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ABSTRACT
We present a method which computes optimized represen-
tations for non-convex polyhedra. Our method detects so-
called redundant linear constraints in these representations
by using an incremental SMT solver and then removes the
redundant constraints based on Craig interpolation. The
approach is evaluated both for formulas from the model
checking context including boolean combinations of linear
constraints and boolean variables and for random trees com-
posed of quantifiers, AND-, OR-, NOT-operators, and lin-
ear constraints produced by a generator. The results clearly
show the advantages of our approach in comparison to state-
of-the-art solvers.

Categories and Subject Descriptors
I.1.1 [Computing Methodologies]: Symbolic and Alge-
braic Manipulation—Expressions and Their Representation,
Simplification of expressions; G.4 [Mathematics of Com-
puting]: Mathematical Software—Verification

Keywords
Satisfiability Modulo Theories, linear arithmetic, non-convex
polyhedra, Craig interpolation, hybrid system verification

1. INTRODUCTION
In this paper we present an approach which uses SMT

(Satisfiability Modulo Theories) solvers and Craig interpola-
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tion [3] for optimizing representations of non-convex polyhe-
dra. Non-convex polyhedra are formed by arbitrary boolean
combinations (including conjunction, disjunction and nega-
tion) of linear constraints. Non-convex polyhedra have been
used to represent sets of states of hybrid systems. Whereas
approaches like [12, 11] consider unions of convex polyhedra
(i.e. unions of conjunctions of linear constraints) together
with an explicit representation of discrete states, in [5, 4]
a data structure called LinAIGs was used as a single sym-
bolic representation for sets of states of hybrid systems with
large discrete state spaces (in the context of model checking
by backward analysis). LinAIGs in turn represent an ex-
tension of non-convex polyhedra by additional boolean vari-
ables, i.e. they represent arbitrary boolean combinations of
boolean variables and linear constraints.

In particular, our optimization methods for non-convex
polyhedra remove so-called redundant linear constraints
from our representations. A linear constraint is called re-
dundant for a non-convex polyhedron if and only if the
non-convex polyhedron can be described without using this
linear constraint. Note that an alternative representation
of the polyhedron without using the redundant linear con-
straint may require a completely different boolean combi-
nation of linear constraints. In that sense our method sig-
nificantly extends results for eliminating redundant linear
constraints from convex polyhedra used by Frehse [11] and
Wang [22].1 Removing redundant linear constraints from
non-convex polyhedra plays an important role especially dur-
ing the elimination of quantifiers for real-valued variables in
the context of model checking for hybrid systems. Previous
work [4] demonstrated how already a simple preliminary ver-
sion of redundancy removal can be used during Weispfennig–
Loos quantifier elimination [14]: Based on

• the fact that the size of the formula produced by Weis-

1For convex polyhedra redundancy of linear constraints re-
duces to the question whether the linear constraint can be
omitted in the conjunction of linear constraints without
changing the represented set.
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pfennig–Loos quantifier elimination of one real vari-
able may grow by a factor which is linear in the number
of constraints in the original formula and

• the observation that a large number of the new lin-
ear constraints which were generated during quantifier
elimination was in fact redundant

we were able to show that it is essential to make use of re-
dundancy removal (keeping the number of linear constraints
in our representations as small as possible) in order to enable
sequences of quantifier eliminations during model checking
of non-trivial examples.

Our paper makes the following contributions:

• We present an algorithm for detecting a maximal num-
ber of linear constraints which can be removed simulta-
neously. The algorithm is based on sets of don’t cares
which result from inconsistent assignments of truth
values to linear constraints. We show how the detec-
tion of sets of redundant constraints can be performed
using an SMT solver. In particular we show how to
use incremental SMT solving for detecting larger and
larger sets of redundant constraints until a maximal
set is obtained.

• Based on the don’t care sets mentioned above we pro-
vide a detailed proof showing the correctness of the
algorithm.

• We show how the information needed for removing re-
dundant linear constraints can be extracted from the
conflict clauses of an SMT solver. Finally, we present a
novel method really performing the removal of redun-
dant linear constraints based on this information. The
method is based on Craig interpolation [3, 18, 15].

It is important to note that our method using redun-
dancy elimination is not only applicable in the context of
model checking for hybrid systems, but it provides a gen-
eral method making quantifier elimination for linear arith-
metic more efficient. Therefore our experimental evaluation
is not only done for formulas generated during runs of the
model checker from [4], but also for formulas from [9, 2]
(in SMT-LIB format [19]) which consist of arbitrary boolean
combinations of linear constraints, combined with quantifi-
cations of real-valued variables. For such formulas we solve
two problems: First, we compute whether the resulting for-
mula is satisfiable by any assignment of values to the free
variables and secondly we do even more, we also compute a
predicate over the free variables which is true for all satis-
fying assignments of the formula. We compare our results
to the results of the automata-based tool LIRA [9, 2] (which
also solves both problems mentioned above) and to the re-
sults of state-of-the-art SMT solvers Yices [7] and CVC3 [20]
(which solve the first problem of checking whether the for-
mula is satisfiable). Whereas these solvers are not restricted
to the subclass of formulas we consider in this paper (and
are not optimized for this subclass in the case of Yices and
CVC3), our experiments show that for the subclass of for-
mulas considered here our method is much more effective.
Our results are obtained by an elaborate scheme combining
several methods for keeping representations of intermediate
results compact with redundancy removal as an essential
component. Internally, these methods make heavy use of
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Figure 1: The LinAIG structure

the results of SMT solvers restricted to quantifier-free sat-
isfiability solving.2 Our results suggest to make use of our
approach, if the formula at hand belongs to the subclass of
linear arithmetic with quantification over reals and more-
over, even for more general formulas, one can imagine to
use our method as a fast preprocessor for simplifying sub-
formulas from this subclass.

The paper is organized as follows: In Sect. 2 we give a brief
review of our representations of non-convex polyhedra, Craig
interpolation, and Weispfennig-Loos quantifier elimination.
In Sect. 3 we give a definition of redundant linear constraints
and present methods for detecting and removing them from
representations of non-convex polyhedra. After presenting
our encouraging experimental results in Sect. 4 we conclude
the paper in Sect. 5.

2. PRELIMINARIES

2.1 Representation of Non-Convex Polyhedra
We assume disjoint sets of variables C and B. The ele-

ments of C = {c1, . . . , cf} are continuous variables, which
are interpreted over the reals R. The elements of B =
{b1, . . . , bk} are boolean variables and range over the domain
B = {0, 1}. When we consider logic formulas over B ∪ C,
we restrict terms over C to the class of linear terms of the
form

P
αici + α0 with rational constants αi and ci ∈ C.

Predicates are given by the set L(C) of linear constraints,
they have the form t ∼ 0, where ∼ ∈ {=, <,≤} and t is a
linear term. P(C) is the set of all boolean combinations of
linear constraints over C, the formulas from P(C) represent
non-convex polyhedra over Rf . In this paper we consider
the class of formulas from P(B, C) which is the set of all
boolean combinations of boolean variables from B and lin-
ear constraints over C.

As a underlying data structure for our method we use
representations of formulas from P(B, C) by LinAIGs [5, 4].
LinAIGs are And-Inverter-Graphs (AIGs) enriched by linear
constraints. The structure of LinAIGs is illustrated in Fig. 1.

The component of LinAIGs representing boolean formulas
consists in a variant of AIGs, the so–called Functionally Re-
duced AND-Inverter Graphs (FRAIGs) [16, 17]. AIGs enjoy a
widespread application in combinational equivalence check-
ing and Bounded Model Checking (BMC). They are basically
boolean circuits consisting only of AND gates and inverters.
In [17] FRAIGs were tailored towards the representation and
manipulation of sets of states in symbolic model checking,
replacing BDDs as a compact representation of large discrete
state spaces.

2In our implementation we use Yices [7] and HySAT [10] for
this task.
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In LinAIGs (see Fig. 1) we use a set of new (boolean) con-
straint variables Q as encodings for the linear constraints,
where each occurring `i ∈ L(C) is encoded by some q`i ∈ Q.
In order to keep the representation compact, we avoid to
represent equivalent predicates by different LinAIG nodes.
Basically, this could be achieved by checking all pairs of
nodes for equivalence (taking the interpretation of constraint
variables q`i by the corresponding linear constraints `i into
account). This check can be performed by an SMT (SAT

modulo theories) solver which combines DPLL with linear
programming as a decision procedure. Instead of using SMT

solver calls for all pairs of nodes, we make use of a carefully
designed and tested strategy which avoids SMT solver calls
when non-equivalence can be shown using test vectors with
valuations c ∈ Rf or when equivalence can be proven already
for the boolean abstraction without referring to the defini-
tion of the constraint variables. (In this context boolean
reasoning is supported by (approximate) knowledge on lin-
ear constraints like implications between constraints.)

2.2 Craig interpolation
As we will describe in Sect. 3.3 we remove linear con-

straints which were found to be redundant using Craig in-
terpolation [3, 18]. Recently, Craig interpolation was ap-
plied by McMillan for generating an overapproximated im-
age operator to be used in connection with Bounded Model
Checking [15] or by Lee et al. for computing a so-called
dependency function in logic synthesis algorithms [13]. A
Craig interpolant is computed for a boolean formula F in
Conjunctive Normal Form (CNF) (i.e. for a conjunction of
disjunctions of boolean variables) which is partitioned into
two parts A and B with F = A ∧ B. When F = A ∧ B
is unsatisfiable, a Craig interpolant for the pair (A, B) is a
boolean formula P with the following properties:

• A implies P ,

• P ∧B is unsatisfiable, and

• P depends only on common variables of A and B.

An appropriate Craig interpolant P can be computed based
on a proof by resolution that F is unsatisfiable (time and
space for this are linear in the size of the proof) [18, 15].
Proofs of unsatisfiability can be computed by any modern
SAT solver with proof logging turned on.

2.3 Quantifier elimination
In [4] Loos’s and Weispfenning’s test point method [14]

was adapted to the LinAIG data structure described above.
The method eliminates universal quantifiers by converting
them into finite conjunctions and existential quantifiers by
converting them into finite disjunctions. The subformu-
las to be combined by conjunction (or disjunction in case
of existential quantification) are obtained from the original
formula by replacing real-valued variables by appropriate
‘test points’ arriving again at formulas in linear arithmetic.
The test point method is well-suited for our LinAIG data
structure, since substitutions and disjunctions / conjunc-
tions can be performed efficiently in the LinAIG package and
the method does not need (potentially costly) conversions of
the original formula into CNF / DNF before applying quan-
tifier elimination as the Fourier-Motzkin algorithm, e.g..

The number of test points needed depends linearly on the
number of linear constraints in the original formula. Thus,

during elimination of one real-valued variable, the number of
linear constraints may grow quadratically with the number
of linear constraints in the original formula. For sequences of
quantifier eliminations it is therefore important to keep the
number of linear constraints as small as possible. For this
reason we developed an algorithm which computes repre-
sentations depending on a minimal set of linear constraints.
The method is presented in Sect. 3. Experimental results in
Sect. 4 show that the method is indeed essential in order to
enable sequences of quantifier eliminations.

3. REDUNDANT LINEAR CONSTRAINTS
In this section we present our methods to detect and re-

move redundant linear constraints from non-convex polyhe-
dra.

For illustration of redundant linear constraints see Fig. 2
and 3, which show a typical example stemming from a model
checking application. It represents a small state set based on
two real variables: Lines in Figures 2 and 3 represent linear
constraints, and the gray shaded area represents the space
defined by some boolean combination of these constraints.
Whereas the representation depicted in Fig. 2 contains 24
linear constraints, a closer analysis shows that an optimized
representation can be found using only 15 linear constraints
as depicted in Fig. 3.

3.1 Redundancy Detection and Removal for
Convex Polyhedra

Note that our redundancy detection and removal approach
works for representations of non-convex polyhedra. There-
fore the task is not as straightforward as for other approaches
such as [12, 11] which represent sets of convex polyhedra,
i. e., sets of conjunctions `1∧ . . .∧ `n of linear constraints. If
one is restricted to convex polyhedra, the question whether
a linear constraint `1 is redundant in the representation re-
duces to the question whether `2 ∧ . . . ∧ `n represents the
same polyhedron as `1 ∧ . . . ∧ `n, or equivalently, whether
`1∧ `2∧ . . .∧ `n represents the empty set. This question can
simply be answered by a linear program solver.

3.2 Detection of Redundant Constraints for
Non-convex Polyhedra

Now we consider the case of non-convex polyhedra. To be
more precise, we actually consider the slightly generalized
case of boolean combinations of linear constraints and ad-
ditional boolean variables instead of non-convex polyhedra.
Our approach works (regardless of the boolean variables) for
predicates F (`1, . . . , `n, b1, . . . , bk) where `1, . . . , `n are lin-
ear constraints over C, b1, . . . , bk are boolean variables, and
F is an arbitrary boolean function. Such predicates may be
represented by LinAIGs, e.g..

Definition 1. The linear constraints `1, . . . , `r (1 ≤ r ≤ n)
are called redundant in the representation of F (`1, . . . , `n,
b1, . . . , bk) iff there is a boolean function G with the property
that F (`1, . . . , `n, b1, . . . , bk) and G(`r+1, . . . , `n, b1, . . . , bk)
represent the same predicates.

In the following we will first prove a theorem which gives
a necessary and sufficient condition for a subset {`1, . . . , `r}
of linear constraints to be redundant, then we will present
an algorithm based on incremental SMT solving which con-
structs a maximal set of redundant constraints, and finally,
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Figure 2: Before redundancy removal Figure 3: After redundancy removal

we develop a method really computing a representation not
depending on {`1, . . . , `r} assuming that the redundancy
check was successful.

In order to be able to check for redundancy, we assume a
disjoint copy C′ = {c′1, . . . , c′f} of the continuous variables
C = {c1, . . . , cf}. Moreover, for each linear constraint `i

(1 ≤ i ≤ n) we introduce a corresponding linear constraint
`′i which coincides with `i up to replacement of variables
cj ∈ C by variables c′j ∈ C′. Our check for redundancy is
based on the following theorem:

Theorem 1 (Redundancy check).
Let `1, . . . , `r be linear constraints over variables from {c1,

. . . , cf} and let `′1, . . . , `
′
r be identical linear constraints over

a disjoint set of variables {c′1, . . . , c′f}. The linear constraints
`1, . . . , `r (1 ≤ r ≤ n) are redundant in the representation
of F (`1, . . . , `n, b1, . . . , bk) if and only if the predicate

F (`1, . . . , `n, b1, . . . , bk)⊕ F (`′1, . . . , `
′
n, b1, . . . , bk)

∧
Vn

i=r+1(`i ≡ `′i)
(1)

(where ⊕ denotes exclusive-or and ≡ denotes boolean equiv-
alence) is not satisfiable by any assignment of real values to
the variables c1, . . . , cf , c′1, . . . , c

′
f and of boolean values to

b1, . . . , bk.

Note that the check from Thm. 1 can be performed by a
(conventional) SMT solver.

Proof Thm. 1, only-if-part.
For the proof of the ‘only-if-part’ of Thm. 1 we assume that
the predicate from formula (1) is satisfiable and under this
assumption we prove that it cannot be the case that all
linear constraints `1, . . . , `r are redundant, i.e., that there is
no boolean function G such that G(`r+1, . . . , `n, b1, . . . , bk)
and F (`1, . . . , `n, b1, . . . , bk) represent the same predicates.

Now consider some satisfying assignment to the predicate
from formula (1) as follows: For the real variables c1 :=
vc1 , . . . , cf := vcf with (vc1 , . . . , vcf ) ∈ Rf , for the copied

real variables c′1 := vc′
1
, . . . , c′f := vc′

f
with (vc′

1
, . . . , vc′

f
) ∈

Rf , and for the boolean variables b1 := vb1 , . . . , bk := vbk

with (vb1 , . . . , vbk ) ∈ {0, 1}k.
This satisfying assignment implies a corresponding truth

assignment to the linear constraints by `i(vc1 , . . . , vcf ) = v`i

(1 ≤ i ≤ n) with v`i ∈ {0, 1} and to the copied linear
constraints by `′i(vc′

1
, . . . , vc′

f
) = v`′i

(1 ≤ i ≤ n) with v`′i
∈

{0, 1}.
Since the assignment satisfies formula (1), it holds that

F (v`1 , . . . , v`n , vb1 , . . . , vbk )
6= F (v`′1

, . . . , v`′n , vb1 , . . . , vbk ), (a)

v`i = v`′i
for all r + 1 ≤ i ≤ n. (b)

(Part (a) holds because of the first part of formula (1),
i. e. F (b1, . . . , bk, `1, . . . , `n) ⊕ F (b1, . . . , bk, `′1, . . . , `

′
n), and

part (b) holds because of the second part
Vn

i=r+1(`i ≡ `′i).)

Thus the satisfying assignment produces two assignments
to the inputs of F which may differ only in the first r values,
whereas the function values of F for these two assignments
differ. However, any boolean function G not depending on
the first r inputs cannot see the difference between these two
assignments and thus, it cannot produce different outputs
for these two assignments as F . Thus, it is clear that any
G not depending on the first r inputs cannot represent the
same predicate as F .

For the ‘if-part’ of Thm. 1 it remains to be shown that an
appropriate function G can be constructed, if formula (1) is
unsatisfiable.

When constructing G, we need the notion of the don’t care
set DC induced by linear constraints:

Definition 2. The don’t care set DC induced by linear
constraints `1, . . . , `n is defined as DC := {(v`1 , . . . , v`n ,
vb1 , . . . , vbk ) | @(vc1 , . . . , vcf ) ∈ Rf with `i(vc1 , . . . , vcf ) =

v`i∀1 ≤ i ≤ n, (vb1 , . . . , vbk ) ∈ {0, 1}k}.

This don’t care set contains all assignments of truth values
to linear constraints which are inconsistent in the sense that
the corresponding linear constraints cannot hold these truth
values at the same time.

Based on the set DC, an appropriate boolean function
G can be constructed with G(`r+1, . . . , `n, b1, . . . , bk) and
F (`1, . . . , `n, b1, . . . , bk) representing the same predicates, if
there is no satisfying assignment to formula (1). This proves
the if-part of the proof for Thm. 1. However, we omit this
proof here, since we will give an alternative constructive
proof for the if-part in Sect.3.3. This constructive proof
makes use of a subset DC′ of DC which is computed by an
SMT solver during the proof of unsatisfiability for formula
(1).

Overall algorithm for redundancy detection.
Now we can present our overall algorithm detecting a max-

imal set of linear constraints which can be removed from
the representation at the same time. We start with a small
example demonstrating the effect that it is not enough to
consider redundancy of single linear constraints and to con-
struct larger sets of redundant constraints simply as unions
of smaller sets.

Example 1. Consider the predicate F (c1, c2) = (c1 ≥ 0)∧
(c2 ≥ 0) ∧ ¬(c1 + c2 ≤ 0) ∧ ¬(2c1 + c2 ≤ 0). It is easy to
see that both the third and the forth linear constraint in the
conjunction have the effect of ‘removing the value (c1, c2) =
(0, 0) from the predicate F ′(c1, c2) = (c1 ≥ 0) ∧ (c2 ≥ 0)’.
Therefore both `3 = (c1 + c2 ≤ 0) and `4 = (2c1 + c2 ≤ 0)
are obviously redundant linear constraints in F . However,
it is easy to see that `3 and `4 are not redundant in the
representation of F at the same time, i.e., only ¬(c1+c2 ≤
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0) or ¬(2c1 + c2 ≤ 0) can be omitted in the representation
for F .

This observation motivates the following overall algorithm
to detect a maximal set of redundant linear constraints:
Input: Predicate F (`1, . . . , `n, b1, . . . , bk)
Output: Maximal set S of redundant linear constraints

S := ∅
for i := 1 to n do

if redundant(F , S ∪ {`i}) then
S := S ∪ {`i}

end if
end for

redundant(F, S∪{li}) implements the check from Thm. 1
by using an SMT solver. It is important to note that the n
SMT problems to be solved in the above loop share almost
all of their clauses. For that reason we make use of an in-
cremental SMT solver to solve this series of problems. An
incremental SMT solver is able to profit from the similarity
of the problems by transferring learned knowledge from one
SMT solver call to the next (by means of learned conflict
clauses). Experimental results in Sect. 4 indeed show the
advantage of using an incremental SMT solver.

3.3 Removal of Redundant Linear
Constraints for Non-convex Polyhedra

Suppose that the linear constraints `1, . . . , `r are redun-
dant in F (`1, . . . , `n, b1, . . . , bk). Now we are looking for an
efficient procedure to compute a boolean function G which
is appropriate in the sense of Def. 1 and does not depend
on the first r inputs. As already mentioned in Sect. 3.2 it
is possible to define a method which in principle computes
such a function G using the don’t care set DC (according
to Def. 2). However, an efficient realization of this method
would certainly need a compact representation of the don’t
care set DC. Fortunately, a closer look at the problem re-
veals the following two interesting observations which turn
the basic idea into a feasible approach:

1. In general, we do not need the complete set DC for
the computation of the boolean function G.

2. A representation of a sufficient subset of DC which is
needed for removing the redundant constraints `1, . . . ,
`r is already computed by an SMT solver when check-
ing the satisfiability of formula (1), if one assumes that
the SMT solver uses the option of minimizing conflict
clauses.

In order to explain how an appropriate subset of DC is com-
puted by the SMT solver (when checking the satisfiability of
formula (1)) we need to have a closer look at the function-
ality of an SMT solver:

An SMT solver introduces constraint variables q`i for lin-
ear constraints `i (just as in LinAIGs as shown in Fig. 1).
First, the SMT solver looks for satisfying assignments to
the boolean variables (including the constraint variables).
Whenever the SMT solver detects a satisfying assignment to
the boolean variables, it checks whether the assignment to
the constraint variables is consistent, i. e., whether it can be
produced by replacing real-valued variables by reals in the
linear constraints. This task is performed by a linear pro-
gram solver. If the assignment is consistent, then the SMT

solver has found a satisfying assignment, otherwise it con-
tinues searching for satisfying assignments to the boolean

variables. If some assignment ε1, . . . , εm to constraint vari-
ables q`i1

, . . . , q`im
was found to be inconsistent, then the

boolean ‘conflict clause’ (qε1
`i1

+ . . . + qεm
`im

) is added to the

set of clauses in the SMT solver to avoid running into the
same conflict again. The negation of this conflict clause de-
scribes a set of don’t cares due to an inconsistency of linear
constraints.

Now consider formula (1) which has to be solved by an
SMT solver and suppose that the solver introduces boolean
constraint variables q`i for linear constraints `i and q`′i

for

`′i (1 ≤ i ≤ n). Since linear constraints `1, . . . , `r are redun-
dant, formula (1) is unsatisfiable (see Thm. 1). This means
that whenever there is some satisfying assignment to boolean
variables (including constraint variables) in the SMT solver,
it will be necessarily shown to be inconsistent. The most
important observation is now that the negations of conflict
clauses due to these inconsistencies include the don’t cares
needed to compute an appropriate boolean function G.

In order to see this, we define for arbitrary values (v`r+1 ,

. . . , v`n , vb1 , . . . , vbk ) ∈ {0, 1}n−r+k the sets orbit(v`r+1 , . . . ,
v`n , vb1 , . . . , vbk ) := {(v`1 , . . . , v`r , v`r+1 , . . . , v`n , vb1 , . . . ,
vbk ) | (v`1 , . . . , v`r ) ∈ {0, 1}r}.

If there is an orbit orbit(v`r+1 , . . . , v`n , vb1 , . . . , vbk ) con-

taining two different elements v(1) := (v`1 , . . . , v`r , v`r+1 ,

. . . , v`n , vb1 , . . . , vbk ) and v(2) := (v′`1 , . . . , v′`r
, v`r+1 , . . . ,

v`n , vb1 , . . . , vbk ) with F (v(1)) 6= F (v(2)), then the follow-
ing assignment to the boolean variables obviously satisfies
the boolean abstraction of formula (1) in the SMT solver:
q`1 := v`1 , . . . , q`r := v`r , q`′1

:= v′`1 , . . . , q`′r := v′`r
, q`r+1 :=

q`′r+1
:= v`r+1 , . . . , q`n := q`′n := v`n , b1 := vb1 , . . . , bk :=

vbk .
Since we assumed that formula (1) is not satisfiable, this

assignment cannot be consistent wrt. the interpretation of
constraint variables by linear constraints. So there must be
an inconsistency in the truth assignment to some linear con-
straints `1, . . . , `n, `′1, . . . , `

′
n. Since the linear constraints

`i and `′i are based on disjoint sets of real variables C =
{c1, . . . , cf} and C′ = {c′1, . . . , c′f}, respectively, it is easy to
see that a minimal number of assignments which are already
inconsistent contains either only assignments to a subset of
`1, . . . , `n or to a subset of `′1, . . . , `

′
n.3 When using the op-

tion of minimizing conflict clauses, the SMT solver will thus
learn a conflict clause whose negation either contains the
don’t care v(1) = (v`1 , . . . , v`r , v`r+1 , . . . , v`n , vb1 , . . . , vbk )

or the don’t care v(2) = (v′`1 , . . . , v′`r
, v`r+1 , . . . , v`n , vb1 , . . . ,

vbk ). Since this consideration holds for all pairs of elements
in some orbit orbit(v`r+1 , . . . , v`n , vb1 , . . . , vbk ) for which F
produces different values, this means for the subset DC′ ⊆
DC of don’t cares detected during the run of the SMT solver:
If orbit(v`r+1 , . . . , v`n , vb1 , . . . , vbk ) is not completely con-
tained in DC′, then |F (orbit(v`r+1 , . . . , v`n , vb1 , . . . , vbk ) \
DC′)| = 1 (or in other words: the elements of orbit(v`r+1 ,
. . . , v`n , vb1 , . . . , vbk ) which are not in DC′ are either all
mapped by F to 0 or are all mapped by F to 1).

Now we define the function value of G for each (v`r+1 , . . . ,

3For our purposes, it does not matter whether the incon-
sistency is given in terms of linear constraints `1, . . . , `n or
`′1, . . . , `

′
n. We are only interested in assignments of boolean

values to linear constraints leading to inconsistencies; of
course, the same inconsistencies will hold both for `1, . . . , `n

and their copies `′1, . . . , `
′
n.
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v`n , vb1 , . . . , vbk ) ∈ {0, 1}n−r+k:

1. If orbit(v`r+1 , . . . , v`n , vb1 , . . . , vbk ) ⊆ DC′, then
G(v`r+1 , . . . , v`n , vb1 , . . . , vbk ) is chosen arbitrarily.

2. Otherwise G(v`r+1 , . . . , v`n , vb1 , . . . , vbk ) = δ with
F (orbit(v`r+1 , . . . , v`n , vb1 , . . . , vbk ) \DC′) = {δ}, δ ∈
{0, 1}.

It is easy to see that G does not depend on variables
q`1 , . . . , q`r and that G is well-defined (this follows from
|F (orbit(v`r+1 , . . . , v`n , vb1 , . . . , vbk ) \ DC′)| = 1), i.e. G is
a possible solution according to Def. 1. This consideration
also provides a proof for the if-part of Thm. 1. Note that
according to case 1. of the definition above there may be
several possible choices fulfilling the definition of G.

A predicate dc which describes the don’t cares in DC′ may
be extracted from the SMT solver as a disjunction of negated
conflict clauses which record inconsistencies between linear
constraints.

3.3.1 Redundancy Removal by Existential Quantifi-
cation

A straightforward way of computing an appropriate func-
tion G relies on existential quantification:

• At first by G′ = F ∧ dc all don’t cares represented by
dc are mapped to the function value 0.

• Secondly, we perform an existential quantification of
the variables q`1 , . . . , q`r in G′: G = ∃q`1 , . . . , q`r G′.
This existential quantification maps all elements of an
orbit orbit(v`r+1 , . . . , v`n , vb1 , . . . , vbk ) to 1, whenever
the orbit contains an element ε with dc(ε) = 0 and
F (ε) = 1. Since due to the argumentation above there
is no other element δ in such an orbit with dc(δ) = 0
and F (δ) = 0, G eventually differs from F only for
don’t cares defined by dc and it certainly does not de-
pend on variables q`1 , . . . , q`r , i.e. existential quantifi-
cation computes one possible solution for G according
to Def. 1 (more precisely it computes exactly the solu-
tion for G which maps a minimum number of elements
of {0, 1}n−r+k to 1).

3.3.2 Redundancy Removal with Craig Interpolants
Although our implementation of LinAIGs supports quan-

tification of boolean variables by a series of methods like
avoiding the insertion of equivalent nodes (see Sect. 2.1),
quantifier scheduling, BDD sweeping and node selection heu-
ristics (see [17]), there remains the risk of doubling the rep-
resentation size by quantifying a single boolean variable.4

Therefore the computation of G by G = ∃q`1 , . . . , q`r G′ as
shown above may potentially lead to large LinAIG repre-
sentations (although it reduces the number of linear con-
straints).

On the other hand, this choice for G is only one of many
other possible choices. Motivated by these facts we looked
for an alternative solution. Here we present a solution which
needs only one application of Craig interpolation [3, 18] (see
Sect. 2.2) instead of a series of existential quantifications of
boolean variables. Note that in this context Craig interpo-
lation leads to an exact result (as one of several possible
choices) and not to an approximation as in [15].

4Basically, existential quantification of a boolean variable is
reduced to a disjunction of both cofactors wrt. 0 and wrt. 1.

Our task is to find a boolean function G(q`r+1 , . . . , q`n , b1,
. . . , bk) with

(F ∧ dc)(q`1 , . . . , q`n , b1, . . . , bk)
=⇒ G(q`r+1 , . . . , q`n , b1, . . . , bk),

(2)

G(q`r+1 , . . . , q`n , b1, . . . , bk)
=⇒ (F ∨ dc)(q`1 , . . . , q`n , b1, . . . , bk).

(3)

Now let A(q`1 , . . . , q`r , q`r+1 , . . . , q`n , b1, . . . , bk, h1, . . . , hl)
represent the CNF for a Tseitin transformation [21] of (F ∧
dc)(q`1 , . . . , q`r , q`r+1 , . . . , q`n , b1, . . . , bk) (with new auxiliary
variables h1, . . . , hl).

Likewise, let B(q′`1 , . . . , q′`r
, q`r+1 , . . . , q`n , b1, . . . , bk, h′1,

. . . , h′l′) be the CNF for a Tseitin transformation of (F ∧
dc)(q′`1 , . . . , q′`r

, q`r+1 , . . . , q`n , b1, . . . , bk) (with new auxiliary
variables h′1, . . . , h

′
l′ and new copies q′`1 , . . . , q′`r

of the vari-
ables q`1 , . . . , q`r ). Then A and B fulfill the precondition for
Craig interpolation as given in Sect. 2.2, i.e., A ∧B = 0:

Suppose that there is a satisfying assignment to A ∧ B
given by q`1 := v`1 , . . . , q`r := v`r , q′`1 := v′`1 , . . . , q′`r

:= v′`r
,

q`r+1 := v`r+1 , . . . , q`n := v`n , b1 := vb1 , . . . , bk := vbk

and the corresponding assignments to auxiliary variables
h1, . . . , hl and h′1, . . . , h

′
l′ which are implied by these assign-

ments. According to the definition of A and B this would
mean that the set orbit(v`r+1 , . . . , v`n , vb1 , . . . , vbk ) would
contain two elements (v`1 , . . . , v`r , v`r+1 , . . . , v`n , vb1 , . . . ,
vbk ) and (v′`1 , . . . , v′`r

, v`r+1 , . . . , v`n , vb1 , . . . , vbk ) which do
not belong to the don’t care set DC′ and which fulfill F (v`1 ,
. . . , v`r , v`r+1 , . . . , v`n , vb1 , . . . , vbk ) = 1 and F (v′`1 , . . . , v′`r

,
v`r+1 , . . . , v`n , vb1 , . . . , vbk ) = 0. This is a contradiction to
the property shown above that the elements of orbit(v`r+1 ,
. . . , v`n , vb1 , . . . , vbk ) which are not in DC′ are either all
mapped by F to 0 or are all mapped by F to 1.

A Craig interpolant G computed for A and B (e.g. ac-
cording to [18]) has the following properties:

• It depends only on common variables q`r+1 , . . . , q`n , b1,
. . . , bk of A and B,

• A =⇒ G, i.e., G fulfills equation (2), and

• G ∧B is unsatisfiable, or equivalently, G =⇒ B, i.e.,
G fulfills equation (3).

This shows that a Craig interpolant for (A, B) is exactly one
of the possible solutions for G which we were looking for.

4. EXPERIMENTAL RESULTS
We implemented redundancy detection by incremental

SMT solving and redundancy removal by Craig interpola-
tion in the framework of LinAIGs. The implementation uses
two SMT solvers via API calls. Yices [7] is used for all SMT

solver calls except the generation of the don’t care set. This
means that Yices performs all equivalence checks needed for
LinAIG compaction as described in Sect. 2.1 and moreover,
it is also used for the redundancy detection algorithm de-
scribed in Sect. 3 in an incremental way. For the computa-
tion of the don’t care set required for redundancy removal
we use HySAT [10], since we needed an SMT solver where we
could modify the source code in order to be able to extract
conflict clauses. The computation of the Craig interpolants
is done with MiniSAT [8], where we made an extension to
the proof logging version. All experiments were performed
on an AMD Opteron with 2.6 GHz and 16 GB RAM under
Linux.
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4.1 Comparison of the LinAIG evolution with
and without redundancy removal

In Fig. 4 we present a comparison of two runs of the model
checker from [4]. The left diagram shows the evolution of the
linear constraints over time and the right diagram shows the
evolution of node counts. When we do not use redundancy
removal, the number of linear constraint is quickly increas-
ing up to 1000 and more, and the number of AIG nodes is
exploding up to a value of 150,000 . On the other hand,
when using redundancy removal the number of linear con-
straints and the number of AIG nodes show only a moderate
growth rate. This gives a strong evidence that redundancy
removal is absolutely necessary when using quantifier elim-
ination to keep the data structure compact in our model
checking environment.

4.2 Elimination of redundant constraints:
Existential quantification vs. Craig inter-
polation

In a second experiment we compared two different ap-
proaches to the removal of redundant constraints as pre-
sented in Sect. 3.3. The first one uses existential quantifica-
tion to eliminate redundant constraints, the second one uses
our approach based on Craig interpolation. The benchmarks
represent state sets extracted from the model checker in [4]
during three runs with different model checking problems,
in each case after the elimination of quantifiers over real
variables. These problems also contain boolean variables.

The results are given in Table 1. The number of the AIG

nodes and linear constraints before redundancy removal are
shown in columns 2 and 3. In column 4 the detected number
of redundant linear constraints is given. The times for the
detection of redundancy and the don’t care set generation
are given in columns 5 and 6. Note that these values are the
same for both approaches, because the difference lies only in
the way linear constraints are actually removed. In the last
four columns the results of the two algorithms are shown,
where ‘∆ nodes’ denotes the difference between the number
of AIG nodes before and after the removal step and ‘time’
is the CPU time needed for this step. We used a timeout of
7200 seconds and a memory limit of 4 GB.

The results clearly show that wrt. runtime the redun-
dancy removal based on Craig interpolation outperforms the
approach with existential quantification by far. Especially
when the benchmarks are more complex and show a large
number of redundant linear constraints, the difference be-
tween the two methods is substantial. Moreover, also the re-
sulting AIG is often much smaller. It is interesting to see that
using incremental SMT solving techniques it was in many
cases really possible to detect large sets of redundant linear
constraints in very short times. As shown in the previous
experiment this pays off also in later steps of model checking
when quantifier elimination works on a representation with
a smaller number of linear constraints. Considering column
6 we observe that runtimes for the generation of don’t care
sets by HySAT often dominate the overall runtime.5 For the
future we plan to replace HySAT (which is tuned for BMC
problems and is clearly outperformed by Yices in our exper-

5As already mentioned above, for technical reasons in our
implementation we have to repeat the last step of redun-
dancy detection (which actually was already performed by
Yices) using HySAT in order to be able to extract conflict
clauses.

iments on non-BMC problems) by a state-of-the-art SMT

solver allowing the extraction of conflict clauses.6 This is an
issue where we see much room for improvement.

4.3 Comparison of the LinAIG based quantifier
elimination vs. other solvers

In order to evaluate our ideas in a more general domain we
compared our approach to quantifier elimination with LIRA
1.1.2 [9, 2] which is an automata-based tool capable of rep-
resenting sets of states over real, integer, and boolean vari-
ables and both CVC3 1.2.1 [20] and Yices 1.0.11 [7] which
are state-of-the-art SMT solvers. We ran the solvers on three
sets of formulas from the class of quantified linear real arith-
metic:

1. model X: These formulas are representing problems
occurring in the model-checker [4] when computing a
continuous pre-image of the state set. All formulas of
this set contain two quantified variables, one is existen-
tially quantified and the other is universally quantified.

2. RND: These formulas are random trees composed of
quantifiers, AND-, OR-, NOT-operators, and linear
inequations. The quantifiers are randomly distributed
over the whole formula tree. We varied the number of
quantified variables and the depth of the trees to get
formulas with different difficulty levels. In all cases
there was an additional free variable left in the for-
mula. The random benchmarks were generated with
the tool also used in [9, 2].

3. RNDPRE: These formulas are similar to the RND set,
except that the formulas all consist of a prefix of alter-
nating quantifiers and a quantifier free inner part.

All formulas are given in the SMT-LIB format [19] and are
publically available7.

Since the SMT solvers decide satisfiability of formulas in-
stead of computing predicates representing all satisfying as-
signments, we interpret free variables as implicitly existen-
tially quantified and decide satisfiability. Both our LinAIG

based tool and LIRA additionally compute representations
for predicates representing all satisfying assignments. We
used a time limit of 1200 CPU seconds and a memory limit
of 4 GB.

Table 2 shows the results. The column ‘Benchmark’ lists
the benchmark sets, ‘Quantified’ lists the number of quanti-
fied variables in each formula of the set, ‘Instances’ shows the
number of instances in the set. The columns labeled ‘SAT’
and ‘UNSAT’ give the numbers of instances for which the
solver returned ‘satisfiable’ and ‘unsatisfiable’. The num-
bers of instances where the solver returned ‘unknown’, ran
out of memory, or violated the time limit, are listed in the
columns ‘Unknown’, ‘Memout’, ‘Timeout’. Column ‘Time
(s)’ shows the total run times (in CPU seconds) of the solver
for the formula set8, and finally column ‘Solved’ lists the to-
tal numbers of solved instances of the set. The results for

6This would include also a handling of don’t cares which
do not occur in the set of (negated) conflict clauses due to
‘theory propagation’.
7http://abs.informatik.uni-freiburg.de/smtbench/
8Unsolved instances (i. e. ‘Unknown’, ‘Memout’, and ‘Time-
out’) are considered to contribute 1200 CPU seconds (the
time limit)
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Figure 4: Comparison of the LinAIG evolution with and without redundancy removal

Table 1: Comparison of redundancy removal: existential quantification vs. Craig interpolants
Benchmark # AIG # linear # redundant redundancy dc set RR exist. quant. RR Craig interp.

nodes constr. lin. constr. detection (s) creation (s) ∆ nodes time (s) ∆ nodes time (s)
model 1-1 1459 41 22 0.22 1.10 -541 7.19 -814 0.74
model 1-2 1716 74 27 0.51 1.79 -313 13.14 -1047 0.68
model 1-3 2340 105 22 1.89 8.48 459 25.35 -515 2.32
model 1-4 3500 142 28 8.02 41.72 1642 75.49 1062 10.08
model 1-5 2837 123 13 4.61 29.02 -230 12.34 1595 23.10
model 2-1 824 29 8 0.12 0.27 747 2.55 -142 0.43
model 2-2 1424 37 10 0.36 0.80 1104 3.45 233 1.19
model 2-3 3048 52 11 2.45 3.09 1996 10.13 171 4.22
model 2-4 1848 37 14 0.57 1.02 852 4.03 -149 1.34
model 3-1 1775 297 228 1.86 49.28 >7200 -1453 1.60
model 3-2 6703 1281 1143 105.69 2113.20 >7200 -5805 14.12

CVC3, Yices, LIRA, and our LinAIG based solver using re-
dundancy removal are shown in the column groups labeled
‘CVC3’, ‘Yices’,‘LIRA’, and ‘LinAIG’.

CVC3 is able to solve 34 out of 380 instances, Yices solves
13 instances. Note however that these solvers are not re-
stricted to the subclass of formulas we consider in this paper.
They are able to handle the more general AUFLIRA class of
formulas [1] and for handling formulas with quantifiers they
make use of heuristics based on E-matching [6] which are
not tuned to problems that contain only arithmetic.

The automata-based tool LIRA solves 95 out of 380 in-
stances.

Our experiments show that for the subclass of formulas
considered here our method is much more effective: The
LinAIG based solver is able to solve 352 out of 380 instances.

5. CONCLUSIONS AND FUTURE WORK
We presented an approach for optimizing non-convex poly-

hedra based on the removal of redundant constraints. Our
experimental results show that our approach can be success-
fully applied to solving quantified formulas including linear
real arithmetic and boolean formulas. Since our method
does not only solve satisfiability of formulas, but constructs
predicates of all satisfying assignments to the free variables
in the formula, our results may suggest to use the presented
method in the future also as a fast preprocessor for more gen-
eral formulas by simplifying subformulas from the subclass
considered in this paper. Moreover, it will be interesting
to apply the methods to underlying theories different from
linear real arithmetic, too.
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