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Abstract— Bounded model checking of partial circuit designs
enables the detection of errors even when the implementation
of the design is not finished. The behavior of the missing parts
can be modeled by a conservative extension of propositional
logic, called 01X-logic. Then the transitions of the underlying
(incomplete) sequential circuit under verification have to be re-
presented adequately. In this work, we investigate the difference
between a relation-oriented and a function-oriented approach
for this issue. Experimental results on a large set of examples
show that the function-oriented representation is most often
superior w. r. t. (1) CPU runtime and (2) accuracy regarding
the ability to find a counterexample, such that by using the
function-oriented approach an increase of accuracy up to 210%
and a speed-up of the CPU runtime up to 390% compared to
the relation-oriented approach are achieved. But there are also
relevant examples, e. g. a VLIW-ALU, for which the relation-
oriented approach outperforms the function-oriented one by
300% in terms of CPU-time, showing that both approaches are
efficient for different scenarios.

I. INTRODUCTION

Within the last ten years, bounded model checking (BMC)
has emerged as an effective verification technique for finding
counterexamples of erroneous circuit designs [1], [2]. BMC
makes use of a SAT-solver for the satisfiability problem, and
due to the enormous performance increase of SAT-solvers within
the last years, SAT-based BMC is applicable to large industrial
designs. While the circuit design under verification is typically
considered to be complete, in this work we focus on partial
designs for which some parts of the circuit design are not
implemented yet. To enable the analysis of such partial designs
with BMC, the missing parts have to be modeled adequately, e. g.
by using 01X-logic, a conservative extension of propositional
logic that introduces a third logical value X to express that the
(propositional) value of a signal is unknown. By adapting BMC
to 01X-logic (01X-BMC), it is then possible to detect errors
even if the implementation of the circuit design is not finished
yet. Hence, 01X-BMC allows for an error analysis already in the
early phase of a design implementation. As a consequence, this
technique helps to save time and costs and therefore contributes
to the optimization of standard circuit design work flows.

Transition systems form the basis of sequential circuits. In
this work we analyze two different ways for the representation
of transitions of partial sequential circuit designs that are
analyzed via 01X-BMC: (1) A relation-oriented approach and
(2) a function-oriented approach. For complete circuits both
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approaches are equal to each other. But for partial circuit designs
it turns out that the relation-oriented approach is less accurate
than the function-oriented approach. Furthermore, the function-
oriented approach often results in a SAT-instance that is simpler
to solve than the corresponding SAT-instance of the relation-
oriented approach. But our experimental results also show that
there are relevant cases, e. g. an erroneous VLIW-ALU, for
which the relation-oriented approach is faster than the function-
oriented approach and accurate enough to find a counterexample.

As a summary, both the relation-oriented approach and the
function-oriented approach together build an efficient tool-box
for bounded model checking of partial designs.

The paper is structured as follows. After presenting related
work in the next section, we present preliminaries in Sect. III. In
Sect. IV we discuss the relationship between a relation-oriented
and function-oriented approach for transition representation in
the context of 01X-BMC. Experimental results are presented
and analyzed in Sect. V. The paper concludes with Sect. VI.

II. RELATED WORK

SAT-based BMC of partial circuit designs was investigated in a
relational style in [3], [4], [5] where BMC was adapted to 01X-
logic as well as to Quantified Boolean Formulas (QBFs). These
works show the feasibility of 01X-BMC for a large number of
relevant examples and hence served as starting point for our
investigations.

In the area of BDD-based symbolic model checking [6], [7],
both relational and functional approaches are common methods
for pre-image computation. Functional pre-image computation
has the advantage of a lower need for symbolic variables that
usually leads to a problem instance that is simpler to solve, but
the overall time for verification very much depends on the circuit
under verification and hence relational pre-image computation
may also be effective [8], [9].

For complete designs, [10] presents a BMC technique that
uses And/Inverter-graphs (AIGs) [11], [12] to represent the
transition function. The compose-operation that underlies the
functional approach is performed directly on the AIG. Together
with the initial condition and the property to check, a CNF-
formula is generated that is checked by a SAT-solver.

Symbolic trajectory evaluation (STE) [13], [14], [15] is a
related method that is also based on ternary 01X-logic. However,
based on the formula under test, STE performs an automated
01X-abstraction of an initially complete circuit design, and
hence it is not directly applicable to partial circuit designs. We
assume that STE may also be adapted to partial circuit designs,
but we do not consider this case in the paper at hand.
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In [16], a BDD-based approach is presented to symbolically
compute counterexamples for erroneous partial circuit designs.
Hence, the work of [16] comes closest to the problem setting
discussed in this paper. While the method of [16] is based on
BDDs (see also [17], [18]), our methods rely on SAT-solvers. We
expect that a BDD-based and a SAT-based approach complement
each other, which has to be shown in future work.

III. PRELIMINARIES

A. Bounded Model Checking

Model checking [19] is a verification technique to certify the
correctness of sequential systems w. r. t. a temporal property
that is used as a specification. In [1], [2] Biere et al. introduced
a variant called bounded model checking (BMC) that focuses
on the falsification of properties, i. e., on the generation of a
counterexample in case that the design is erroneous.

For the work at hand, we consider sequential circuits
(x,s,δ ,λ ) with n primary inputs x = (x0, . . . ,xn−1), a register
s = (s0, . . . ,sp−1) of p latches to store intermediate values,
the next-state functions δ = (δ0, . . . ,δp−1) that compute the
next-state values of the latches, and the output functions λ =
(λ0, . . . ,λq−1) for computing the values at the primary outputs.
The latches s impose a discrete state space onto the system that
consists of all possible combinations of latch values. Each such
combination is called a state. Each function δi,λ j is a boolean
function Bp×Bn → B.

Let xi (si) be the primary inputs (state variables) at time
step i, respectively. Then, the value of latch l in the next time
step is computed by si+1

l = δl(xi,si). With this we can define
a transition relation T (si,xi,si+1) =

∧p−1
l=0

(
si+1

l ≡ δl(si,si)
)

which is true iff there is a transition from state si to state si+1 by
applying input xi.

An invariant p is a property that should always hold and is
described by using the state variables sk, i. e., we have a predicate
P(sk) that describes that p holds in state sk. Finally, the BMC-
formula for checking whether a state can be reached within k
time steps such that property p is violated is as follows:

BMC(k) = I(s0) ·T (s0,x0,s1) · · · · ·T (sk−1,xk−1,sk) ·P(sk). (1)

This formula can be translated into conjunctive normal form
(CNF), such that an off-the-shelf SAT-solver can be applied. If
the SAT-solver finds a satisfying assignment for BMC(k), then
this satisfying assignment corresponds to a counterexample that
testifies the violation of property p.

B. 01X-based Bounded Model Checking

We consider sequential circuit designs where parts of the
combinational logic are unknown. The missing parts are
denoted as blackboxes. A blackbox is a combinational module
of which we do not know the boolean function that it computes.
In Figure 1 this scenario is visualized. The question we want
to answer by BMC is: Is a given invariant property violated
independently of the implementation of the blackboxes?

Blackboxes play an important role in the design flow of digital
systems: (1) They can be used for verification in an early stage of
the design process when not all modules are implemented yet, (2)
the verification of complex systems can be simplified by putting
parts of the design, on which the property under consideration

Blackbox

Blackbox

λδ

Registers s0, . . . ,sp−1

x

Fig. 1. Sequential circuit with combinational blackboxes.

TABLE I
AND, OR, AND NOT EXTENDED TO 01X-LOGIC.

a b AND01X(a,b) OR01X(a,b) NOT01X(a)
0 0 0 0 1
0 1 0 1 1
1 0 0 1 0
0 X 0 1 1
X 0 0 1 X
1 1 1 1 0
1 X X X 0
X 1 X X X
X X X X X

may not depend, into blackboxes, and (3) blackboxes can be used
for fault localization: If a fault was found that disappears when
a certain region of the circuit design is put into a blackbox, this
“blackboxed” region is a good candidate where the fault may be
located.

For BMC, the unknown behavior of blackboxes can be
modeled using a three-valued logic. Adding a third logical
value to propositional logic that represents the uncertainty about
values of propositional variables results in 01X-logic. The basic
boolean operators, AND, OR, and NOT, can be extended to
01X-logic in a conservative way, see Table I.

In [20], Jain et al. have proposed an approach for handling
the three logical values 0, 1, and X by applying a binary
encoding and extending this encoding to the operators as
follows. The logical values 0, 1, and X are binary encoded
as 001X := (1,0),101X := (0,1), and X01X := (0,0), resp., and
the basic operators are adapted, now using tuples (a0,a1) and
(b0,b1) for 01X-variables, as AND01X ((a0,a1),(b0,b1)) :=
(a0 +b0,a1 ·b1), OR01X ((a0,a1),(b0,b1)) := (a0 ·b0,a1 +b1),
and NOT01X ((a0,a1)) := (a1,a0).

C. Relational and Functional Transition Representation

In Formula (1) a relational representation of the transitions was
used, but we may also use a functional representation. We now
describe both approaches in more detail.

For the relational approach, we make use of the k-step
transition relation T k that is given by

T k(s0,x0, . . . ,xk−1,sk) :=
k∧

i=1
T (si−1,xi−1,si)

=
k∧

i=1

(
si ≡ δ (si−1,xi−1)

)
=

k∧
i=1

p−1∧
j=0

(
si

j ≡ δ j(si−1,xi−1)
)

.

(2)

For the functional approach, instead, we make use of the k-
step transition function δ k

l : Bp×(Bn)k →B that is inductively
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defined for a latch l as follows:
δ 0

l (s0) = s0
l

δ k
l (s0,x0, . . . ,xk−1) = δl

(
δ

k−1
0 (s0,x0, . . . ,xk−2),

. . . ,

δ
k−1
p−1(s0,x0, . . . ,xk−2),

xk−1),
(3)

i. e., the input sk−1
l′ is substituted by the (k−1)-step transition

function of latch l′. Finally, we collect all local k-step transition
functions within a vector δ k:

δ k(s0,x0, . . . ,xk−1) :=
(
δ k

0 (s0,x0, . . . ,xk−1),
. . . ,
δ k

p−1(s
0,x0, . . . ,xk−1)

) (4)

Assume that for BMC of a complete circuit design the set
of initial states is given by a predicate I(s0) and for a specified
unfolding depth k the invariant to be checked is given by P(sk).
Then, the formulas

BMCr(k) := I(s0) ·T k(s0,x0, . . . ,xk−1,sk) ·P(sk) (5)

BMCf(k) := I(s0) ·P
(
δ k(s0,x0, . . . ,xk−1)

)
(6)

are satisfiable iff there exists a counterexample of length k that
falsifies property p. The formula BMCr (BMCf) is called the
relational (functional) BMC formula, resp.

We demonstrate the individual procedure regarding both the
functional and the relational transition representation within
BMC using BMCr and BMCf, resp., by a small example.
This is done for a sequential circuit without blackboxes. In
the subsequent Sect.IV-B we are making the case for a sample
design containing blackboxes.

Let us consider the circuit in Figure 2(a). We describe step
by step the proceedings of BMC towards a CNF. The property
that is checked is given by AG(s0 · s1), i. e., none of both latches
should ever be 1. The initial state of our system is given by s0 = 0
and s1 = 0 and hence the initial state predicate is I(s0) = s0

0 · s0
1.

The state transition functions at time step i are given as

δ0(si,xi) = si
0 + si

1 + xi and δ1(si,xi) = 1. (7)

Furthermore, the property to verify at time step i is constituted
by P(si) = si

0 ·si
1 or equivalently P(si) = si

0 +si
1. Please note that

this is a very simple example, since after the first transition step
the property is violated immediately; it should mainly serve as a
traceable example showing the difference between the relational
and the functional approach for BMC.

First we start with the relational approach and recall
Equation (2). In our example this leads to the following formula:

T (si−1,xi−1,si) =
(
si

0 ≡ δ0(si−1,xi−1)
)
·
(
si

1 ≡ δ1(si−1,xi−1)
)

=
(
si

0 ≡ (si−1
0 + si−1

1 + xi−1)
)
·
(
si

1 ≡ 1
)

= (si
0 + si−1

0 + si−1
1 + xi−1) · (si

0 + si−1
0 ) ·

(si
0 + si−1

1 ) · (si
0 + xi−1) · si

1.
(8)

To be able to decide satisfiability of formula (5) using
a SAT-solver we have to turn the formula into CNF, i. e.,
into a conjunction of disjunctions of literals. In general, the
transformation into an equivalent CNF using the laws of boolean
algebra can cause an exponential blow-up of the size of the
formula. Hence, for more complex formulas, the solution is to

apply the so-callded Tseitin-transformation [21] that introduces
additional variables for internal sub-formulas. The Tseitin-
transformation preserves satisfiability and results in a CNF
whose size is linear in the size of the original formula. Putting
the parts together, we obtain the following BMC formula for
k = 1:

BMCr(1) = s0
0 · s0

1· . I(s0)

(s1
0 + s0

0 + s0
1 + x0) · (s1

0 + s0
0)·

(s1
0 + s0

1) · (s
1
0 + x0) · s1

1·
. T (s0,x0,s1)

(s1
0 + s1

1). . P(s1)

Now we construct the BMC-formula using the functional
approach according to Equation (6). Applying this to our
example circuit in Figure 2(a), we obtain the following formula:

BMCf(1) = (s0
0 · s

0
1) ·

(
(s0

0 + s0
1 + x0)+1

)
= (s0

0 · s
0
1). (9)

Both BMCr(1) and BMCf(1) are satisfiable which means
that a counterexample is found and hence the circuit design
is erroneous regarding the specification. We mention without
proof that both approaches are equivalent regarding the ability
to detect counterexamples for complete circuit designs. This is
not astonishing, since the relational approach is set on top of
the functional approach by introducing additional variables for
the states at time step i. Interestingly, this issue changes when
turning to 01X-BMC of partial circuit designs.

IV. BMC OF BLACKBOX DESIGNS: RELATIONAL VERSUS
FUNCTIONAL TRANSITION REPRESENTATION

In this section we investigate the application of a relation-
oriented and a function-oriented transition representation in the
context of 01X-BMC of partial circuit designs. We show by a
small example that the relation-oriented approach is less accurate
than the function-oriented approach.

A. Accuracy Deficiency of Relational Representation

We are now going to adapt the relational transition representation
to 01X-BMC of partial circuit designs. Hence, for building the
transition relation, we equate next-state-functions δi(s,x) with
next-state variables s′i,

s′i ≡ δi(s,x), (10)

by using the equivalence-operator ≡, which itself can be
expressed by negating the boolean difference. Hence, (10)
becomes s′i⊕δi(s,x), which can be written as

s′i ·δi(s,x)+ s′i ·δi(s,x) (11)

using only AND, OR, and NOT. Now we look at the binary
encoding of expression (11). We use k instead of s′i and l instead
of δi(s,x), resp., to shorten writing. Assume (k0,k1) and (l0, l1)
to be the tuples used for the binary encoding of k and l. Then,
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FF s0

FF s1
1

init: 0

init: 0

yx

(a) Sequential circuit without blackboxes.

E
N
C
−
A
N
D

E
N
C
−
A
N
D

0 1

1

1 1 1

0 0 0

T k(s0,sk)1

T k(s0,sk)0

I(s0)1 P(sk)1
I(s0)0 P(sk)0

BMC(k)0 BMC(k)1

(b) Scenario showing the problem for the rela-
tional approach based on the three-partitioned BMC-
formula T k(s0,x0, . . . ,xk−1,sk) · I(s0) ·P(sk).

FF s0

FF s1
1

init: 0

init: 0

yx

Blackbox

(c) Example circuit with a combinational
blackbox.

Fig. 2.

(11) becomes

OR01X

(
AND01X

(
(k0,k1),(l0, l1)

)
,

AND01X

(
NOT01X

(
(k0,k1)

)
, NOT01X

(
(l0, l1)

)))
= OR01X

(
AND01X

(
(k0,k1),(l0, l1)

)
,

AND01X

(
(k1,k0),(l1, l0)

))
= OR01X

((
(k0 + l0),(k1 · l1)

)
,
(
(k1 + l1),(k0 · l0)

))
=

(
(k0 + l0) · (k1 + l1),(k1 · l1)+(k0 · l0)

)
=

(
(k0 · k1 + k0 · l1 + k1 · l0 + k0 · l1),(k0 · l0 + k1 · l1)

)
.

(12)
Assume that k = X01X and l = X01X, i. e., (k0,k1) = (0,0) and
(l0, l1) = (0,0). Substituting these values into (12) results in
a value (0,0) =: X01X. Is this correct? We expect from the
equivalence operator that it results in value 1 when both operands
are equal, and 0 otherwise. But our 01X-abstraction leads to the
inconclusive result X01X, meaning that we do not know whether
both operands are equal. This is in fact true, since k may still
be 1 and l may be 0 and thus would not be equal. Nevertheless,
this observation will pose a problem that will be discussed in the
following.

How is this issue related to our relational representation of the
transitions? The transition relation was built by equating next-
state-variables with their next-state-functions, see Equation (10).
That means, the global transition relation T (s,x,s′) is computed
by a conjunction of all local transition relations Tl(s,x,s′i), i. e.,

T (s,x,s′) :=
p−1∧
l=0

Tl(s,x,s′l) =
p−1∧
l=0

(
s′l ≡ δl(s,x)

)
. (13)

Recall that our BMC-formula consists of three parts: BMC(k) =
I(s0) ·

(∧(k−1)
i=0 T (si,xi,si+1)

)
·P(sk), namely the predicate for

the initial states, the predicate for the k-fold unfolding of
the transition relation, and the predicate for the specification
property. The SAT-problem corresponding to BMC(k) is written
more precisely as

∃s0∃x0∃s1∃s2 . . .∃sk−1∃xk−1∃sk :
I(s0) ·

(∧(k−1)
i=0 T (si,xi,si+1)

)
·P(sk) = 1.

(14)

Hence, a satisfying solution ϕCE for formula (14) requires
that each predicate I(s0), T (si,xi,si+1), and P(sk) is satisfied
for 0 ≤ i < k. Especially for the transition relation this means
that in each unfolding step i all local transition relations have
to be satisfied, i. e., Tl(si,xi,si+1

l ) = 1. Regarding our binary
encoding for 01X-logic, BMC(k) is encoded into a tuple(
BMC(k)0,BMC(k)1

)
. Since 101X is encoded as (0,1), our

propositional satisfiability problem for the 01X-based approach,
i. e.,

(
BMC(k)0,BMC(k)1

)
= (0,1), results in solving the

following propositional problem BMC(k)0 · BMC(k)1 = 1.
The satisfiability requirement directly forces implications on
the sub-formulas for BMC(k). This scenario is depicted in
Figure 2(b). The 0-values are implicitly implied, since for
encoding tuples (e0,e1) only one of both variables e0 or e1
can be assigned to 1, because (1,1) does not correspond to a
valid 01X-value. Please note that especially for the encoding
tuple

(
T k(s0,x0, . . . ,xk−1,sk)0,T k(s0,x0, . . . ,xk−1,sk)1

)
of

the k-fold unfolding of the transition relation, the value
(0,1) =: 101X is opposed.

Consequently, for each global transition relation T (si,xi,si+1)
in unfolding step i, this implies for its binary encoding that
(T i

0 ,T
i

1) = (0,1) must hold. And by applying this implication
argument one more time, we end up that for each local transition
relation Tl(si,xi,si+1

i ) the following condition must also hold:

(Tl(si,xi,si+1
l )0,Tl(si,xi,si+1

l )1) = (0,1). (15)

Now, by substituting k := Tl(si,xi,si+1
l )0 and l :=

Tl(si,xi,si+1
l )1 in Equation (12) for computing Tl(si,xi,si+1

l )0 ·
Tl(si,xi,si+1

l )1 results in computing

(k0 · l0 + k0 · l1 + k1 · l0 + k1 · l1) · (k0 · l0 + k1 · l1). (16)

which can be simplified to

k0 · k1 · l0 · l1 + k0 · k1 · l0 · l1. (17)

The function of (17) computes a 1 iff (k0,k1) = (0,1) = 101X

and (l0, l1) = (0,1) = 101X, or (k0,k1) = (1,0) = 001X and
(l0, l1) = (1,0) = 001X. Hence, for the propositional fragment
of 01X-logic, we get correct results regarding equivalence, but
for values X01X our equivalence operator gives negative results.
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But what exactly is the problem then? If we would indeed like
to check equivalence of two 01X-values, the above described
approach is absolutely correct: In case that k = X01X and l = X01X

we cannot guarantee that, e. g., k may have the value 0 and l may
have the value 1. Thus, our 01X-operator for equivalence gives
the correct answer by computing X01X. But for our relational ap-
proach, we have abused the equivalence-operator for storing the
output of the transition function δl(s,x) in the variable s′l for the
next state. The difference is that we do not require equivalence in
the logical sense, but equivalence in a semantical sense, i. e., s′l =
δl(s,x) should be true also when s′l = X01X and δl(s,x) = X01X.

This artefact leads to a coarser approximation of the state
transitions that may be selected during the SAT-solving. Hence,
the relation-oriented approach is less accurate than the function-
oriented one, as illustrated in the following.

B. Example

We demonstrate the different behavior in terms of accuracy of
the relation-oriented and the function-oriented approach for a
small example. The partial circuit design of Figure 2(c) consists
of two latches, both initialized to value 0. We assign the value
X01X to the output of the blackbox. Again, the propertyAG(s0 ·s1)
is checked, resulting in P(si) = si

0 · si
1.

Then we obtain the following one-step transition functions:
δ0(s0,s1,x) = s1 +X01X and δ1(s0,s1,x) = 1. Doing so, we get
the following relational 01X-BMC formula:

BMCr
01X(1) = I(s0

0,s
0
1) ·

(
s1

0 ≡ δ0(s0
0,s

0
1,x

0)
)
·(

s1
1 ≡ δ1(s0

0,s
0
1,x

0)
)
·P(s1

0,s
1
1)

=
(

s0
0 · s0

1

)
·
(
s1

0 ≡
(
s0

1 +X01X

))
·
(
s1

1 ≡ 1
)
·
(
s1

0 + s1
1
)

=
(

s0
0 · s0

1

)
·
(

s1
0 ·

(
s0

1 +X01X

)
+ s1

0 ·
(

s0
1 +X01X

))
·
(

s1
1 ·1+ s1

1 ·1
)
·
(
s1

0 + s1
1
)

=
(

s0
0 · s0

1

)
·
(

s1
0 ·

(
s0

1 +X01X

)
+ s1

0 ·
(

s0
1 +X01X

))
· s1

1 ·
(
s1

0 + s1
1
)
.

(18)

We set si
j := (si

j,0,s
i
j,1) and apply the Jain-encoding from

Section III-B to obtain the following boolean formula.1

BMCr,enc
01X (1) = AND01X

(
AND01X

(
NOT01X(s0

0,0,s
0
0,1),NOT01X(s0

1,0,s
0
1,1)

)
,

OR01X

(
AND01X

(
(s1

0,0,s
1
0,1),OR01X((s0

1,0,s
0
1,1),(0,0))

)
,

AND01X

(
NOT01X(s1

0,0,s
1
0,1),

NOT01X(OR01X((s0
1,0,s

0
1,1),(0,0)))

))
,

(s1
1,0,s

1
1,1),OR01X

(
(s1

0,0,s
1
0,1),(s

1
1,0,s

1
1,1)

))
= AND01X

(
AND01X

(
(s0

0,1,s
0
0,0),(s

0
1,1,s

0
1,0)

)
,

OR01X

(
AND01X

(
(s1

0,0,s
1
0,1),(0,s0

1,1)
)
,

AND01X

(
(s1

0,1,s
1
0,0),NOT01X(0,s0

1,1)
))

,

(s1
1,0,s

1
1,1),(s

1
0,0 · s1

1,0,s
1
0,1 + s1

1,1)
)

1For the sake of readability, we allow the operators AND01X and OR01X to
have an arbitrary number of arguments. This is valid, since both operations
are commutative and associative.

= AND01X

(
(s0

0,1 + s0
1,1,s

0
0,0 · s

0
1,0),

OR01X

(
(s1

0,0 +0,s1
0,1 · s0

1,1),(s
1
0,1 + s0

1,1,s
1
0,0 ·0)

)
,

(s1
1,0,s

1
1,1),(s

1
0,0 · s1

1,0,s
1
0,1 + s1

1,1)
)

= AND01X

(
(s0

0,1 + s0
1,1,s

0
0,0 · s

0
1,0),(s

1
0,0 · (s1

0,1 + s0
1,1),s

1
0,1 · s0

1,1 +0),

(s1
1,0,s

1
1,1),(s

1
0,0 · s1

1,0,s
1
0,1 + s1

1,1)
)

= AND01X((s0
0,1 + s0

1,1 + s1
0,0 · s1

0,1 + s1
0,0 · s0

1,1,s
0
0,0 · s

0
1,0 · s

1
0,1 · s0

1,1),

(s1
1,0 + s1

0,0 · s1
1,0,s

1
1,1 · (s1

0,1 + s1
1,1)))

= (s0
0,1 + s0

1,1 + s1
0,0 · s1

0,1 + s1
0,0 · s0

1,1 + s1
1,0 + s1

0,0 · s1
1,0,

s0
0,0 · s

0
1,0 · s

1
0,1 · s0

1,1 · s
1
1,1 · (s1

0,1 + s1
1,1))

= (s0
0,1 + s0

1,1 + s1
0,0 · s1

0,1 + s1
1,0, s0

0,0 · s
0
1,0 · s

1
0,1 · s0

1,1 · s
1
1,1).

(19)

For Formula (19) to evaluate to 101X = (0,1), we need to check
the satisfiability of the following formula:

(s0
0,1 + s0

1,1 + s1
0,0 · s1

0,1 + s1
1,0) · s

0
0,0 · s

0
1,0 · s

1
0,1 · s0

1,1 · s
1
1,1. (20)

Applying de Morgan’s rule we obtain

s0
0,1 ·s

0
1,1s0
1,1s0
1,1 · (s1

0,0 + s1
0,1) · s1

1,0 · s
0
0,0 · s

0
1,0 · s

1
0,1 ·s0

1,1s0
1,1s0
1,1 · s

1
1,1. (21)

It is easy to see that Formula (21) is unsatisfiable, since
it contains both s0

1,1 and s0
1,1 as unit clauses. Hence, no

counterexample can be found by the relation-oriented approach.
For the function-oriented approach, we get the following 01X-

BMC formula:

BMCf
01X(1) = (s0

0 · s
0
1) · ((s

0
1 +X01X)+1). (22)

We again set si
j := (si

j,0,s
i
j,1) and apply the Jain-encoding from

section III-B to obtain the following formula:

BMCf,enc
01X (1) = AND01X

(
NOT01X(s0

0,0,s
0
0,1),NOT01X(s0

1,0,s
0
1,1),

OR01X((s0
1,0,s

0
1,1),(0,0),(0,1))

)
= AND01X

(
(s0

0,1,s
0
0,0),(s

0
1,1,s

0
1,0),(s

0
1,0 ·0 ·0,s0

1,1 +0+1)
)

= (s0
0,1 + s0

1,1,s
0
0,0 · s

0
1,0).

(23)

For the resulting tuple of Formula (23) to evaluate to 101X =
(0,1), the boolean formula (s0

0,1 + s0
1,1) · (s0

0,0 · s0
1,0) has to be

satisfied. It can be simplified to (s0
0,1 · s0

1,1 · s0
0,0 · s0

1,0), which is
satisfied for (s0

0,0,s
0
0,1) = (1,0) = 001X and (s0

1,0,s
0
1,1) = (1,0) =

001X. This solution corresponds to the initial state of the latches s0
and s1 and shows that a state can be reached within one transition
step that violates the property.

This example shows that the transition representation of the
relation-oriented approach is coarser than that of the function-
oriented approach. This kind of different approximation could be
useful, since different blackbox scenarios may require different
approximation schemes. This is shown by the experimental
results presented in the next section.

V. EXPERIMENTAL RESULTS

For the experimental comparison of the relation-oriented and
function-oriented approach, we have implemented both ap-
proaches in the BMX-tool (bounded model checking using
01X-logic) that was already used in the relation-oriented
style in [3], [4], [5]. As benchmark examples we used two
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Fig. 3. VLIW-ALU with an error w. r. t. the XOR-implementation in
functional unit FU3.

model checking examples from the VIS-benchmark suite [22],
PicoJava/biu and s1269, whereby both circuits were
modified to contain blackboxes. Parts of these modified bench-
marks are already established as QBF-variants in the competitive
QBF-evaluation that takes place annually [23], [24], [25], [26].
The blackbox circuit designs of PicoJava/biu and s1269
are available in different flavors, such that one, two, or three
blackboxes are contained in the partial circuit design that cover
5%, 10%, or 20% of the complete circuit design.2 Additionally,
an error is introduced in the complete circuit such that at least one
of the corresponding specification properties is violated—this
assures that it is in principal possible to detect errors via 01X-
BMC. Given a fixed number of blackboxes and the covered area,
we have introduced 15 errors for each circuit and combined them
with 10 blackbox constellations, that do not cover the injected
error, leading to 150 examples. PicoJava/biu comes with
one specification property and s1269 with 5. Since especially
for s1269 the introduced error does not violate all properties,
there are different numbers of examples available, see column
‘#benchmarks’ in the following tables. For a more detailed
description of these modified VIS-benchmarks, see [3], [4], [5].

Another example that we have analyzed is a VLIW-ALU
that is described in more detail in [27], [16], see Figure 3. The
VLIW-ALU consists of 4 functional units whereby the fourth
unit has an error due to an incorrect implementation of the XOR
function (the OR function is computed instead). The VLIW-ALU
is configurable in its word width, thus enabling us to scale the
complexity for the underlying decision procedure. To get partial
circuit designs, we removed two functional units, for which we
were aware that they are unnecessary for the computation of the
counterexample, and replaced them by blackboxes.

Tables II and III show the results3 for the examples related
to PicoJava/biu and s1269. The BMX-tool relies on an
internal AIG4-representation for the BMC-formula, which is
used for applying the binary encoding for 01X-logic. Finally,
the resulting AIG is converted to CNF. This CNF is then fed to
a SAT-solver, which is MiniSat [30] in our case. The columns
denote the CPU runtime that is used for the relation-oriented and
the function-oriented approach, resp., detailing the time usage
of MiniSat and the remaining time that is spent to build up the

2Our examples are named for instance by b002-p010, meaning that the
partial circuit design contains 2 blackboxes that cover 10% of the complete
circuit design. The percentage is measured in gate equivalents.

3The experiments were performed on an AMD Opteron Dual Processor
2.6 Ghz with 4 GB main memory, running a Debian Linux system.

4And/Inverter-Graph, see [28], [29].

AIGs. Note that the relation-oriented approach builds the BMC-
formula via conjunction of local transition relations, while the
function-oriented approach makes use of a substitution operator
as described in Equation (3). Hence, the column ‘AIG size’
denotes the final number of nodes of the AIG.

As one can see from these results, the function-oriented
approach is typically much faster than the relation-oriented
approach. This is due to both the time used for building-up the
AIG and the time used to solve the final SAT-instance. The SAT-
instances are rather easy to solve and although both approaches
require less than one second for a benchmark class, the higher
performance of the function-oriented approach is clearly visible.
But the most interesting point is the number of errors that each
approach detects. Regarding this issue, the function-oriented
approach is much more accurate, i. e., it detects more errors than
the relation-oriented approach, which is due to the differences
in accuracy as illustrated in Section IV.

For the examplesPicoJava/biu ands1269, the relation-
oriented approach requires in total 223 seconds and detects
603 errors, whereby the function-oriented approach needs
67 seconds and detects 1496 errors. This is, on average, a
speed-up of 234% in terms of CPU runtime and an increase in
accuracy of 140% compared to the relation-oriented approach.
For property 5 of s1269 there is even a speed-up of 394%
and an accuracy increase of 210%. At the bottom of the
higher performance of the function-oriented approach is also
the number of AIG-nodes that is obviously less than for the
relation-oriented approach. E. g., for property 3 of s1269 the
average number of nodes for the final AIG is by a factor of
20 smaller for the function-oriented approach compared to the
relation-oriented approach.

For the VLIW-ALU, Table IV contains the results. The
counterexample has depth 4 for each value of the word width
that ranges from 2 to 64. Hence, a BMC-run consists of
3 unsatisfiable and 1 satisfiable SAT-instances. Interestingly,
the relation-oriented approach is able to detect the error and
hence does not suffer from its coarser transition approximation.
Although the number of required AIG-nodes is larger for the
relation-oriented approach, the total CPU runtime is much
less, namely 11 seconds compared to 39 seconds of the
function-oriented approach. As one can see from the column
‘MiniSat’, the SAT-instances are getting much more complex
for the function-oriented approach than for the relation-oriented
approach. Additionally, the time resources for the AIG-synthesis
of the function-oriented approach are higher than for the relation-
oriented one. Table VI gives details for the VLIW-ALU of
word width 64. Table V gives details regarding the SAT-solver
resources for both the VIS-examples and the VLIW-ALU.

A reason for this can be found in the properties of the design:
Here, many assignments to the primary inputs lead to X values at
the output of the transition function. In these cases, the relational
approach is unable to generate next-state values so that the
equivalence condition in (2) is satisfied and thus, the SAT solver
backtracks. In contrast to that, the functional approach tries to
find a completion of the current partial assignment of the CNF
variables, so that the overall problem is satisfied, which fails.

Both approaches end up with an primary input assignment for
which no transition function in any timestep holds the X value,
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TABLE II
PICOJAVA/BIU

time used #counterexamples AIG size
blackboxes #benchmarks relational functional

MiniSat Total MiniSat Total
relational functional relational functional

b001-p005 150 0.49 5.59 1.68 6.30 65 71 1,252,378 1,038,000
b001-p010 150 0.31 4.77 0.61 4.06 56 64 1,084,764 711,488
b001-p020 150 0.19 4.68 1.15 4.35 9 50 1,041,910 568,137
b002-p010 150 0.45 7.04 1.11 6.13 15 28 1,628,342 1,052,683
b003-p020 150 0.34 7.24 0.19 4.44 2 6 1,641,324 678,179

Total 750 1.78 29.32 4.74 25.28 147 219 6,648,718 4,048,487

TABLE III
S1269

time used #counterexamples AIG size
property blackboxes #benchmarks relational functional

MiniSat Total MiniSat Total
relational functional relational functional

1 b001-p005 80 0.64 11.03 0.04 2.35 40 52 2,138,894 227,052
1 b001-p010 40 0.40 6.71 0.05 1.69 11 13 1,314,578 182,611
1 b001-p020 50 0.31 6.26 0.03 1.81 9 16 1,267,785 140,630
1 b002-p010 30 0.21 4.72 0.05 1.44 7 11 931,469 168,962
1 b003-p020 60 0.45 10.68 0.03 2.54 2 12 2,111,596 178,795
1 Total 260 2.01 39.40 0.20 9.83 69 104 7,764,322 898,050
2 b001-p005 90 0.35 7.06 0.01 1.10 40 75 1,356,737 48,946
2 b001-p010 70 0.28 6.41 0.01 1.08 22 52 1,235,167 75,301
2 b001-p020 110 0.49 9.55 0.02 1.83 17 85 1,889,926 73,565
2 b002-p010 80 0.40 8.25 0.03 1.64 15 56 1,602,374 119,745
2 b003-p020 100 0.45 10.68 0.03 2.54 2 12 2,655,956 106,506
2 Total 450 1.97 41.95 0.10 8.19 96 280 8,740,160 424,063
3 b001-p005 20 0.02 0.49 0.01 0.10 11 19 81,283 2,953
3 b001-p010 50 0.17 3.96 0.01 0.74 16 38 761,485 60,294
3 b001-p020 90 0.22 5.51 0.01 1.07 22 66 1,084,248 38,114
3 b002-p010 60 0.11 2.93 0.01 0.60 14 50 567,789 26,929
3 b003-p020 80 0.33 7.96 0.01 1.76 4 44 1,567,361 68,880
3 Total 300 0.85 20.85 0.05 4.27 67 217 4,062,166 197,170
4 b001-p005 70 0.15 3.55 0.01 0.56 34 61 668,256 22,271
4 b001-p010 60 0.21 5.05 0.01 0.90 19 45 976,635 65,861
4 b001-p020 70 0.25 6.11 0.01 1.07 9 47 1,216,228 43,314
4 b002-p010 60 0.22 4.90 0.02 1.11 14 43 956,166 94,579
4 b003-p020 80 0.49 11.39 0.02 2.32 3 30 2,247,070 93,407
4 Totals 340 1.32 26.59 0.07 5.96 79 226 6,064,355 319,432
5 b001-p005 120 0.48 9.95 0.03 1.81 47 99 1,915,729 127,824
5 b001-p010 120 0.42 9.74 0.02 1.74 43 95 1,878,470 109,010
5 b001-p020 120 0.52 10.10 0.03 2.16 23 97 1,981,243 110,250
5 b002-p010 150 0.74 16.25 0.05 3.23 26 102 3,157,955 241,043
5 b003-p020 140 0.80 18.88 0.04 4.18 6 57 3,741,989 189,782
5 Totals 650 2.96 64.92 0.17 13.12 145 450 12,675,386 777,909

TABLE IV
VLIW-ALU, PROPERTY: XOR-OPERATION

time used #counterexamples AIG size
word width #benchmarks relational functional

MiniSat Total MiniSat Total
relational functional relational functional

2 4 (3 unsat) 0.003 0.05 0.003 0.04 1 1 7,954 5,032
4 4 (3 unsat) 0.006 0.09 0.009 0.08 1 1 13,566 8,712

16 4 (3 unsat) 0.089 0.55 0.265 0.75 1 1 47,238 30,792
24 4 (3 unsat) 0.070 0.90 0.466 1.45 1 1 69,686 45,512
32 4 (3 unsat) 0.112 1.48 0.938 2.39 1 1 92,134 60,232
40 4 (3 unsat) 0.275 2.02 5.469 7.59 1 1 114,582 74,952
48 4 (3 unsat) 0.340 2.66 5.734 8.56 1 1 137,030 89,672
64 4 (3 unsat) 0.674 3.16 16.489 18.63 1 1 181,926 119,112

Total 32 (24 unsat) 1.569 10.91 29.373 39.49 8 8 664,116 434,016

but the relational approach is able to provide the result faster,
since it considered less CNF variable assignments compared to
the functional approach.

Overall, our experimental analysis shows that the function-
oriented approach is able to detect more errors than the

relation-oriented approach, along with a higher performance
in terms of CPU runtime. But the VLIW-ALU examples show
that the relation-oriented approach is able to outperform the
function-oriented approach, showing that its coarser transition
approximation is helpful for relevant examples.
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TABLE V
SAT-SOLVER STATISTICS

relational functionalGroup
Property #Dec. #Impl. #Confl. Time #Dec. #Impl. #Confl. Time

#Benchmarks

b001-p005 property 1 11842 938368 929 0.48 4128 114838 784 0.03 120
b001-p010 property 2 5782 594166 479 0.42 1678 92941 331 0.02 120
b001-p020 property 3 18613 1250797 1448 0.52 9327 151448 1426 0.03 120
b002-p010 property 4 5623 959032 450 0.74 3226 155448 563 0.05 150
b003-p020 property 5 565 984657 118 0.80 1325 164077 486 0.04 140

VLIW-ALU 48 property XOR 7420 1025457 360 0.34 121343 17382963 9456 5.73 4
VLIW-ALU 64 property XOR 15334 1710010 643 0.67 327550 39277662 16319 16.49 4

TABLE VI
VLIW-ALU 64 STATISTICS: 3 UNSAT, 1 SAT

relational functional
Depth AIG Size Sat Time AIG Size Sat Time

1 19908 0.000 8186 0.000
2 36957 0.028 22283 0.017
3 54006 0.347 36954 6.427
4 71055 0.335 51689 11.690

As a summary, both approach together build an efficient
toolbox to analyze partial circuit designs via BMC.

VI. CONCLUSIONS

In this work we have analyzed a relation-oriented and a function-
oriented approach for bounded model checking of partial circuit
designs. It turned out that the function-oriented approach is much
more accurate and has a higher performance for a large set of
examples. The relation-oriented approach may also be applied
in cases where its coarser transition approximation is accurate
enough to detect errors. Hence, both approaches complement
one another and allow a flexible application of bounded model
checking depending on the circuit under verification.

Acknowledgements: We’d like to thank Christoph Scholl
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