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Symbolic Model Checking for Incomplete Designs
with Flexible Modeling of Unknown's

Tobias Nopper and Christoph Scholl

~ Abstract—We consider the problem of checking whether an stages of design, where parts may not yet be finished, so that
incomplete design (i.e. a design containing so-called BlaBoxes) errors can be detected earlier. Second, complex parts of a
can still be extended to a complete design satisfying a given design can be replaced by Black Boxes, simplifying the desig
property or whether the property is satisfied for all possible hil . fthe desi il b .
extensions. while many properties of the design still can be proven, yet i
Motivated by the fact that well-known model checkers like Shorter time. Third, the location of design errors in citsuiot
SMV or VIS produce incorrect results for CTL formulas when  satisfying a model checking property can be narrowed down by
handling unknowns by using the programs’ nondeterministic jteratively masking potentially erroneous parts of thewi.

signals, we present an approximate, yet sound algorithm 0 g4 e \well-known model checking tools like SMV [4]
process incomplete designs. The algorithm is flexible in theense

that for every Black Box a different method can be chosen. T (r€SP- NUSMV [5]), and VIS [6] provide the definition of non-
permits us to handle less relevant Black Boxes (in terms of tn deterministic signals (see [7], [8], [9]). At first sightgsials

CTL formula) with larger approximation and thus faster, whe reas  coming from unknown areas can be handled as nondeterminis-
we do not lose important information when the possible effeicof  tjc signals, but we will show that modeling by nondeterntinis

more relevant Black Boxes is modeled by more exact methods. qn41q s not capable of answering the questions of realiz-
Additionally, we introduce a concept for exact symbolic moel

checking of incomplete designs containing several Black Bes ability (iis there a replacement of the Black Boxes so that th

with bounded memory. overall implementation satisfies a given property?’) oidig}
Finally we give a series of experimental results demonstratg  (‘is a given property satisfied for all replacements of thadgl
the effectiveness and feasibility of the methods. Boxes?’) for arbitrary CTL formulas. This approach is even
Index Terms— Symbolic model checking, verification, Black Not able to provide approximate solutions for realizapibr
Boxes, incomplete designs, abstraction, approximation, BDs validity.
Whereas anexact solution to the realizability problem
|. INTRODUCTION for incomplete designs with several Black Boxes (potelytial

) o containing an unrestricted amount of memory) is undeclabl
ECIDING the question whether a circuit implementag, general [12], we will present ampproximatesolution

tion fulfills its specification is an essential problem iR, sympolic model checking for incomplete designs. Our
computer-aided design of VLSI circuits. Growing interest i, qqrithm will not give a definite answer in every case, but it

universities and industry has led to new results and sigmific ;g guaranteed to be sound in the sense that it will never give a

advances concerning topics like property checking, s@ee incorrect answer; it provides proofs of validity and dispisof
traversal and combinational equivalence checking. realizability. The experimental results given in Sect. Yibs

For proving properties of sequential circuits, Clarke, Emeine effectiveness and the feasibility of the approximatéhoe:
son, and Sistla presented. model checking f‘?r the temporabur method is based on symbolic representations of incom-
logic CTL [1]. Burch et al. improved the technique by USIn(EJIete circuits [10] (which will be introduced in this paper

symbolic methods based on binary decision diagrams [2] 9L \ye1) Using these representations we provide different
both stz?lte set represen-tatlon a.nd state traversal in [B], [4 methods for approximating the sets of states satisfyingengi

In this paper we will consider how to perform mode}, o ey, One set is an over-approximation of the set of
checking ofincompletecircuits, i.e., circuits which contaln_ states satisfying the given CTL formula for at least one

unknown parts, combined into so-called Black Boxes. In gOIréubstitution of the Black Boxes and the second set is an under

so, we will address two interesting questions: The questign,,yimation of the set of states satisfying the formutefb
whether it s still possible to replace the Black Boxes byuir gy, Box substitutions. During one run of symbolic model

implementations, so that a given property is satisfied [fzea checking we compute both under-approximations and over-

ability’) and the question whether the property is satisfied approximations of the states satisfyipgand we use them to

any possible replacemgnt (‘validlity’). . _provide approximate yet sound answers for realizabilitgd an
There are three major benefits symbolic model checklr\yg"dity_

for incomplete circuits can provide: First, instead of foc

s ; Our approach is able to use different methods for modeling
verification runs to the end of the design process where tE

fiknowns at the outputs of different Black Boxes within a

design is completed, it rather allows model checking inyear, ingle model checking run. This permits us to handle less

The authors are with the Department of Computer Sciencegerlb
Ludwigs-University Freiburg, D-79110 Freiburg i. Br., Gany, (e-mail: IParts of the article have been presented at DAC 2001 [10] AnGAD
nopper@informatik.uni-freiburg.de; scholl@informatiki-freiburg.de) 2004 [11].
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relevant Black Boxes (in terms of the CTL formula) with
larger approximation and thus faster, whereas we do not
lose important information when the possible effect of more
relevant Black Boxes is modeled by more exact methods. q )
We additionally present a concept how to perform exact '
symbolic model checking under the bounded memory as-
sumption, i.e. for each of the Black Boxes a fixed upper
bound on the number of internal states is assumed. Un
this bounded memory assumption the method is able to solve
realizability and validity questionsxactly The algorithm is
based on the extraction of the memory out of the Black Boxgse paper.
and (conceptually) on considering all possible choicedtier
Black Box instantiations in parallel by means of symbolic I
methods. ) ) )
Related Work: The work of Huth et al. [13], which in- A Symbolic Model Checking for Complete Designs
troduced Kripke Modal Transition Systems (KMTSs), comes Before we introduce symbolic model checking for incom-
closest to this approach. Whereas our simplest algorithm galete designs we will give a brief review of symbolic model
be modeled by using KMTSs, KMTSs are not able to modehecking for complete designs [3].
the fact that the Black Box outputs can not take differenigal ~ Symbolic model checking is applied to Kripke structures
at the same time, while this constraint will be considered lyhich may be derived from sequential circuits on the one
our method (as will be shown below). hand and to a formula of a temporal logic (in our case CTL
Black Boxes in incomplete designs may be seen as UnintéGomputation Tree Logic)) on the other hand.
preted Functions (UIFs) in some sense. UIFs have been useWe assume a (complete) sequential circuit to be given by a
for the verification of pipelined microprocessors [14], whe Mealy automaton
a validity problem is solved under the assumption that both PIE— o
specification and implementation contain the same Uninter- M= (B, B, B, 5,),¢7)
preted Functions. It is important to note that the use of UIRGih state sef8l?, the set of inputsl?, the set of outputs
has to be limited in this approach: the Uninterpreted FUmtiB\gﬂ’ transition functions: B x Bl — Bldl output function
values can not be used for aogmputatiorof data in the given . pldl 7l _ Bl7l and initial statef® € B4, In the following
design — apart from a (conditional) copying of thes_e valuege will usez — (%o, ..., 2n_1) (n = |Z|) for vectors of input
usage of these values as arguments of other Uninterpréfggaples i for vectors of output variableg; for current state
Function symbols and checks for equality. Whereas in [14]ariaples and;’ for next state variables. Figure 1 illustrates
[15], [16], [17] a dedicated class of problems for pipelined,ch a Mealy automaton.
microprocessors is solved (which is basically reduced to atpe states of the corresponding Kripke structure are defined
combinational problem using an inductive argument), we Wiks 5 combination of states and inputs Xof. The resulting
deal here with arbitrary incomplete sequential circuitsl alkripke structure forM is given by struct(M) := (S, R, L)

>
<y

!

L

Mealy automaton.

. PRELIMINARIES

properties given in the full temporal logic CTL. whereasS := BI7l x BI¥. RC S x S, L: S — V, whereas
A related problem is solved in [18] where a Finite Statg- is the set of atomic proEertieB’ = {20, @z _1} U

Machine (FSM) is given which interacts with one unknow 0 Y- B = {((@.8), (@3 ‘(j’q‘/eB\ﬂ’f,f/e

component (Black Box). In [18] solutions of language equag|s| 6(677;) — 7 ,} and L((CT, g)) o {xl ‘ ¢ = 1} U

tions are used in order to derive the set of all permissib i M@ =1}

sequential behaviors for the Black Box so that the combin As usual we writestruct(M), s = ¢ if ¢ is a CTL formula

behavior satisfies an external specification. In that work thy - i< satisfied in state — ((j” 7) € S of struct(M). If it

specification is not given as a CTL formula, but by anoth% clear from the context w ’

FSM. . : : . .
Outline: The paper is structured as follows: After givingzlsmfgll)llovv\(gt:es = @ instead ofstruct(M), s = ¢. [ is defined

a brief review of symbolic model checking in Sect. Il, we

will discuss the results of a method that handles Black Boxeg= ¢; ¢ € V <= ¢ € L(s)

by using nondeterministic signal definitions as provided by): - = sho

SMV and VIS, together with the arising problems in Sect. Ill.

In Sect. IV, we will introduce a new algorithm capable of = (p1Vipe) <= 5@ 0rs =

performing sound and approximate symbolic model checkirig= £X¢ < 35’ € St R(s,s') ands’ = ¢

for incomplete circuits. In Sect. V, we will introduce a cept s = EGp < there is a patt{so, s1, s2,...) with

for an exact algorithm to process incomplete designs in fwhic s=spand¥i > 0: (s;,si11) € R ands; = ¢

a fixed upper bound on the number of internal states i EoiU > there is a pattf ) with

assumed for each unknown area. Finally, we will give a serié P12 patiso, 51, 52, . .- .

of experimental results demonstrating the effectiveness a s = sg andVi > 0: (s, s;+1) € R and there is

feasibility of the methods in Sect. VI. Section VII conclsde aj sothats; = ¢ andV0 <i < j:s; E ¢

hich Kripke structure is used, we



a) Fixed point iteration for EG b) Fixed point iteration for EU Inst. Reg. (Input)

xwe(xx) { xeu(xXxxy) { *
old :=1; old :=0;
new := xx; new := xy; T/
while (old # new) { while (old # new) { ]/
old := new; old := new; — AD ‘ AD
new = xx - xmx (old); new = xy + (xx - xux (old)); 2 | [ReadPoris
} } c
return new; return new; 8 RegiSter R . " Fl St
J egister File Sta
} } File  Foutput)
: ) L . . A |Write
Fig. 2. Fixed point iteration algorithms D |Port

The remaining CTL operations, EF, AX, AU, AG andAF  Fig. 3. Pipelined ALU
can be expressed by using v, EX, EU and EG [4].

In symbolic model checking, sets of states are represented
by characteristic functions, which are in turn represerigd At first sight it appears to be advisable using nondeterriinis
BDDs. Let Sat(p) be the set of states oftruct(M) which signals for handling Black Box outputs, since the functlidpa
satisfy formulay and lety su,,) be its characteristic function, of Black Boxes is not known. Using nondeterministic signals

then xsur(,) can be computed recursively based on the chdR [7], [8], [9] has the advantage that they may be handled
acteristic functiony (7,7, ') = Hm 1 ( (4, 7) = q) of exactly as primary inputs, leading to a standard CTL model

the transition relation: c_heckmg proc_edure _for designs _Contamlng nondeterniinist
signals. In this section we motivate our approach by the

X Sat(x;) (@5 T) =T observation that nondeterministic signals lead to inattrre
XSat(y:) (7> T) =\ (7, ) results when used for CTL model checking of incomplete
designs. We will show that they even can not be used to obtain

Xsiat(~p) (@ )# o = Xsai(p) (@ %) approximate results by analyzing two small examples.
XSat((1vp2)) (@) x) = Xsat(e1) (T F) + Xsat(p2) (T F) Before doing so, we will report on a larger and more
Xsat(Exe) (@ T) = XEX (XSat(0)) (T T) familiar example showing comparable problems. Intergsfin
Xsat(Eao) (@ T) = X5 (Xsat(0)) (@, ) incorrect results of SMV (resp. VIS) due to nondeterministi

I S signals can be observed for the well-known pipelined ALU
X Sat(Ep,Ugps) (@ iC) = XBU (X Sat(p1)> X Sat(p2)) (T T)

circuit from [3] (see Fig. 3). In [3], Burch et al. showed by

with symbolic model checking that (among other CTL formulas)

B Py S = the following formulas are satisfied for the pipelined ALU

Xex (Xx)(q, ) := 3437 (XR(q’x’q ) (XX|§iZ:l/)(q’Ig) (the formule?s essentially say that the contenrz F())f the regist

xeg and xgy can be evaluated by the fixed point iteratioffile R two (resp. three) clock cycles in the future is uniquely
algorithms shown in Fig. 2. determined by the current state of the system):

A Mealy automaton satisfies a formujaiff ¢ is satisfied

2n — 2
in all the states of the corresponding Kripke structure Wwhic AG((EX)SR - (AX)gR) (1)
are derived from the initial statg® of M: AG((EX)°R = (AX)°R) (2)
ME ¢ VZe Bl . struct(M), (§° %) |= ¢ Now we assume that the ALU’s adder has not yet been

implemented and it is replaced by a Black Box. The outputs
of the Black Box are modeled by nondeterministic signals.
N - In this situation SMV provides the result that formula (2)
B. Realizability and Validity: is not satisfied. However, it is clear that there is at least

Given an incomplete design with Black Boxes and a CThne replacement of the Black Box which satisfies the CTL

formula ¢, the questions considered in the following are:  formula (a replacement by an adder, of course). Moreover,

1) Is there a replacement of the Black Boxes in the incorit-is not hard to see, that the formula is even tfioe all
plete design, so that the resulting circuit satisfies a giv@ossible replacements of the Black Box by any (combinationa
CTL formula ? If this is true, then the property is or sequential) circuit, so one would expect SMV to provide a
calledrealizablefor the incomplete design. positive answer both for formula (1) and formula (2).

2) Is a CTL formulay satisfied for all possible replace- Obviously, the usage of nondeterministic signals leads to
ments of the Black Boxes? If this is the case, teis non-exact results. Yet, one might consider that although th
valid for the incomplete design. results are not exact, they might be approximate in some

sense. We will disprove this by analyzing two small exemplar
[1l. M ODEL CHECKING FORINCOMPLETEDESIGNS USING  circuits with SMV (similar considerations can be done foBVI
NONDETERMINISTIC SIGNALS as well).

Well-known CTL model checkers such as SMV and VIS , . _ o
Using VIS, the verification already fails for formula (1) —ighis due to

providg S_Ofca”_ed ‘nondeterministic assignments’ resmn- a slightly different modeling of automata by Kripke strugsi in VIS and
deterministic signals’ to model nondeterminism [7], [89].[ sSmV.

= (YZ(Xsat(p)lg=0)) = 1
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a) First counterexample b) Second counterexample

) Fig. 5. Mealy automaton with Black Box
Fig. 4. Counterexamples

hesis 1- * . It of h Conclusion: Using nondeterministic signals for Black Box
Hypothesis 1. A negative result of SMV means that 5’utputs is obviously not capable of performing correct nhode

pr_operty is not valid.: The circuit from Fig_. 4 a) together checking for incomplete designs — the approach is even not
with formulap, = AG(AXyo vV AX —yo) provides us a coun- 50 1, provide an approximate algorithm for realizabitiy
terexample for this hypothesis. Formuta checks whether in validity.3

all states which are reachable from an initial state the wutp This motivates our work presented in the next section: We

of kt)he_ BIacI; Bglx ii tge same fol; all succijessor _stat(_es.g_lf Wil define an approximate method for proving validity and fo
su ?'trtg t eSM\a;Cb ox outpu_t yanon etg;ﬂnc/mlsbtlg 'glnf’alsifying realizability of designs containing Black BaxeThe
(modeled in y & new primary input), ODVIOUSlYyagits are not complete, but they are sound, i.e. depemaing

grQV|de_s the Tesu“ thap, is no:csausﬁe(-j.. N(I)W consf_er tv‘_lo the formula and the incomplete design the method may fail to
|n|te_pr|mary|nput séquences froman Initia stgtew icifedi rove validity or falsify realizability, but it will nevereaturn
only in the last element. Since the Black Box input does nﬁ'}correct results

depend on the primary input, but only on the state of the flip-

flop (see Fig. 4 a)), these two primary input sequences peduc
the same input sequence at the Black Box input. Thus, the
primary output (which is the same as the Black Box output)

will be the same for both input sequences. This means that
the CTL formulay, is satisfied for all possible Black Box A. Flexible Modeling of Black Box Outputs in Symbolic Sim-
substitutions, thus it is valid. So we observe that a negatiulation

result of SMV doesot mean that a property is not valid. For symbolic CTL model checking of a given design, a
Hypothesis 2: ‘A negative result of SMV means that &mbolic representation of its output functionand of its
property is not realizable:We consider the circuit shown transition functions is needed first. In order to generalize
in Fig. 4 b) and the CTL formulg, = AGy,. We assume CTL model checking tancompletedesigns (see Fig. 5), the
that the flip-flop is initialized by 1. If we replace the Blackpotential effect of the Black Box outputs to the remaining

Box output by a nondeterministic signal (modeled intesnalldesign needs to be modeled in order to computand é.
by a new primary input), SMV provides the result that is  |n [10] we used two different methods, modeling Black Box
not satisfied. However, it is easy to see that the formula éutputs with differing accuracy: Symboli6, 1, X)-simulation
satisfied if the Black Box is substituted with the constant and symbolicZ;-simulation. Whereas in [10] all Black Box
function; so the property is realizable. Thus, a negatigelte outputs in the design were represented with the same method,
of SMV doesnot mean that a property is not realizable.  we present here a method for flexible modeling of different
Hypothesis 3: ‘A positive result of SMV means that Black Box outputs by differing methods. This method will
property is valid.: Again, we consider the example showrbe applied later on for our approximate model checking
in Fig. 4 b) and the CTL formulaps = —¢s = EF-yo. algorithm.
If we substitute the Black Box output by a nondeterministic Symbolic (0, 1, X)-simulation is based on the well-known
signal, SMV provides the result that, is satisfied. However, (0,1, X)-simulation [19], [20], [21]. Here the valu& rep-
since propertyyps is the negation of property, which has resents unknown values due to the unknown functionality
been proven to be realizable when considering the secasfdthe Black Boxes. If some inputs of a gate are set to
hypothesis, it is obvious thats is not valid. Thus, a positive X during (0, 1, X)-simulation, the output is equal t& if
result of SMV doesot mean that a property is valid. and only if there are two different replacements of the
Hypothesis 4: ‘A positive result of SMV means that walues at the inputs by 0's and 1's, which lead to different
property is realizable: Finally, we reconsider the circuit outputs of the gate. Fig. 6 b) shows a (conventiof@al), X )-
shown in Fig. 4 a) in combination withy; = —¢; = simulation for the combinational circuit shown in Fig. 6 a).
-AG(AXyo V AX—y,). Again, we assume the Black Box

output to be a nondeterministic signal and we verify theuifrc ~Yet, there are subclasses of CTL, for which VIS and SMV carvide
correct results: ConsideringCTL (type A temporal operators only, negation

using SMV, _Wh'Ch proy|des th(_:" result thai4 is satisfied. only allowed for atomic propositions), a positive result¥1V/VIS means
However ¢4 is not realizable, sinceoy = —p; and ¢, has that the property is valid. ConsideringCTL (analogously forE operators),

been proven to be valid when Considering the first hypothesqgwgative result of VIS means that the property is not rablig this is not
true for SMV due to its implicit universal abstraction of themary inputs

ThUS' a positive result of SMV doewt mean that a property (including primary inputs resulting from nondeterminisgiignals) at the end
is realizable. of the evaluation.

IV. AN APPROXIMATE SYMBOLIC MODEL CHECKING
METHOD FORINCOMPLETEDESIGNS WITHFLEXIBLE
HANDLING OF UNKNOWNS



a) Incomplete design b) (0, 1, X )-simulation for zg=z1=0

ALY
—0

Fig. 7. An exemplary incomplete circuit

¢) Symbolic (0,1, X)-simulation d) Symbolic Z;-simulation
the same variable for all Black Box outputs, symboli&;-

simulation introduces a new variable for each Black Box
output and performs a (conventional) symbolic simulation.

(0,1, X)-simulation may be seen as a (simple) way to ovef9- 6 d) shows an example for symboli¢-simulation. (Note
approximate the set of possible behaviors of systems duetfidt — in contrast to symboli®), 1, X)-simulation in Fig. 6 c)
nondeterministic behaviors of their components and in this e first output can now be proven to be constajt
sense it is a special case of the theory of nondeterministic/Veé nNow construct a flexible representation of incomplete
networks introduced in [22]. circuits Whl_ch aIIows_some Bla<_:k Bo?( outputs to be repre-
For symbolic(0, 1, X )-simulation we introduce a new vari-Se€nted as in symboli¢0, 1, X)-simulation and some Black
able Z, which is used to model the unknown valué of Box outputs as in symboli&Z;-simulation: For each output
the Black Box outputs. Now, for each outpyt of the of the BIa_ck Boges, which are to be _handled as in symbolic
incomplete design with primary input variables, ..., z,, (0.1, X)-simulation, we use the variabl¢ to model the
a BDD representation of; is obtained by using a slightly Bla_ck Box output, while for each output pf the_BIack Boxes,
modified version of symbolic simulation [23}; depends on Which are to be handled by symbolic;-simulation we use

Fig. 6. Different methods to analyze an incomplete design

variablesz, ..., x,, and Z and has the following property: & New Z; variable. The sim.ullation. now considers the latter
) ) ) ) Black Box outputs as additional inputs and then performs
1, if (0,1,X)-simulation with symbolic(0, 1, X )-simulation (always replacing by Z when
input (1, ..., €n) producesl processingnv gates).
Gilrimer = 0, if (0,1,X)-simulation with We obtain BDD representations of the circuit outpyts
on=en input (e, .. ., €n) produceso with primary input variables:, . .., z,,, (Z;-simulated) Black
Z, if (0,1,X)-simulation with Box outputsZi, ..., Z,, and theZ-variable as inputs:

input (e1, ..., €,) producesX

See Fig. 6 ¢) for an example. 1, if (0,1,X)-simulation with input

. L ey €nsT1, ..., Tm) Producesl
To compute BDDs for the functiong; by symbolic sim- (€1, €n 1, - lm) PrOAU
: : A . . . 0, if (0,1,X)-simulation with input
ulation the inputs of the circuit are associated with uniqueg;| =1=1 =
(€1, €nysM1y- -, Mm) Produceso

BDD variables as in a conventional symbolic simulation. All 2=t

output signals of Black Boxes are associated with the new Zm=nm

variable Z. Now BDDs for the functions computed by the

gates of the circuit are built in topological order treatithg Example: Figure 7 shows an example: If this circuit is

Black Box outputs (associated with variabtg as inputs of simulated by using symboli¢0, 1, X)-simulation (meaning

the circuit. The gates of the circuit can be processed intl#atZ is assigned to the outputs of both Black Box 1 and Black

manner similar to a conventional symbolic simulatfow/hen Box 2), a total number of 3 variables are needed x5, 7)

we process amnd; (orz) gate, we combine the BDDs for theand the resulting function for the output j§ = Z.

two predecessor functions by a BDBND (OR) operation  |f the circuit is simulated by using symbolig;-simulation

as in the conventional symbolic simulation. For @an gate instead (meaning that for each output of Black Box 1 and

we perform aNOT operation on the BDD of the predecessoBlack Box 2 a newZ; variable is used), 9 variables are needed

function, now followed by acompose operation (see e.9. [2]) (z;, 2, Z1, ..., Z7), and the function for the output iz, =

which compose¢’ for Z (written asg|,_ for a composition AR A (PR S VAVAVAE W AVAVAS WAVAVAS I AVAYAS)

of Z for Z in g). (when variables,, . .. Z; are assigned top down to the Black
It is easy to see that this procedure leads to BDD repres@bx outputs appearing in Fig. 7).

tations fulfilling property 3. When using the flexible method for modeling Black Box
Since (0,1, X)-simulation cannot distinguish between unoutputs, assigningZ to all outputs of Black Box 2, but

known values at different Black Box outputs, some informatifferent Z,’s to the outputs of Black Box 1, e.g., we end

tion is lost in symboliq0, 1, X )-simulation. This problem can up using 6 variableSz,,z2, Z, Z1, Z, Z3) and obtain the

be solved at the cost of additional variables: Instead afgisifunction frex = Z121 + Z1 - (T2 + Z).
e , _ So, the flexible method generates an output function that
Since all types of gates can be expressed using two-inpdl, gates,

two-input or2 gates andinv gates, we can assume w.l.o.g. that the gate|§_ obvpusly less compllcated than the _reSUIt of Symb@e
have typesanda, ora or inv. simulation, yet contains more information than the restilt o

7, if (0,1,X)-simulation with input
(€1, -y EnyM1y- .., Nm) ProducesX



symbolic (0, 1, X)-simulation. To give an example, far, =1 functions are computed using symbolic simulations as define
andz, =0, the output can be proven to lteusing the flexible in Sect. IV-A.

method, while it is not possible to gain this informationrfro  For this reason there are two approximations of the set of
symbolic (0, 1, X )-simulation. statesSat(y;) in which the output value; of \; is true:

In general, the flexible modeling is at most as exact as. an under-approximatiofiat,(y;) contains only states in
symbolic Z;-simulation, but at least as exact as symbolic  which y; is true independently from the replacements of
(0,1, X)-simulation. the Black Boxes and
« an over-approximationSatg(y;) contains at least all

states in whichy; may be true for some replacement of

the Black Boxes.

Likewise, there are two types of transitions for the autamat

« Transitions which exist independently from the replace-
ment of the Black Boxes, i.e. for all possible replacements
of the Black Boxes (we will call them ‘fixed transitions’)
and

« transitions which may or may not exist in a complete
version of the design — depending on the implementa-
tion for the Black Boxes (we will call them ‘possible
transitions’).

We will see later on in this section that for our model

consider all possible replacements of the Black Boxes, checlilng J:)rocedure# XV‘i/W'” nefd# an over-approximation

computeSat¥(,p) for each such replacement by conventiona(#=(7:%:d") of Xr(7,7.q"). xr(q,7,q") contains at least
model checking and determirft$®{¢) as the union of all all Possibletransitions. An under-approximatiork, (4, 7, ¢")
these set$atf(y). The second set is calleght®{y) and it containing all fixed transitions could be computed as well,

contains all states, for which is satisfied forall Black Box NOWever it is not needed for our algorithim.
replacements. Conceptuall§at§@(¢) could be computed as Based on approximationgr,,, Sata(y;), and Satp(y;) we

an intersection of all setSat"(y) obtained for all possible Will compute the under-approximationsut, () and over-
replacements? of the Black Boxes. approximationsSatg () mentioned above for arbitrary CTL

Given Sat&@() andSat&2{(y), itis easy to prove validity formulasy. At first, we will describe how we computer,,,

and to falsify realizability for the incomplete circuit: &Il S (yi), "_’mdsatf(yi):_ Lot there b ber of Black
initial states are included i8at$@(,), then all initial states _ FOF @n incomplete circuit, let there be a number of Blac
are included inSat®(¢) for each replacemerit of the Black Boxes with outputs modeled by and some other Black

Boxes and thusy is satisfied for all replacements of thePoxes with outputs modeled b)Zi’s: We then ap_ply the
Black Boxes (% is valid”). If there is at least one initial method from Sect. IV-A for computing the transition func-

state not belonging tdat®®(y), then this initial state is tions and the output functions. Thus, we introduce new vari-

not included inSat"(y) for all replacementst of the Black 2P1esZ and Z; = (Zy1, 2z, ...). The symbolic simulation

Boxes and thus, there is no replacement of the Black Bo&?’scribed above now provides symbolic representations of
so thatyp is satisfied for the resulting complete circuity(is the output functions;(q, 7, Z, Z;) and transition functions

not realizable”). 5,j(|q,£v,Z,de)d del checking f ote desi .
Approximations: For reasons of efficiency we will not n standard model checking for complete designs, an atomic

o i ~fix ~fix) o plaxIz] i
compute exact setsSat2(y) and Sat$@(y). Instead POPEY yi IS satisfied for a stategq™ 2™) €B i

we will compute approximationsSatg () and Sata(p) of  7tla=a™.a=a™ = 1. Moreover, standard model checking pro-

these sets. To be more precise, we will compute oveéiESSeS transitions between states based on funaijons

approximationsSats () 2 Satgxam(;o) of Sat2e{(y) and Here, a statelefinitelysatisfies an atomic property, if y;
- = is satisfied forall possible assignments t6 and Z; and a

under-approximationSata () C Sat§?{¢) of Sat§@y). P 9 !

Because ofSatg () 2 Satp®(p) 2 Sat'(p) for arbitrary statepossiblysatisfies an atomic property, if y; is satisfied

replacementsk of the Black Boxes, we can also guarante]cor at least onepossible a55|gnm§frilt E%X)agd]éﬁﬂx‘grutsh'e'r:
7'1: )

for Satg(p) that ¢ is not realizable if some initial state isi"fzfﬁxvfzszix =1 for some state(g

not included inSatg(p). Analogously we can guarantee that'© lknow thtat/}i tlhs 1B:n LhISB state '”depe’?delnt('éij“lﬂ}l the
o is valid if all initial states are included iSata () (since 'cPiacement of the Black Boxes, so we include™ 7™)

i 6
C Gpexacy ) . into Sata(y;) and Satg(y;).° If Ai|g—gn z—zw = 0, then the
Sa?p(ézj;iicgf‘i‘ongpgf—siglzg))and Sata(s) will be com- output); is 0 in this state independently from the replacement

puted based on an approximate transition relation and ORThe algorithm presented here improves on a version from, [hljvhich
approximate output functions for the corresponding Meahn under-approximatiory g, was used.

automaton)/. In incomplete designs we have Black Boxes G_Remember thaiata (y;) is an under-approximation of the set of states
. . . . . satisfying y; for all Black Box substitutions andSaig(y;) is an over-
in the functional block deflnlng the transition functionand approximation of the set of states satisfyipg for at least one Black Box

the output functiom\ (see Fig. 5); the approximations of thes@ubstitution.

B. Symbolic Model Checking for Incomplete Designs

Basic Principle: Symbolic model checking for complete
designs computes the séut(y) of all states satisfying a
CTL formula e and then checks whether all initial states are
included in this set. If so, the circuit satisfigs

The situation becomes more complex if we consider incom-
plete circuits, since for each replacement of the Black Boxe
we may have different state sets satisfyipgln contrast to
conventional model checking we will consider two sets iadte
of Sat(p): The first set is calledatZ®{ ) and it contains all
states, for whiclthere isat least one Black Box replacement so
thaty is satisfied. To obtai$at2@*{ ) we couldconceptually



Satg (1) (over-appr.) Sat 4(1) (under-appr.)

of the Black Boxes, so we includé&;™ z™) neither into
Sata(y;) nor into Satg(y;). In any other case, the value of
y; is unknown in this state and thus we inclu@@ ™) into
Satg(y;), but not into.Sata(y;). This leads to the following
symbolic representations:

Xsata(yo) (0. 7) :=VIVZ (N(T. &, 2, Z))), (&)
XSatE(yl)(q_; f) =31732, (Az(q_'v fv Za Zl)) (5)
Likewise, there is gossibletransition between two states
if the transition exists foat least onepossible assignment to @ ~— into Satp(EX¢y) — ~— into Sats(EX)
7 and Z;. This leads to (over-appr.) (under-appr.)

o o lg1—1 - . - i i
Xre (@5, §) = (Hizo 3737 (6i(q,x, 7,7)) = q;)) Fig. 8. Evaluation ofSats (EX), Satg (EX)
(6)
An additional improvement of approximations can be obtl:itinel.hiS means that we can uB&! x BI71\ Stz (1) as an under-
by a slightly modified definition of,: approximationSat, (—). Since an analogous argument holds

L S |g]—1 o 5 for Sata(y) and Satg(—)) we define
XRE(Q?I7q/) = EZZ(HiZO EIZ(dl(q,x,Z,Zl)Eq;)) oL S
. @ X Sata (=) (@5 T) = XSats () (¢, ¥) and
(Due to the different meaning of variablés and variable XSt (~) (@ B) = Xsata () (@ T)-
Z (representing unknownX) it is easy to see that the order ) ) )
of [T and3Z can not be interchanged in equation (7).) Sata(i1 V ¢2) is build by the union ofSata (1) and

Based onyr,, Sata(y;) and Satz(y:), it is possible Sata(¥2), analogously forSatp (1 V ¢2).
to define rules how arbitrary CTL formulas can be recur- Finally, ¢ = EG4 and ¢ = Ey1Uy, can be evaluated
sively evaluated. We show here how to evalusig, (EX 1)), by their stgndard fixed .pomt iterations (see Fig. 2) based_ on
Sats(EXY), Sata(—), Satg(—), Sata(iy V), and the evaluation of2X defined above (two separate fixed point
Satp (¥ V ) iterations forSat 4 andSatg). We do not need to define more

CTL operations, since other CTL operations can be expressed
sing the operations discussed so far.

Finally, the result of the recursive computation can be
evaluated as follow$:

For each statéq, ), xr, (7,7, q’) gives us the set of’
values the possible successors can have. Each of thesenliffe"
q'values representsset Sy := {(q!#)|#'€ BI¥} of possible
successor states sharing thfsvalue (yet with arbitrary value

of #'). So, if for a state(¢, #) one of the states in one of (VZ(XSata(o)d=q0)) =1 = ¢ is valid
these possible successor s8ts possibly satisfies) (i.e. is A )) 1
—=30)) =

in Satg (1)), the current state possibly satisfies(y) and is
C. Including Z;-Variables into the State Space

thus included inSatg (EX):
XSatg (EX) (@5 T) = A further improvement on the accuracy of the two approxi-
367/(XR G,%,q) - ﬂfl(Xs | 7 -/)((j/ f/)) mated sets considered above can be obtained by inclugjing
A ate (W17, )\D variables assigned to Black Box outputs into the state space

On the other hand, if in each séf of possible successors As a motivation for this, consider the simple CTL formula

of (7, %) there is at least one state that definitely satisties £ (v A —) for a design in which a Black Box output is
(i.e. is in Sata (1)), then for each Black Box implementationdirectly connected to the primary outputin every statgq, 7)

at least one successor of stafe ) satisfiesy» and thus, the Pothy and—y arepossiblysatisfied (depending on the Black

current statdq, 7) definitely satisfies2X v and is included in BOX implementation), but they are natefinitely satisfied.
Sata(EX): Thus, the method given in the last section computes thetresul

thaty A —y is possibly satisfied in every stat€, &), but not
definitely, and the same result holds 8F (y A —y). For this
reason the method from Section IV-B is neither able to prove
VCT/(XRE (7.7, 7") = 37" (Xsata ()| 40 ) (T f/)) validity nor to falsify realizability for the given incomete
, , o design and the given formula.
Fig. 8 illustrates the sets. . _ However, it is clear that there will be no point in time
Negation is evaluated as follows: Sinfet (1)) is an over- qyring the computation wherg is simultaneously true and
approximation of all states in whicly may besatisfied fqr false. Problems of this kind can be solved if we include
some Black Box replacement, we do know that for an arbitrafyiaples assigned to Black Box outputs into the statesef th

state inIB%'ﬂ_xIB|f‘\SgtE(1_/)) there is no Black Box replacementy inke structure. In this way the according Black Box output
so that is satisfied in this state or, equivalenthyy) is

definitely satisfied in this state for all Black Box replacet®  7Remember thag® is the initial state of the circuit.

(3Z(Xsam (o) 7 — ¢ is not realizable

XSata (Ex ) (@, T) 1=



valuesZ; are constant within each single state and therefore r >

in our exampley has a fixed value for each state.
Note that it is not always necessary to incluadeZ;’s into ) x>
the state space; this provides another possibility of flgxib g (@)

processing the unknowns at this point, which can be used as
a tradeoff between efficiency and accuracy.

Let Z, be the Z;-simulated Black Box outputs that are
included into the state space and Et be the Z;-simulated
Black Box outputs that are not included. Then the values of

Z are constant within each single state, while the values gfmilarly, for Sat4 (EX ), we include all statesq Z,), for
7, are arbitrary as they were before. which in all possible successor séig there is ar’, so that for

Both the output function\(q, 7, Z, Z.Z, ) and the transition 4| Black Box output valuesZ’ 7 wZ/) definitely satisfies
function 6(g. %, Z, Z;, Z,) can be computed by using they, o

symbolic S|mulat|on from Sect. IV-A, whereas for symbolic .
simulation it is not necessary to distinguish betwegnand XSata (Ex0) (@) Ty Zo) 1=
Zo. —»/( - Gea! -1
° . o 7, 2, IZNZ" (X 50 =1 (7T, )
We now describe how to compute the sets of states deﬂmteY)(I7 X (d 7= (XS )| I )(q o)
or possibly satisfying the atomic CTL formula:
I X o g, 5o 2, _7u=1for some statég™ 2™ Zx) ¢

Flg 9. lllustration for the functional preimage computatifor complete
designs.

The computation of all remaining CTL operators EG
and EU is performed as described above. The result of the
]B%\q|xtztx|z ] then we know thad; is 1 in this state indepen- recursive computation can be evaluated as follows:
dently from the replacement of the Black Boxes, so we include ) )

(@™ ™ Z) into Sata(y:) and Satz(y:). (V¥ Zo (X sata (o) lg=q0)) =1 = ¢ is valid

If /\Z|~ @ Tt Z, G = =0, then the output); is 0 in (EWZO(W|5:§O)) =1 = ¢ is not realizable
this state mdependently from the replacement of the Black
Boxes, so we includé;™ ™ Z) neither intoSat, (y;) nor
Satg(y;). In any other case, the value gf is unknown in

Obviously, including all Z;-variables into the state space

is one extreme case of the method presented in this section.

this state and thus we Inclu({qﬁx —fix Zf|x) into Sats(y:), If we include only a part of theZ;-variables n_tto the state
space, then smaller sets of states and transitions have to be

but not into Sata (y;). . . .
Based on this(, 'zhe set of states definitely satisfying ﬂt;é)n&dered, which can lead to a less complex model checking

atomic propertyy; can now be computed as follows: run without necessarily losing the accuracy needed forisglv
g *

. . oo the problem.
XSatA(yi)((jv f, Zo) = VZVZ[ (/\z(q; f, Z, Zl7 Zo))
Xsatw () (@ & Zo) = 3232, (N (4.7, Z, 21, Z,)). D. Functional Preimage Computation
Analogously, we define the characteristic function of possi For complete designs, there are two methods to compute
ble transitions: the preimage of a given set of states, as it is needed for the
|3]—1 computation ofSat(EX ) [24], [25]:
Xrs (7 z, Z,, 7) = ( H HZEZz (7.7, Z, Z. 7 ) = qg)) So far, we used theelational approach in our approximate

model checking approach for incomplete designs. For com-

As for formulas (6) and (7), an additional improvement oplete designs this approach builds the characteristictimmc
approximations can be obtained by of the transition relation

oo lg1-1 S
L. _, -1 N , XR(Q7x7q/) = Hi:O (6Z(Q7x) = q;)
X (T, &, (3Zz H 3Z(6:(0, %, 2, Z1, Zo) = ql-))- - . . .
which is then used in the actual preimage computation for a
Based onyz,,, we defmeSatA(EXt/)) and Satz(EX ) as given set of states (represented-py in this case):
follows: xex (xx)(@, %) == 3737 (xr(7, 7,7 - (xx]| M/)(cﬂ 7))

Xrs (4, T, Zo, @) gives us they’values of possible successors
of a state(q, 7, ZO)_ Now each of these different’ values Thefunctionalapproach uses theomposeperator, defined
represents a sef; = {(7 %7, Z)|Z' € B, Z e BY flomg =7 floi=0 + g flz;=1 for f,g: B" — B and
BlZ-1} possible successor states sharing #iisvalue. For an i_nput variabler; of f. Baseq on the compose operator, the
Satg(EX1)), we include all stateg, %, Z,), for which there preimage of a set of states given Ry can be computed as
exists a possible successor $gt in which there is az’, so follows:
that for at least one Black Box output valug: (7,7 ’Z’) xx ()@, %) == (3axx (7, f))lpgpf)
possibly satisfies, i.e. A

Note that the number of necessary variables can be de-

Xsats (Bx4) (T T, Zo) 1= creased by using compose operations instead of transition
EJ’(XRE (q, 7, Zo,q’). 35’32; (XSatE(qp)| 7 )(q 7 Z’)) relations, since thg'variables are no longer needed. Moreover,
Zo— 7, the computation of the transitioelationis not needed. Due to



the BDD representation&i’y x ) (¢) andé(q, #, Z) we obtain
the same result as if we would perform a symbdlic1, X)-
simulation of the circuit in Fig. 10.

For the special case of the compdgeeperator we can
even improve the accuracy of the simple symbdlicl, X)-

_ _ _ . _ _ simulation by replacing equation (8) by equation (9):
Fig. 10. lllustration for the functional preimage compigatfor incomplete
o . z _
designs in which the Black Box outputs are modeledzhy f|mi<_g = 9|Z67 Slei=0 + 9 floi=1 + flai=0 - [lzi=1 (9)

The last term may seem to be unnecessary at first sight, yet

this, the functional version of preimage computation i=oft it is easy to see that foff|.,—o)|z=c = 1, (flsi=1)|z=c =1
more efficient than the relational version [24]. and g|z—z = Z equation (8) results in(f|Z_ )|z = Z,

We now look into the question of how to generalize funowhereas equation (9) results (lflfwg)If:g = 1 which is
tional preimage computation so that we can use it for modelore exact (contains more accurate information).
checking of incomplete designs. In doing so, we (first) canfin Using the composeZ operator, we can now compute
ourselves to the case where all Black Box outputs are modeled:, (ex ) and X st (Exw): FOI XSata (Exy), We include the
with Z. states for which there is definitely a successor which definit

To prepare the generalization to incomplete circuits, waatisfiesy (thus is inxsat, (4)):
first illustrate functional preimage computation for costpl o - ”
designs by a (straightforward) interpretation of the ineal Xsata(Exv) (@, T) = vZ((EL’”XSam(w))|d’<—6(@,az,z))
BDDs as Boqlegn CII‘CL.JItS ais shown in Fig. 9 The BDD for Analogously, for Y s, (zxy), We include the states for
the characteristic functiofdz’x x )(7) may be interpreted as ynich there possibly is a successor possibly satisfyirghus
a (multiplexer) circuit for which variableg; are replaced by being in  sat, (v):
the corresponding transition functiodgq, #). The result is “

a characteristic function depending on variat(lésf)lwhich X Sat (Bx ) (@5 B) == 32((35X5atE(¢))|§H5(Wﬂz))
represents the set of states having a successor in th& set . . ) .
(represented by x). Functional preimage computation can be easily extended

For incompletedesigns we have to consider the fact thdP the cases that some Black Box outputs are modeled by
5 now depends on the additional variale (which models Z;'s and that some of the;-variables are included into the
the unknown valueX). Again, we interpret the BDD for state space in analogy to Sections IV-A and IV-C. Details are
the characteristic functiof8#y x ) () as a multiplexer circuit Omitted here. _ _ _
and replace the inputg; by the circuit representing the Experiments showmg advantages of mgdel checking using
transition functiond(7, #, Z) (remember that outputs of thethe cpmpps@ operator instead of the relational approach will
Black Boxes are replaced by variabi). Now a symbolic P€ given in Sect. VI.
(0,1, X)-simulationof the resulting circuit (compare Fig. 10)

produces a function with the following property: V. EXACT SYMBOLIC MODEL CHECKING FORBLACK

] o BOXES WITH BOUNDED MEMORY
1, if state (eq, ez) definitely

has a SUCCESSOT iy In the last section, we introduced a metho_d to appro_ximate
0, if state (e, x) definitely both Sat&@(y), the set of states, for v_vhlch_there is at
= ’ K . least one Black Box replacement so thatis satisfied, and
has no successor inx P o o
7, if state (e, ex) possibly Sat§*{ ), the set of states, for which is satisfied for all
’ has a su(cz:zzgssor i . Black Bpx replacements. Based (_)n.these s_ets,. we were able
to provide sound results for falsifying realizability andrf
However, since we already have BDD representations f@gfoving validity of incomplete designs. Yet, it is not pdssi
(3Zxx)(q) andé(q, 7, Z), we avoid a conversion of the BDDsto provide a result in every scenario due to the approximate
into circuits followed by a symboli¢0, 1, X )-simulation, but nature of our methods.
we use Fig. 10 only as a conceptual illustration motivatimg t  |n this section we will present a concept forexactmethod
definition of a (modified) compose operator on BDDs whichinder the assumption that there is a fixed upper bound on the
produces the same result. The compose operator needs tqla@ber of flip-flops the possible substitutions of the Black
adjusted to the additional variablé in order to mimic the Boxes are allowed to have. Due to this ‘bounded memory
behavior of the symboli¢0, 1, X)-simulation. As a result we assumption’, the number of different Black Box behaviors is
obtain a newcomposeZ operator forf: B — B with input finite and thus, it is conceptually possible to compsiae?()

h

81

8

€
€

variableszy, ..., z, andg: Bt — B with input variables for each possible replacemehtof each Black Box. Then, a
r1,...,Zn, Z Which is based on the following equation:  CTL formulay is realizable iff there is a replacemeRtwith
_ all initial states lying inSat and a CTL formulap is valid
Hoy =Tz flocotg-flace  ® ying inSat"te) %

iff all initial states lie inSat®() for all possible replacements
(Note that we have to replacg by Z after negation in R.

this formula just as in the definition of symbol{®, 1, X)- Note that the Black Box replacements we will consider are
simulation in Sect. IV-A.) Using this composé-operator for not allowed to use any signals other than the ones connexted t
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Fig. 11. Extracting flip-flops from a Black Box with bounded mary

the inputs of the Black Box. Thus, the exact method we will
present in the following is able to provide an exact answer
for the case that the Black Boxes have global knowledge
of the surrounding circuit. If the Black Boxes would be |@
allowed to read every signal in the circuit, then we could o
also use game-theoretic approaches such as [26] for solving
the problem. However, considering the small example from ,z Z
Fig. 4 a) together with formula, = ~AG(AXyo VvV AX —yp)
(see Sect. Ill, Hypothesis 4, on page 4) it is easy to see that
4 IS not realizable (no matter how much memory is used for 53505 =]
the Black Box), but the approach from [26] would consider ™t =
it as realizable due to its implicit assumption that the Rlac S o
Box behavior may depend on all signals of the circuit. 76,12, TeorPite (e i one comviatena) Sk Sanc e
On the other hand, an explicit approach is obV|oust NQlriables and a select function.
applicable in practice due to the enormous number of passibl
Black Box substitutions. For that reason we will use symboli
methods to implicitly consider all possible choices for the Given an incomplete circuit containing exactly one combi-
Black Box substitutions in parallel. national Black Box, we can divide the combinational part of
We will first show how Black Boxes with bounded memorythe Mealy automaton into four parts (see upper part of Fig. 12
can be transformed into combinational Black Boxes, i.ecBla Since the Black Box considered in this section is lim-
Boxes that may only be substituted by combinational ciscuitited to have only combinational substitutions, we can as-
We will then take a look at a concept fexact symbolic model sume the Black Box to compute an unknown boolean func-
checkingfor circuits containing one combinational Black Boxtion 3: Bldl —BIZl. Furthermore, letr: BI7 x Bl — B4
be the boolean function of the circuit part computing the
Black Box inputsd and \: Bl x BI#l x BIZl Bl resp.
A. Extracting Flip-Flops from a Black Box with Bounded;. glal « Bl#| « BIZ| . BI7| be the boolean functions of the
Memory circuit parts computing the primary output resp. the next

We consider a Black Box with bounded memory, whicktate. Whilea just depends on the primary inpatand the
means that there is a fixed upper bound on the number of flirrent statey, & and A additionally depend on the Black Box
flops the possible substitutions are allowed to havepiebe ~OutputsZ. All these functions can be computed using symbolic
this upper bound. simulation. .

Given this assumption, we can separate the flip-flops fromNow we describe how to develop a concept for exact
the Black Box without changing the behavior: We have tgolutions to realizability and validity. To achieve thise will
add m additional outputsj,, leading to the flip-flop inputs reduce the question whether there exists a boolean fungtion
and m additional inputsg,, going back to the Black Box SO thaty is satisfied (realizability) and the question whether
as shown in Fig. 11. The resulting transformed Black Bdg satisfied for all boolean functions (validity) to existential
is combinational, i.e. the possible substitutions aretéghito resp. universal abstraction in propositional logic.
combinational circuits. Every function f: B — B"™ can be described by its

Since we can reduce Black Boxes with bounded memory §'responding truth table with - 2™ entries; likewise, we
combinational Black Boxes, it is now sufficient to solve théan describe the Black Box functio: B4 — BIZ by a

model checking problem for combinational Black Boxes. truth table with|Z] - 217 entries.
We consider each entry of this truth table to be a boolean

variable Z; ; € B (0 <i < 2/, 0 < j < |Z|). We useZ :=
B. A Concept for Exact Symbolic Model Checking of IncomzO o Ly 2|1+ a4 ‘ZH) for the whole truth ta-

plete Designs with One Combinational Black Box ble. An assignment of constant values to variatifedixes
For the time being, we restrict our view to incomplet®ne possible replacement of the (combinational) Black Box.
circuits containing exactly one combinational Black Boxe WDuring symbolic model checking the variabl&sare included
showed above that Black Boxes with bounded memory can in¢o the state spacgy, 7, Z). The values ofZ do not change
reduced to combinational Black Boxes and we will show lateturing a single run of the resulting system, and thus, fixireg t
how to extend the methods presented here to multiple Blacklues forZ in an initial state of the system means selecting
Boxes. a certain replacement of the Black Box by a combinational
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function. - ) D - =D
. . . MR Black A 33| %o 0 1%
In order to define both transition function and output Box = Z 1UX;

. . . . i~ q @2 )
function depending on assignments to variadfesve have ¢ . ,D-' ! " D !
to introduce a select functiof: Bl x B(Z1-2") _, BIZ| — r —

. . FF° FF°
that ‘selects’ entries from the Black Box truth table valésh — =
a) Incomplete design b) Modified design

Z depending on the value af (see lower part of Fig. 12).
Formally, Q;(d@,Z) := Z,,, whereasa is the integer value Fig. 13. Example for exact symbolic model checking of inctete designs
described by the binary numbeyz _; ...ajaq. (This select with one combinational Black Box.
function may be seen as a multiplexer tree.)

Now the output functiorA and the transition functiod can

be defined using C. Multiple Black Boxes

It is easy to see that the method presented in this section

MG, 7,2) = )‘(‘77 :E’,Q(a(cj, ), Z)) can be extended to circuits containing multiple Black Boxes
and 6(¢,%,Z) := 6(q_',9? Q( (q, *),Z)). by separately replacing them by corresponding truth table
variables.

For our exact symbolic model checking, we essentlally
perform conventional symbolic model checking (see Sett. Il
based on\ and d with a state space extended by variables
Z. Transitions from one state to its successor in this extend®. Approximate Model Checking for Incomplete Designs
state spac€q, z, Z) do not change the values assignedZto  To demonstrate the feasibility and effectiveness of the
This keeps the functionality of the Black Box fixed during apresented methods we implemented a model checker that is
entire run of the system which starts with a certain inittatss capable of performing symbolic model checking with flexible
specifying a constant a53|gnmentZo modeling of unknowns and exact symbolic model checking.

SinceZ represent the complete truth table of the Black BoXhe model checker is based on the BDD package CUDD 2.41
3, thus its whole functionality, there is a substltuuonﬁ)fso [27] and uses ‘Lazy Group Sifting’ [28], a reordering tech-
that a property is satisfied in a certain initial sté®, 7) iff nique particularly suited for model checking, and pantigd
there is some asmgnmentioso that the property is Satlsfledtran3|t|on functions [29].
in the corresponding stat@®, 7, Z) of the transformed design  For our experiments we used a class of simple synchronous
(see Fig. 12). Likewise, a property is satlsﬁed(j[?? Z) forall pipelined ALUs (see Fig. 3) with a register file and a
substitutions of? iff it is satisfied in(7° &, Z) for all possible forwarding unit; the circuit is based on the design used |n [3
assignments t&. Thus, after a conventmnal symbolic modeThe ALU itself was able to perform the four logic operations
checking (with extended state spa@éz, )) we can reduce AND, OR, XOR and XNOR as well as the three arithmetic
the validity/realizability question to an universal/eeistial operations ADD, SUB and MUL.

VI. EXPERIMENTAL RESULTS

abstraction ofZ: We checked the CTL formula
(VZVf(XSGt(¢)|q~:§o)) =1 < ¢ isvalid (20) 0= AG(“R2 :=Ro B Ry"
(3ZVZ(Xsat(p)lq=qv)) = 1 <= ¢ is realizable  (11) . ((AX)*Ro @ (AX)’R, = (AX)3R2))

Example: We check the circuit shown in Fig. 13a with the
CTL formulay = AF'y,. First, we model the combinational "’
Black Box 8 by the corresponding'=2 truth table variables .
7 = (Zo,Z,) and the select functioft — in this case, just
a multiplexer. The modified circuit is shown in Fig. 13b.
can now compute\ andd:

which corresponds to formula (1) in [3]. It says that whemeve
the instructionR, :=Ro @R, iS given at the inputs, the values

n R, three clock cycles in the future will be identical to the
eexcluswe or ofRg and R, in the state two clock cycles in
the future Ry, R, andR,, are the respective first, second and
third register in the register file).

AT, 2, Z) = (:vo @ qo D (To - Zo + o - Zl)) All experiments were performed on an Dual Opteron 2GHz
8(q.7,Z) = (g0 ® (To - Zo + z0 - Z1)) with 4GB RAM. . .
_ In a first experiment, we inserted an error to the imple-
This eventually leads to mentation of the XOR operatiénso it produced incorrect

- _ _ results. We compared a series of complete pipelined ALUs
Xsar(aryo) (1,7, 2) = (Zo = (w0 = qo) + 0~ (Zo & Z0) with 16 registers in the register file and varying word width
Validity and realizability checking: to two incomplete counterparts: For the first, the adder and
the multiplier were substituted by Black Boxes and for the
second, 12 of the 16 registers in the register file were masked

(3ZVZ (X sat(AFyo) lg=q0)) = 1 <= AFy, is realizable  out as well.

So, ¢ = AFyy is satisfied for at least one, but not all I can be seen thgt pro_perqzyis violated for the complete_
Black Box substitutions (more precisely, a substitutingeitier and incomplete designs, independently of the implementati

causesp to be Sati_Sfied- while all Othe.r poss_ible substitutions sty jowest bit of the output was the result of an OR insteadnoK&R
— constant0 function, constantl function, wire — do not). of the two lowest input bits.

(VZVZ (X sat(AFyo) |g=q0)) = 0 <= AFy, is not valid
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No Black Boxes Adder and multiplier replaced | Adder, multiplier and 12 registerjS
by Z-assigned Black Boxes | replaced byZ-assigned Black Box
word | BDD | memory | BDD BDD | memory | BDD BDD| memory | BDD

width | vars used nodes | time | vars used nodes| time | vars used nodes | time
2| 117| 30049824 201041 8.94] 117{1590144Q 87123 4.54 69| 11954432 26374 0.89
4| 193| 42185477 407339 69.92] 193| 18527040 101504 8.63 97| 1149033 15550 1.00
6| 269| 73541376 1349311 356.69] 269[43841504 115167 15.98] 125] 1440652 22402 1.54
8| 345[238844096 6295929 2780.99 345[4720361f 90543] 13.89] 153] 16477637 20557 1.92
12 timeout 497|4384809¢ 83255] 24.88] 209| 26694944 34044| 4.79
16 timeout 649]48474369 88473 47.13] 265| 35660674 28362 5.36
24 timeout 953|4465472(0 93991 91.29] 377 39617534 35514 12.10
32 timeout 1257| 53717088 216086| 232.21] 489 47448224 34562 17.53
48 timeout 1865| 61818176 143362 493.07] 713| 48465760 46259 45.13
64 timeout 2473] 64708160 167102 3030.55 937| 44284574 46996] 82.35

TABLE |

FAULTY PIPELINED ALU WITH 16 REGISTERS
FALSIFYING THE REALIZABILITY OF ¢ = AG(“Rz2 :=Ro B R1" — ((AX)?Ro & (AX)?R; = (AX)3Rz))
ASSIGNINGZ TO THE BLACK BOX OUTPUTS AND USING TRANSITION RELATIONS

No Black Boxes Adder and multiplier replaced Adder, multiplier and 12 registers
by state spaceZ; Black Boxes |replaced by state spacg; Black Boxeg
word | BDD | memory | BDD BDD | memory | BDD BDD | memory BDD
width| vars| used nodes | time | vars| wused | nodes| time vars used nodes | time

2| 117(1821161q 186320, 8.27| 121|1346937q 49559 2.42 97| 13233664 52030 1.81
4] 193[43028512 427505 57.26] 201|28242464 74669 4.00 153| 13768444 57472 4.96
6] 269(81169184 1386382 395.44] 281| 30440352 60754 8.23 209 2795792(0 70160 4.48

8 timeout 361[4048332¢ 88051| 12.90] 265| 27256864 89714 14.48
12 timeout 521[4783616(0 116303 33.91| 377| 34484677 81459 20.46
16 timeout 681]48264384 135068 59.06] 489 47732924 98150 35.67
24 timeout 1001| 45233157 90236] 83.84] 713| 4577692 113550 66.39
32 timeout 132144077024 149996] 207.71] 937| 44598144 91438 83.03
48 timeout 1961| 65595164 165290 457.32] 1385| 50398274 152227 175.17|
64 timeout 2601]| 66618208 182767| 2283.81] 1833 62326014 160155 287.71

TABLE Il

(CORRECT) PIPELINEDALU WITH 16 REGISTERS
PROVING THE VALIDITY OF ¢ = AG(*Rz :=Ro ®R1" — ((AX)2Ro ® (AX)?R; = (AX)3R2))
USING Z;’ S IN THE STATE SPACE FOR ALLBLACK BOX OUTPUTS AND USING TRANSITION RELATIONS

Outputs of the Black Boxes in Register File modeled with...

...separateZ; variablesin the ...separateZ; variablesnot in the ...one singleZ variablenot in the | ...one singleZ variablenot in the
state space, using transition relatiorfsstate space, using transition relatignstate space, using transition relatignsstate space, using compo&e-

word | BDD | memory BDD BDD | memory | BDD BDD | memory | BDD BDD| memory | BDD
width | vars used nodes time vars used nodes| time | vars used nodes | time | vars| wused | nodes| time
2| 605|578468608 12865544 28945.4q 605| 2441376(Q 50222| 16.80] 101| 19342304 98152 7.64| 67|15842144 85207 3.91
4] 1141] 628070434 1352375( 71524.01] 1141| 35190400 91815 63.51] 133| 31807554 86563| 7.93] 85|16285824 69296| 4.22
6 timeout 1677| 44675614 115583 114.95 165| 35522752 168618 17.43| 103|17461920 66970 2.85
8 timeout 2213| 5485616(Q 135796 192.02] 197 33882944 88538 8.08| 121|342110772102188 7.91
12 timeout 3285| 74282144 138534 184.78] 261| 45648128 151989 26.20| 157|30730624 90524 6.02
16 timeout 4357] 9299888( 155438 257.61] 325| 48306849 128800] 26.52] 193]42073920 96041 8.54
24 timeout 6501] 2160467574 173549 331.88] 453| 48442437 147198 45.62| 265]4026233F 105927 16.83
32 timeout 8645| 219996517 260208 603.10] 581| 50662656 102933 60.61| 337|4831401§ 86354| 15.18
48 timeout 12933] 2492388164 355851 725.76] 837| 45299584 126438 100.89] 481| 48770369 126000 58.69
64 timeout 17221| 56428208( 449412 1277.9¢] 1093| 55079040 112916| 141.08| 625| 46858437 146922 77.88

TABLE Il

(CORRECT) INCOMPLETE PIPELINEDALU WITH 256 REGISTERS PROVING THE VALIDITY OF
¢=AG(*Rz:=Ro & R1"— ((AX)?Ro® (AX)?R1=(AX)3R32)) USING Z;’'S IN THE STATE SPACE FOR THEBLACK BOXES REPLACING THE ADDER
AND THE MULTIPLIER AND DIFFERENT METHODS FOR THEBLACK BOXES IN THE REGISTER FILE

of the adder function, the multiplier function and the réglis preimage computation was used.

replaced by Black Boxes. Since multipliers have a large impact on BDD size and

In Tab. | we give the results for both complete and inconthus on computation time, the model checking procedure for
plete pipelined ALUs with varying word width tested withcomplete pipelined ALUs with multipliers of word width
. For each word width and each pipelined ALU, the tableeyond 8 bit exceeds the time limit (see Tab. I, columns 2-5).
shows the number of BDD variables (‘BDD vars’), the peak For the incomplete pipelined ALUs we observed the re-
memory usage in bytes, the peak number of BDD nodes asult that already our weakest method for approximate model
the overall time in CPU seconds. The timeout was 12.0@Decking (using symbolic0, 1, X )-simulated Black Boxes)
CPU seconds. For this experiment, transition relation daseras able to prove that the propertyis not realizable.
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This can be verified for the incomplete pipelined ALUs Except for the timeouts, we always were able to prove the
without adder and multiplier up to a word width of 64 bitvalidity of ¢ for the incomplete desigrs.
within moderate CPU times and moderate memory consump4n Tab. Ill, columns 2-13, we give the results for the
tion (see Tab. I, columns 6-9). incomplete pipelined ALUs with varying word width tested
The results for the incomplete pipelined ALU, in whichwith ¢, using the different methods for the Black Boxes in the
most of the register file has been replaced by Black Boxesgister file andZ;’s in the state space for the Black Boxes
as well, show a further speedup compared to the compleéplacing the adder and the multiplier. Here, the timeout wa
pipelined ALU (see Tab. I, columns 10-13). This is mainly6.400 seconds (= 1 day).
due to the decrease of needed BDD variables, caused by thi all Black Boxes are modeled witid;’s in the state space,
reduction of manyy; and ¢, variables to a singleZ variable a complex transition relation has to be build between states
and the simplification of the transition function, which doethat contain a considerable numberf variables, including
no longer depend on the input functions of the registers tha variables representing the outputs of registers which were
have been masked out. masked out. On account of this, it is only possible to prove
Thus, we are able to mask out the most complex parts of thalidity for a word width up to 4 bit before exceeding the time
pipelined ALU — the multiplier and the adder — and most olimit (see Tab. Ill, columns 2-5).
the register file without losing any significance of the resul If only the Z;/'s of the Black Boxes masking out the
Note thatall Black Boxes lie in the cone of influence for thismultiplier and the adder are included into the state spaee, w
property. have to deal with a smaller state space and a less complex
In a second experiment we considered the same CTL feransition relation, which leads to the result that we arke ab
mula as above, yet this time we usedarectimplementation to prove validity for all instances within the time limit @e
of the XOR operation. In this case; is satisfied for the columns 6-9 of Tab. Ill).
complete and valid for the incomplete pipelined ALUs. In the case that all Black Box outputs in the register file
In Tab. Il we give the results for both complete andre modeled using one single variable (columns 10-13 of
incomplete pipelined ALUs tested with. Again, the timeout Tab. 1lI), there is a significant decrease in the number of
was 12.000 seconds and preimages were computed usingedessary BDD variables. For this reason, there is a further
relation transition. speedup compared to the last experiment and validity could
In this example, the weaker methods assignih@r non- be proven for all bit widths up to 64 within less than 2.5 CPU
state-spacée;’s to the Black Box outputs were not powerfulminutes.
enough to prove the validity op. However, in all cases the |n a last experiment we evaluated the efficiency of our
formula could be proven to be valid by assigniags to the functional preimage computation based on tt@mposeZ
Black Box outputs and including them into the state spaceoperator as introduced in Sect. IV-D. For that purpose we
The number of BDD variables needed for the incompleteran the third series of experiment-(nodeled Black Boxed
pipelined ALU has increased in comparison to symbdic in the register file and state spage-modeled Black Boxes
model checking (compare the corresponding columns in $ableplacing the adder and the multiplier), now ustamposeZ
| and Il); this is due to the use of separatg variables for preimage computation. The results are given in columns
for each Black Box output instead of one singlevariable. 14-17 of Tab. Ill, whereas the corresponding results for
The effect can be observed best for the pipelined ALU withreimage computation based on transition relations can be
partially masked register file. Although slower than the elodfound in columns 10-13.
checking runs in the first experiment, for which all Black The results clearly show that the functional approach using
Box outputs were modeled witly, model checking of the composeZ performs even better than the relational approach
incomplete pipelined ALUs witl¥;’s in the state space clearlyin this case.
outperforms the conventional model checking of the coneplet Taken together, the results show that symbolic model check-
version, for the same reasons as given above. ing for incomplete designs with flexible modeling of unkn@wvn
For a third experiment, we analyzed a pipelined ALU with & able to provide sound and useful results, yet within sfort
larger register file now containing 256 registers. Both tth@est time and with fewer memory consumption compared to sym-
and the multiplier of the pipelined ALU were substituted byolic model checking for complete designs.
Black Boxes, and all but the lowest four registers were maiske
out as well. We again considered the validity @af
First, we used separat&;-variables for all Black Box
outputs, all included into the state space (just as in therskc
experiment before). We then made use of the flexibility of For a first evaluation of our exact symbolic model checking
our method: We reduced the accuracy for the Black Boxesethod that has been presented in Sect. V, we considered a
in the register file by removing the accordidfy’s from the class of arbiters as described in [4]. Given a resource and a
state space, while keeping the ones for the Black Boxsember of clients trying to access the resource, the purpose
replacing the adder and the multiplier. In a third series, a

further reduction of accuracy for the Black Boxes in the 9Whereas rgd_ucing the accuracy for the_ Black Boxes thatceptze adder
. fil hi db deli hei ith and the multiplier (removing corresponding;’s from the state space or
register file was achieved by modeling their outputs wit ﬂT@placing them by the single variabi) would lead to the situation that we

single variableZ. are not able to prove validity ap as already seen in the previous experiment.

B. Exact Symbolic Model Checking for Black Boxes with
Bounded Memory
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of an arbiter is to grant access only to a single client for For the case oB clients we extracted one possible im-
each clock cycle. An arbiter fat clients has: request inputs plementation by the following method: First we identified a
reqq - . . req, _,, Whereaseq; = 1 iff client i requests accessshortest path from thé-terminal to the root in the BDD repre-
to the resource, and acknowledge outputscky . .. ack,_1, Sentingi(XSat(¢3)|q‘:q*0). The corresponding assignment to
whereasack; =1 iff the arbiter acknowledges the request ofhe Z variables can be interpreted as the entries of a function

clients. table for the Black Box, thus giving an implementation.
In [4], three CTL properties are given that an arbiter fovariables with no assignment can be seen as don't-cares in
n clients must satisfy in order to work as expected: the function table. Based on this, we used SIS [30] to obtain
" ‘ ‘ a minimized circuit. Interestingly, the resulting circidven
1= /\0§i<j<n (AGj(aCkl A aCkJ)) holds additional useful properties not required ¢3. Every
on = /\  (AGAF(req; — ack;)) time_ a request is made, at least one of them is asserted.
0<i<n Additionally, all requests are asserted at the latest ofsteps
o8 = /\0<_ (AG(ack; — req;)) in the future (if the request is persistent).
<i<n

The method presented in Sect. V is able to prove or disprove
Property,} essentially says that no two acknowledge outealizability or validity of properties for incomplete dgss
puts are asserted simultaneousty,states that every persisteniynder the assumption that an upper bound on the amount of
request should be eventually acknowledged atfdchecks memory inside the Black Boxes is given. The method is exact
whether no acknowledge is asserted without an accordiggo taking into account that the Black Boxes may have only

request. _ _ _ _ ~ restricted access to information present in the systemciwhi
For an arbiter with: clients, [4] provides an implementationjs reflected by the fact that only a subset of the signals in the
that uses2 - n flip-flops. circuit is defined as the inputs of the Black Box. Whereas the

We now focus on the question whether there is an innethod is able to provide interesting results as shown & thi
plementation using less thah - n flip-flops. For this, we section, BDD sizes in our experiments also indicate that the
consider an arbiter with clients as an incomplete circuit thatexact method will be applicable to benchmarks of moderate
consists only of one Black Box with inputsreqy, ...req,_1, size only. This again gives us a motivation for considering

n outputsacko . ..ack,—1 and a bounded memory of sizeapproximatemethods for solving realizability and validity
m. If exact symbolic model checking for this circuit and thgyuestions.

CTL formula ™ = o} A p5 A 4 states that this problem is
realizable, then there is an implementation of the Black Box
such thaty™ is satisfied.

Considering an arbiter fo clients, the implementation e introduced a method that is able to use different methods
given in [4] has 4 flip-flops. However, our model checker wagr modeling unknowns at the outputs of Black Boxes within
able to prove that for bounded memory size= 1, there is g single model checking run. This allows us to handle less
an implementation of the Black Box satisfying (but there relevant (in terms of the CTL formula) Black Boxes with large
is no memoryless implementation with=0). This result was approximation and thus faster, without necessarily losing
achieved in0.06 seconds with a peak live BDD node counportant information only more exact methods can provide.
of 667. Experimental results using our implementation proved that

For 3 clients, the implementation shown in [4] has 6 flipthe need for computational resources (both memory and time)
flops. Whereas we were able to show thaflip-flop is not could be substantially decreased by masking complex parts
sufficient (o° ‘not realizable’ with 1 flip-flop, shown i0.39  of the design and by using model checking for the resulting
seconds with a peak live BDD node count31f52), we could jncomplete design. The increase of efficiency was obtained
prove that there is a realization with bounded memory size @hjle still providing sound and useful results (even if tHadk
2. The proof was completed withit09.3 minutes with a peak Boxes lie inside the cone of influence for the considered CTL
live BDD node count ofl3556734. formula).

As an interesting side effect, if realizability can be shown \gregver, we presented a concept for exact symbolic model
it is also possible to extract implementations realizing tr}:hecking of incomplete designs containing several Black
property from the result of our model checking run: Havingoyes with bounded memory. This method is based on a
a closer look at the realizability check given by formma_)(l]feduction of the problem to a conventional model checking
of Sect. V (see page 11) one can see that every satisfyiygplem by applying transformations to the incomplete giesi

assignment to th& variables INVZ (X gat(pm)l7=q0) TEPresents a¢ hand.
a Black Box implementation satisfying the property.
In our experiments we obtained the result that for the
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