEDF can hardly benefit from
our code instrumentation approach and sometimes IntraLaEDF
displays an even higher energy consumption than LaEDF.
Obviously, increasing the aggressiveness of the speculative
algorithm by exploiting intra-task characteristics has a negative
impact on energy-efficiency.

V. CONCLUSIONS

In this paper, we proposed an energy-efficient real-time
scheduler which incorporates cycle-based intra-task and time-
based inter-task frequency scaling for the realistic scenario of
processors with discrete frequencies and dynamic task sets. A
multi-level approach considers idle, intra- and inter-task slack

times and scales the processor speed to the lowest possible
frequency on context switches and within task execution. We
also presented a novel technique to keep track of remaining
worst-case execution cycles for intra-task frequency scaling
which is based on cycle counters of the hardware and which
is suitable for shared code. To evaluate the performance of the
on-line scheduler we integrated the algorithms into a compiler
and simulation framework. Our experimental results showed
that our approach is able to reduce energy consumption of
state-of-the-art inter-task DVS schedulers by over 30%.
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8 tasks, fraction of actual to worst-case execution time between 0.4...0.8 for each task

Fig. 2. Normalized energy consumption under various task characteristics for 2 or 8 tasks and different fractions of utilization




