
AVACS – Automatic Verification and Analysis of Complex Systems

REPORTS
of SFB/TR 14 AVACS

Editors: Board of SFB/TR 14 AVACS

Symbolic Model Checking for Incomplete Designs with Flexible
Modeling of Unknowns

by
Tobias Nopper and Christoph Scholl

AVACS Technical Report No. 31
July 2007

ISSN: 1860-9821

Publisher: Sonderforschungsbereich/Transregio 14 AVACS
(Automatic Verification and Analysis of Complex Systems)

Editors: Bernd Becker, Werner Damm, Martin Fränzle, Ernst-Rüdiger Olderog,
Andreas Podelski, Reinhard Wilhelm

ATRs (AVACS Technical Reports) are freely downloadable fromwww.avacs.org

Copyright c© July 2007 by the author(s)
Author(s) contact: Christoph Scholl (scholl@informatik.uni-freiburg.de).

1

Symbolic Model Checking for Incomplete Designs
with Flexible Modeling of Unknowns1

Tobias Nopper and Christoph Scholl

Abstract— We consider the problem of checking whether an
incomplete design (i.e. a design containing so-called Black Boxes)
can still be extended to a complete design satisfying a given
property or whether the property is satisfied for all possible
extensions.

Motivated by the fact that well-known model checkers like
SMV or VIS produce incorrect results for CTL formulas when
handling unknowns by using the programs’ nondeterministic
signals, we present an approximate, yet sound algorithm to
process incomplete designs. The algorithm is flexible in thesense
that for every Black Box a different method can be chosen. This
permits us to handle less relevant Black Boxes (in terms of the
CTL formula) with larger approximation and thus faster, whe reas
we do not lose important information when the possible effect of
more relevant Black Boxes is modeled by more exact methods.

Additionally, we introduce a concept for exact symbolic model
checking of incomplete designs containing several Black Boxes
with bounded memory.

Finally we give a series of experimental results demonstrating
the effectiveness and feasibility of the methods.

Index Terms— Symbolic model checking, verification, Black
Boxes, incomplete designs, abstraction, approximation, BDDs

I. I NTRODUCTION

DECIDING the question whether a circuit implementa-
tion fulfills its specification is an essential problem in

computer-aided design of VLSI circuits. Growing interest in
universities and industry has led to new results and significant
advances concerning topics like property checking, state space
traversal and combinational equivalence checking.

For proving properties of sequential circuits, Clarke, Emer-
son, and Sistla presented model checking for the temporal
logic CTL [1]. Burch et al. improved the technique by using
symbolic methods based on binary decision diagrams [2] for
both state set representation and state traversal in [3], [4].

In this paper we will consider how to perform model
checking of incompletecircuits, i.e., circuits which contain
unknown parts, combined into so-called Black Boxes. In doing
so, we will address two interesting questions: The question
whether it is still possible to replace the Black Boxes by circuit
implementations, so that a given property is satisfied (‘realiz-
ability’) and the question whether the property is satisfiedfor
any possible replacement (‘validity’).

There are three major benefits symbolic model checking
for incomplete circuits can provide: First, instead of forcing
verification runs to the end of the design process where the
design is completed, it rather allows model checking in early

The authors are with the Department of Computer Science, Albert-
Ludwigs-University Freiburg, D-79110 Freiburg i. Br., Germany, (e-mail:
nopper@informatik.uni-freiburg.de; scholl@informatik.uni-freiburg.de)

stages of design, where parts may not yet be finished, so that
errors can be detected earlier. Second, complex parts of a
design can be replaced by Black Boxes, simplifying the design,
while many properties of the design still can be proven, yet in
shorter time. Third, the location of design errors in circuits not
satisfying a model checking property can be narrowed down by
iteratively masking potentially erroneous parts of the circuit.

Some well-known model checking tools like SMV [4]
(resp. NuSMV [5]), and VIS [6] provide the definition of non-
deterministic signals (see [7], [8], [9]). At first sight, signals
coming from unknown areas can be handled as nondeterminis-
tic signals, but we will show that modeling by nondeterministic
signals is not capable of answering the questions of realiz-
ability (‘is there a replacement of the Black Boxes so that the
overall implementation satisfies a given property?’) or validity
(‘is a given property satisfied for all replacements of the Black
Boxes?’) for arbitrary CTL formulas. This approach is even
not able to provide approximate solutions for realizability or
validity.

Whereas anexact solution to the realizability problem
for incomplete designs with several Black Boxes (potentially
containing an unrestricted amount of memory) is undecidable
in general [12], we will present anapproximatesolution
to symbolic model checking for incomplete designs. Our
algorithm will not give a definite answer in every case, but it
is guaranteed to be sound in the sense that it will never give an
incorrect answer; it provides proofs of validity and disproofs of
realizability. The experimental results given in Sect. VI show
the effectiveness and the feasibility of the approximate method.

Our method is based on symbolic representations of incom-
plete circuits [10] (which will be introduced in this paper
as well). Using these representations we provide different
methods for approximating the sets of states satisfying a given
propertyϕ. One set is an over-approximation of the set of
states satisfying the given CTL formulaϕ for at least one
substitution of the Black Boxes and the second set is an under-
approximation of the set of states satisfying the formula for all
Black Box substitutions. During one run of symbolic model
checking we compute both under-approximations and over-
approximations of the states satisfyingϕ and we use them to
provide approximate yet sound answers for realizability and
validity.

Our approach is able to use different methods for modeling
unknowns at the outputs of different Black Boxes within a
single model checking run. This permits us to handle less

1Parts of the article have been presented at DAC 2001 [10] and FMCAD
2004 [11].

2

relevant Black Boxes (in terms of the CTL formula) with
larger approximation and thus faster, whereas we do not
lose important information when the possible effect of more
relevant Black Boxes is modeled by more exact methods.

We additionally present a concept how to perform exact
symbolic model checking under the bounded memory as-
sumption, i.e. for each of the Black Boxes a fixed upper
bound on the number of internal states is assumed. Under
this bounded memory assumption the method is able to solve
realizability and validity questionsexactly. The algorithm is
based on the extraction of the memory out of the Black Boxes
and (conceptually) on considering all possible choices forthe
Black Box instantiations in parallel by means of symbolic
methods.

Related Work: The work of Huth et al. [13], which in-
troduced Kripke Modal Transition Systems (KMTSs), comes
closest to this approach. Whereas our simplest algorithm can
be modeled by using KMTSs, KMTSs are not able to model
the fact that the Black Box outputs can not take different values
at the same time, while this constraint will be considered by
our method (as will be shown below).

Black Boxes in incomplete designs may be seen as Uninter-
preted Functions (UIFs) in some sense. UIFs have been used
for the verification of pipelined microprocessors [14], where
a validity problem is solved under the assumption that both
specification and implementation contain the same Uninter-
preted Functions. It is important to note that the use of UIFs
has to be limited in this approach: the Uninterpreted Function
values can not be used for anycomputationof data in the given
design — apart from a (conditional) copying of these values,
usage of these values as arguments of other Uninterpreted
Function symbols and checks for equality. Whereas in [14],
[15], [16], [17] a dedicated class of problems for pipelined
microprocessors is solved (which is basically reduced to a
combinational problem using an inductive argument), we will
deal here with arbitrary incomplete sequential circuits and
properties given in the full temporal logic CTL.

A related problem is solved in [18] where a Finite State
Machine (FSM) is given which interacts with one unknown
component (Black Box). In [18] solutions of language equa-
tions are used in order to derive the set of all permissible
sequential behaviors for the Black Box so that the combined
behavior satisfies an external specification. In that work the
specification is not given as a CTL formula, but by another
FSM.

Outline: The paper is structured as follows: After giving
a brief review of symbolic model checking in Sect. II, we
will discuss the results of a method that handles Black Boxes
by using nondeterministic signal definitions as provided by
SMV and VIS, together with the arising problems in Sect. III.
In Sect. IV, we will introduce a new algorithm capable of
performing sound and approximate symbolic model checking
for incomplete circuits. In Sect. V, we will introduce a concept
for an exact algorithm to process incomplete designs in which
a fixed upper bound on the number of internal states is
assumed for each unknown area. Finally, we will give a series
of experimental results demonstrating the effectiveness and
feasibility of the methods in Sect. VI. Section VII concludes

~x

~q
~q ′

~y
λ

δ

Fig. 1. Mealy automaton.

the paper.

II. PRELIMINARIES

A. Symbolic Model Checking for Complete Designs

Before we introduce symbolic model checking for incom-
plete designs we will give a brief review of symbolic model
checking for complete designs [3].

Symbolic model checking is applied to Kripke structures
which may be derived from sequential circuits on the one
hand and to a formula of a temporal logic (in our case CTL
(Computation Tree Logic)) on the other hand.

We assume a (complete) sequential circuit to be given by a
Mealy automaton

M := (B|~q|,B|~x|,B|~y|, δ, λ, ~q 0)

with state setB|~q|, the set of inputsB|~x|, the set of outputs
B
|~y|, transition functionδ : B

|~q|×B
|~x|→B

|~q|, output function
λ : B|~q|× B

|~x|→B
|~y| and initial state~q 0∈B

|~q|. In the following
we will use~x = (x0, . . . , xn−1) (n = |~x|) for vectors of input
variables,~y for vectors of output variables,~q for current state
variables and~q ′ for next state variables. Figure 1 illustrates
such a Mealy automaton.

The states of the corresponding Kripke structure are defined
as a combination of states and inputs ofM . The resulting
Kripke structure forM is given by struct(M) := (S,R,L)
whereasS := B

|~q| × B
|~x|, R ⊆ S × S, L : S → V , whereas

V is the set of atomic propertiesV = {x0, . . . , x|~x|−1} ∪
{y0, . . . , y|~y|−1}, R :=

{(

(~q, ~x), (~q ′, ~x ′)
) ∣

∣ ~q, ~q ′∈B
|~q|, ~x, ~x ′∈

B
|~x|, δ(~q, ~x) = ~q ′

}

and L
(

(~q,~ǫ)
)

:=
{

xi
∣

∣ ǫi = 1
}

∪
{

yi
∣

∣λi(~q,~ǫ) = 1
}

.
As usual we writestruct(M), s |= ϕ if ϕ is a CTL formula

that is satisfied in states = (~q, ~x) ∈ S of struct(M). If it
is clear from the context which Kripke structure is used, we
simply writes |= ϕ instead ofstruct(M), s |= ϕ. |= is defined
as follows:

s |= ϕ; ϕ ∈ V ⇐⇒ ϕ ∈ L(s)

s |= ¬ϕ ⇐⇒ s 6|= ϕ

s |= (ϕ1 ∨ ϕ2) ⇐⇒ s |= ϕ1 or s |= ϕ2

s |= EXϕ ⇐⇒ ∃s′ ∈ S : R(s, s′) ands′ |= ϕ

s |= EGϕ ⇐⇒ there is a path(s0, s1, s2, . . .) with

s = s0 and∀i ≥ 0: (si, si+1) ∈ R andsi |= ϕ

s |= Eϕ1Uϕ2 ⇐⇒ there is a path(s0, s1, s2, . . .) with

s = s0 and∀i ≥ 0: (si, si+1) ∈ R and there is

a j so thatsj |= ϕ2 and∀0 ≤ i < j : si |= ϕ1

3a) Fixed point iteration for EG b) Fixed point iteration for EU�EG(�X) fold := 1;new := �X ;while (old 6= new) fold := new;new := �X � �EX(old);greturn new;g
�EU (�X ; �Y) fold := 0;new := �Y ;while (old 6= new) fold := new;new := �Y + (�X � �EX(old));greturn new;g

Fig. 2. Fixed point iteration algorithms

The remaining CTL operations∧, EF , AX , AU , AG andAF
can be expressed by using¬, ∨, EX, EU andEG [4].

In symbolic model checking, sets of states are represented
by characteristic functions, which are in turn representedby
BDDs. Let Sat(ϕ) be the set of states ofstruct(M) which
satisfy formulaϕ and letχSat(ϕ) be its characteristic function,
thenχSat(ϕ) can be computed recursively based on the char-
acteristic functionχR(~q, ~x, ~q ′) :=

∏|~q|−1
i=0

(

δi(~q, ~x) ≡ q′i
)

of
the transition relationR:

χSat(xi)(~q, ~x) := xi

χSat(yi)(~q, ~x) := λi(~q, ~x)

χSat(¬ϕ)(~q, ~x) := χSat(ϕ)(~q, ~x)

χSat((ϕ1∨ϕ2))(~q, ~x) := χSat(ϕ1)(~q, ~x) + χSat(ϕ2)(~q, ~x)

χSat(EXϕ)(~q, ~x) := χEX(χSat(ϕ))(~q, ~x)

χSat(EGϕ)(~q, ~x) := χEG(χSat(ϕ))(~q, ~x)

χSat(Eϕ1Uϕ2)(~q, ~x) := χEU (χSat(ϕ1), χSat(ϕ2))(~q, ~x)

with

χEX(χX)(~q, ~x) := ∃~q ′∃~x ′
(

χR(~q, ~x, ~q ′) ·
(

χX | ~q←~q ′

~x←~x ′

)

(~q ′, ~x ′)
)

χEG andχEU can be evaluated by the fixed point iteration
algorithms shown in Fig. 2.

A Mealy automaton satisfies a formulaϕ iff ϕ is satisfied
in all the states of the corresponding Kripke structure which
are derived from the initial state~q 0 of M :

M |= ϕ :⇐⇒ ∀~x ∈ B
|~x| : struct(M), (~q 0, ~x) |= ϕ

⇐⇒
(

∀~x(χSat(ϕ)|~q=~q 0)
)

= 1

B. Realizability and Validity:

Given an incomplete design with Black Boxes and a CTL
formulaϕ, the questions considered in the following are:

1) Is there a replacement of the Black Boxes in the incom-
plete design, so that the resulting circuit satisfies a given
CTL formula ϕ? If this is true, then the propertyϕ is
called realizablefor the incomplete design.

2) Is a CTL formulaϕ satisfied for all possible replace-
ments of the Black Boxes? If this is the case, thenϕ is
valid for the incomplete design.

III. M ODEL CHECKING FOR INCOMPLETEDESIGNS USING

NONDETERMINISTIC SIGNALS

Well-known CTL model checkers such as SMV and VIS
provide so-called ‘nondeterministic assignments’ resp. ‘non-
deterministic signals’ to model nondeterminism [7], [8], [9].

Mux Mux
A

Read Ports

D DA

Register
File

Inst. Reg. (Input)

Register File State
(Output)

Reg Reg

ALU

Reg Write
PortD

A

C
on

tr
ol

Fig. 3. Pipelined ALU

At first sight it appears to be advisable using nondeterministic
signals for handling Black Box outputs, since the functionality
of Black Boxes is not known. Using nondeterministic signals
in [7], [8], [9] has the advantage that they may be handled
exactly as primary inputs, leading to a standard CTL model
checking procedure for designs containing nondeterministic
signals. In this section we motivate our approach by the
observation that nondeterministic signals lead to incorrect
results when used for CTL model checking of incomplete
designs. We will show that they even can not be used to obtain
approximate results by analyzing two small examples.

Before doing so, we will report on a larger and more
familiar example showing comparable problems. Interestingly,
incorrect results of SMV (resp. VIS) due to nondeterministic
signals can be observed for the well-known pipelined ALU
circuit from [3] (see Fig. 3). In [3], Burch et al. showed by
symbolic model checking that (among other CTL formulas)
the following formulas are satisfied for the pipelined ALU
(the formulas essentially say that the content of the register
file R two (resp. three) clock cycles in the future is uniquely
determined by the current state of the system):

AG
(

(EX)2R ≡ (AX)2R
)

(1)

AG
(

(EX)3R ≡ (AX)3R
)

(2)

Now we assume that the ALU’s adder has not yet been
implemented and it is replaced by a Black Box. The outputs
of the Black Box are modeled by nondeterministic signals.
In this situation SMV provides the result that formula (2)
is not satisfied.2 However, it is clear that there is at least
one replacement of the Black Box which satisfies the CTL
formula (a replacement by an adder, of course). Moreover,
it is not hard to see, that the formula is even truefor all
possible replacements of the Black Box by any (combinational
or sequential) circuit, so one would expect SMV to provide a
positive answer both for formula (1) and formula (2).

Obviously, the usage of nondeterministic signals leads to
non-exact results. Yet, one might consider that although the
results are not exact, they might be approximate in some
sense. We will disprove this by analyzing two small exemplary
circuits with SMV (similar considerations can be done for VIS
as well).

2Using VIS, the verification already fails for formula (1) — this is due to
a slightly different modeling of automata by Kripke structures in VIS and
SMV.

4

x0

q0 q′
0

y0Z0a0

x0

x1

x2

Z0

q0 q′
0

y0

FF 0 FF 1

a) First counterexample b) Second counterexample

Black

Box

Black

Box

Fig. 4. Counterexamples

Hypothesis 1: ‘A negative result of SMV means that a
property is not valid.’: The circuit from Fig. 4 a) together
with formulaϕ1 = AG(AXy0∨AX¬y0) provides us a coun-
terexample for this hypothesis. Formulaϕ1 checks whether in
all states which are reachable from an initial state the output
of the Black Box is the same for all successor states. If we
substitute the Black Box output by a nondeterministic signal
(modeled in SMV by a new primary input), SMV obviously
provides the result thatϕ1 is not satisfied. Now consider two
finite primary input sequences from an initial state which differ
only in the last element. Since the Black Box input does not
depend on the primary input, but only on the state of the flip-
flop (see Fig. 4 a)), these two primary input sequences produce
the same input sequence at the Black Box input. Thus, the
primary output (which is the same as the Black Box output)
will be the same for both input sequences. This means that
the CTL formulaϕ1 is satisfied for all possible Black Box
substitutions, thus it is valid. So we observe that a negative
result of SMV doesnot mean that a property is not valid.

Hypothesis 2: ‘A negative result of SMV means that a
property is not realizable.’:We consider the circuit shown
in Fig. 4 b) and the CTL formulaϕ2 = AGy0. We assume
that the flip-flop is initialized by 1. If we replace the Black
Box output by a nondeterministic signal (modeled internally
by a new primary input), SMV provides the result thatϕ2 is
not satisfied. However, it is easy to see that the formula is
satisfied if the Black Box is substituted with the constant1

function; so the property is realizable. Thus, a negative result
of SMV doesnot mean that a property is not realizable.

Hypothesis 3: ‘A positive result of SMV means that a
property is valid.’: Again, we consider the example shown
in Fig. 4 b) and the CTL formulaϕ3 = ¬ϕ2 = EF¬y0.
If we substitute the Black Box output by a nondeterministic
signal, SMV provides the result thatϕ3 is satisfied. However,
since propertyϕ3 is the negation of propertyϕ2 which has
been proven to be realizable when considering the second
hypothesis, it is obvious thatϕ3 is not valid. Thus, a positive
result of SMV doesnot mean that a property is valid.

Hypothesis 4: ‘A positive result of SMV means that a
property is realizable.’: Finally, we reconsider the circuit
shown in Fig. 4 a) in combination withϕ4 = ¬ϕ1 =
¬AG(AXy0 ∨ AX¬y0). Again, we assume the Black Box
output to be a nondeterministic signal and we verify the circuit
using SMV, which provides the result thatϕ4 is satisfied.
Howeverϕ4 is not realizable, sinceϕ4 = ¬ϕ1 and ϕ1 has
been proven to be valid when considering the first hypothesis.
Thus, a positive result of SMV doesnot mean that a property
is realizable.

~x

~q ~q ′

~y

Black

Box

λ

δ

Fig. 5. Mealy automaton with Black Box

Conclusion: Using nondeterministic signals for Black Box
outputs is obviously not capable of performing correct model
checking for incomplete designs — the approach is even not
able to provide an approximate algorithm for realizabilityor
validity.3

This motivates our work presented in the next section: We
will define an approximate method for proving validity and for
falsifying realizability of designs containing Black Boxes. The
results are not complete, but they are sound, i.e. dependingon
the formula and the incomplete design the method may fail to
prove validity or falsify realizability, but it will never return
incorrect results.

IV. A N APPROXIMATE SYMBOLIC MODEL CHECKING

METHOD FORINCOMPLETEDESIGNS WITHFLEXIBLE

HANDLING OF UNKNOWNS

A. Flexible Modeling of Black Box Outputs in Symbolic Sim-
ulation

For symbolic CTL model checking of a given design, a
symbolic representation of its output functionλ and of its
transition functionδ is needed first. In order to generalize
CTL model checking toincompletedesigns (see Fig. 5), the
potential effect of the Black Box outputs to the remaining
design needs to be modeled in order to computeλ and δ.
In [10] we used two different methods, modeling Black Box
outputs with differing accuracy: Symbolic(0, 1, X)-simulation
and symbolicZi-simulation. Whereas in [10] all Black Box
outputs in the design were represented with the same method,
we present here a method for flexible modeling of different
Black Box outputs by differing methods. This method will
be applied later on for our approximate model checking
algorithm.

Symbolic (0, 1, X)-simulation is based on the well-known
(0, 1, X)-simulation [19], [20], [21]. Here the valueX rep-
resents unknown values due to the unknown functionality
of the Black Boxes. If some inputs of a gate are set to
X during (0, 1, X)-simulation, the output is equal toX if
and only if there are two different replacements of theX
values at the inputs by 0’s and 1’s, which lead to different
outputs of the gate. Fig. 6 b) shows a (conventional)(0, 1, X)-
simulation for the combinational circuit shown in Fig. 6 a).

3Yet, there are subclasses of CTL, for which VIS and SMV can provide
correct results: ConsideringACTL (typeA temporal operators only, negation
only allowed for atomic propositions), a positive result ofSMV/VIS means
that the property is valid. ConsideringECTL (analogously forE operators),
a negative result of VIS means that the property is not realizable; this is not
true for SMV due to its implicit universal abstraction of theprimary inputs
(including primary inputs resulting from nondeterministic signals) at the end
of the evaluation.

5

Black

Box

Black

Box

Black

Box

x0

x1

y1

y0

?
0

0
0

X
X

X

x0

x1

Z

Z

Z

x1 ·Z

x0

x1

Z1⊕Z1Z1

Z2 x1 ·Z2

a) Incomplete design

c) Symbolic (0, 1, X)-simulation

b) (0, 1, X)-simulation for x0 =x1 =0

d) Symbolic Zi-simulation

=0

Fig. 6. Different methods to analyze an incomplete design

(0, 1, X)-simulation may be seen as a (simple) way to over-
approximate the set of possible behaviors of systems due to
nondeterministic behaviors of their components and in this
sense it is a special case of the theory of nondeterministic
networks introduced in [22].

For symbolic(0, 1, X)-simulation we introduce a new vari-
able Z, which is used to model the unknown valueX of
the Black Box outputs. Now, for each outputgi of the
incomplete design with primary input variablesx1, . . . , xn,
a BDD representation ofgi is obtained by using a slightly
modified version of symbolic simulation [23].gi depends on
variablesx1, . . . , xn andZ and has the following property:

gi|x1=ǫ1...
xn=ǫn

=

1 , if (0,1,X)-simulation with
input (ǫ1, . . . , ǫn) produces1

0 , if (0,1,X)-simulation with
input (ǫ1, . . . , ǫn) produces0

Z, if (0,1,X)-simulation with
input (ǫ1, . . . , ǫn) producesX

(3)

See Fig. 6 c) for an example.
To compute BDDs for the functionsgi by symbolic sim-

ulation the inputs of the circuit are associated with unique
BDD variables as in a conventional symbolic simulation. All
output signals of Black Boxes are associated with the new
variableZ. Now BDDs for the functions computed by the
gates of the circuit are built in topological order treatingthe
Black Box outputs (associated with variableZ) as inputs of
the circuit. The gates of the circuit can be processed in a
manner similar to a conventional symbolic simulation.4 When
we process anand2 (or2) gate, we combine the BDDs for the
two predecessor functions by a BDDAND (OR) operation
as in the conventional symbolic simulation. For aninv gate
we perform aNOT operation on the BDD of the predecessor
function, now followed by acompose operation (see e.g. [2])
which composesZ for Z (written asg|Z←Z for a composition
of Z for Z in g).

It is easy to see that this procedure leads to BDD represen-
tations fulfilling property 3.

Since (0, 1, X)-simulation cannot distinguish between un-
known values at different Black Box outputs, some informa-
tion is lost in symbolic(0, 1, X)-simulation. This problem can
be solved at the cost of additional variables: Instead of using

4Since all types of gates can be expressed using two-inputand2 gates,
two-input or2 gates andinv gates, we can assume w.l.o.g. that the gates
have typesand2, or2 or inv .

Black

Box 2

f

MUX4

Black

Box 1

MUX2

x1

x2

Fig. 7. An exemplary incomplete circuit

the same variableZ for all Black Box outputs, symbolicZi-
simulation introduces a new variableZi for each Black Box
output and performs a (conventional) symbolic simulation.
Fig. 6 d) shows an example for symbolicZi-simulation. (Note
that — in contrast to symbolic(0, 1, X)-simulation in Fig. 6 c)
— the first output can now be proven to be constant0.)

We now construct a flexible representation of incomplete
circuits which allows some Black Box outputs to be repre-
sented as in symbolic(0, 1, X)-simulation and some Black
Box outputs as in symbolicZi-simulation: For each output
of the Black Boxes, which are to be handled as in symbolic
(0, 1, X)-simulation, we use the variableZ to model the
Black Box output, while for each output of the Black Boxes,
which are to be handled by symbolicZi-simulation we use
a newZi variable. The simulation now considers the latter
Black Box outputs as additional inputs and then performs
symbolic(0, 1, X)-simulation (always replacingZ by Z when
processinginv gates).

We obtain BDD representations of the circuit outputsgi
with primary input variablesx1, . . . , xn, (Zi-simulated) Black
Box outputsZ1, . . . , Zm and theZ-variable as inputs:

gi| x1=ǫ1
···

xn=ǫn
Z1=η1
···

Zm=ηm

=

1 , if (0,1,X)-simulation with input
(ǫ1, . . . , ǫn, η1, . . . , ηm) produces1

0 , if (0,1,X)-simulation with input
(ǫ1, . . . , ǫn, η1, . . . , ηm) produces0

Z, if (0,1,X)-simulation with input
(ǫ1, . . . , ǫn, η1, . . . , ηm) producesX

Example: Figure 7 shows an example: If this circuit is
simulated by using symbolic(0, 1, X)-simulation (meaning
thatZ is assigned to the outputs of both Black Box 1 and Black
Box 2), a total number of 3 variables are needed(x1, x2, Z)
and the resulting function for the output isfZ=Z.

If the circuit is simulated by using symbolicZi-simulation
instead (meaning that for each output of Black Box 1 and
Black Box 2 a newZi variable is used), 9 variables are needed
(x1, x2, Z1, . . . , Z7), and the function for the output isfZi

=
Z1x1+Z1 ·

(

x2+¬(Z2Z3Z4+Z2Z3Z5+Z2Z3Z6+Z2Z3Z7)
)

(when variablesZ1, . . . Z7 are assigned top down to the Black
Box outputs appearing in Fig. 7).

When using the flexible method for modeling Black Box
outputs, assigningZ to all outputs of Black Box 2, but
different Zi’s to the outputs of Black Box 1, e.g., we end
up using 6 variables(x1, x2, Z, Z1, Z2, Z3) and obtain the
function fflex = Z1x1 + Z1 · (x2 + Z).

So, the flexible method generates an output function that
is obviously less complicated than the result of symbolicZi-
simulation, yet contains more information than the result of

6

symbolic(0, 1, X)-simulation. To give an example, forx1 =1
andx2 =0, the output can be proven to be1 using the flexible
method, while it is not possible to gain this information from
symbolic(0, 1, X)-simulation.

In general, the flexible modeling is at most as exact as
symbolic Zi-simulation, but at least as exact as symbolic
(0, 1, X)-simulation.

B. Symbolic Model Checking for Incomplete Designs

Basic Principle: Symbolic model checking for complete
designs computes the setSat(ϕ) of all states satisfying a
CTL formulaϕ and then checks whether all initial states are
included in this set. If so, the circuit satisfiesϕ.

The situation becomes more complex if we consider incom-
plete circuits, since for each replacement of the Black Boxes
we may have different state sets satisfyingϕ. In contrast to
conventional model checking we will consider two sets instead
of Sat(ϕ): The first set is calledSatexact

E (ϕ) and it contains all
states, for whichthere isat least one Black Box replacement so
thatϕ is satisfied. To obtainSatexact

E (ϕ) we couldconceptually
consider all possible replacementsR of the Black Boxes,
computeSatR(ϕ) for each such replacement by conventional
model checking and determineSatexact

E (ϕ) as the union of all
these setsSatR(ϕ). The second set is calledSatexact

A (ϕ) and it
contains all states, for whichϕ is satisfied forall Black Box
replacements. Conceptually,Satexact

A (ϕ) could be computed as
an intersection of all setsSatR(ϕ) obtained for all possible
replacementsR of the Black Boxes.

GivenSatexact
E (ϕ) andSatexact

A (ϕ), it is easy to prove validity
and to falsify realizability for the incomplete circuit: Ifall
initial states are included inSatexact

A (ϕ), then all initial states
are included inSatR(ϕ) for each replacementR of the Black
Boxes and thus,ϕ is satisfied for all replacements of the
Black Boxes (“ϕ is valid”). If there is at least one initial
state not belonging toSatexact

E (ϕ), then this initial state is
not included inSatR(ϕ) for all replacementsR of the Black
Boxes and thus, there is no replacement of the Black Boxes
so thatϕ is satisfied for the resulting complete circuit (“ϕ is
not realizable”).

Approximations: For reasons of efficiency we will not
compute exact setsSatexact

E (ϕ) and Satexact
A (ϕ). Instead

we will compute approximationsSatE(ϕ) and SatA(ϕ) of
these sets. To be more precise, we will compute over-
approximationsSatE(ϕ) ⊇ Satexact

E (ϕ) of Satexact
E (ϕ) and

under-approximationsSatA(ϕ)⊆Satexact
A (ϕ) of Satexact

A (ϕ).
Because ofSatE(ϕ) ⊇ Satexact

E (ϕ) ⊇ SatR(ϕ) for arbitrary
replacementsR of the Black Boxes, we can also guarantee
for SatE(ϕ) that ϕ is not realizable if some initial state is
not included inSatE(ϕ). Analogously we can guarantee that
ϕ is valid if all initial states are included inSatA(ϕ) (since
SatA(ϕ)⊆Satexact

A (ϕ)⊆SatR(ϕ)).
Approximations ofSatE(ϕ) and SatA(ϕ) will be com-

puted based on an approximate transition relation and on
approximate output functions for the corresponding Mealy
automatonM . In incomplete designs we have Black Boxes
in the functional block defining the transition functionδ and
the output functionλ (see Fig. 5); the approximations of these

functions are computed using symbolic simulations as defined
in Sect. IV-A.

For this reason there are two approximations of the set of
statesSat(yi) in which the output valueyi of λi is true:
• an under-approximationSatA(yi) contains only states in

which yi is true independently from the replacements of
the Black Boxes and

• an over-approximationSatE(yi) contains at least all
states in whichyi may be true for some replacement of
the Black Boxes.

Likewise, there are two types of transitions for the automaton:
• Transitions which exist independently from the replace-

ment of the Black Boxes, i.e. for all possible replacements
of the Black Boxes (we will call them ‘fixed transitions’)
and

• transitions which may or may not exist in a complete
version of the design — depending on the implementa-
tion for the Black Boxes (we will call them ‘possible
transitions’).

We will see later on in this section that for our model
checking procedure we will need an over-approximation
χRE

(~q, ~x, ~q ′) of χR(~q, ~x, ~q ′). χRE
(~q, ~x, ~q ′) contains at least

all possibletransitions. An under-approximationχRA
(~q, ~x, ~q ′)

containing all fixed transitions could be computed as well,
however it is not needed for our algorithm.5

Based on approximationsχRE
, SatA(yi), andSatE(yi) we

will compute the under-approximationsSatA(ϕ) and over-
approximationsSatE(ϕ) mentioned above for arbitrary CTL
formulasϕ. At first, we will describe how we computeχRE

,
SatA(yi), andSatE(yi):

For an incomplete circuit, let there be a number of Black
Boxes with outputs modeled byZ and some other Black
Boxes with outputs modeled byZi’s. We then apply the
method from Sect. IV-A for computing the transition func-
tions and the output functions. Thus, we introduce new vari-
ablesZ and ~Zl = (Zl,1, Zl,2, . . .). The symbolic simulation
described above now provides symbolic representations of
the output functionsλi(~q, ~x, Z, ~Zl) and transition functions
δj(~q, ~x, Z, ~Zl).

In standard model checking for complete designs, an atomic
property yi is satisfied for a state(~q fix, ~x fix)∈B

|~q|×|~x| if
λi|~q=~q fix ,~x=~x fix = 1. Moreover, standard model checking pro-
cesses transitions between states based on functionsδj .

Here, a statedefinitelysatisfies an atomic propertyyi, if yi
is satisfied forall possible assignments toZ and ~Zl and a
statepossiblysatisfies an atomic propertyyi, if yi is satisfied
for at least onepossible assignment toZ and ~Zl. Thus, if
λi|~q=~q fix ,~x=~x fix = 1 for some state(~q fix, ~x fix) ∈ B

|~q|×|~x|, then
we know thatλi is 1 in this state independently from the
replacement of the Black Boxes, so we include(~q fix, ~xfix)
into SatA(yi) andSatE(yi).6 If λi|~q=~q fix, ~x=~x fix = 0, then the
outputλi is 0 in this state independently from the replacement

5The algorithm presented here improves on a version from [11], in which
an under-approximationχRA

was used.
6Remember thatSatA(yi) is an under-approximation of the set of states

satisfying yi for all Black Box substitutions andSatE(yi) is an over-
approximation of the set of states satisfyingyi for at least one Black Box
substitution.

7

of the Black Boxes, so we include(~q fix, ~xfix) neither into
SatA(yi) nor into SatE(yi). In any other case, the value of
yi is unknown in this state and thus we include(~q fix, ~xfix) into
SatE(yi), but not intoSatA(yi). This leads to the following
symbolic representations:

χSatA(yi)(~q, ~x) := ∀Z∀~Zl
(

λi(~q, ~x, Z, ~Zl)
)

, (4)

χSatE(yi)(~q, ~x) := ∃Z∃~Zl
(

λi(~q, ~x, Z, ~Zl)
)

. (5)

Likewise, there is apossibletransition between two states
if the transition exists forat least onepossible assignment to
Z and ~Zl. This leads to

χRE
(~q, ~x, ~q ′) :=

(

∏|~q|−1

i=0
∃Z∃~Zl

(

δi(~q, ~x, Z, ~Zl) ≡ q′i
)

)

.

(6)
An additional improvement of approximations can be obtained
by a slightly modified definition ofχRE

:

χRE
(~q, ~x, ~q ′) := ∃~Zl

(

∏|~q|−1

i=0
∃Z

(

δi(~q, ~x, Z, ~Zl) ≡ q′i
)

)

.

(7)
(Due to the different meaning of variables~Zl and variable

Z (representing unknownsX) it is easy to see that the order
of

∏

and∃Z can not be interchanged in equation (7).)
Based onχRE

, SatA(yi) and SatE(yi), it is possible
to define rules how arbitrary CTL formulas can be recur-
sively evaluated. We show here how to evaluateSatA(EXψ),
SatE(EXψ), SatA(¬ψ), SatE(¬ψ), SatA(ψ1 ∨ ψ2), and
SatE(ψ1 ∨ ψ2):

For each state(~q, ~x), χRE
(~q, ~x, ~q ′) gives us the set of~q ′

values the possible successors can have. Each of these different
~q ′values represents asetS~q ′ := {(~q ′, ~x ′)|~x ′∈ B

|~x|} of possible
successor states sharing this~q ′ value (yet with arbitrary value
of ~x ′). So, if for a state(~q, ~x) one of the states in one of
these possible successor setsS~q ′ possibly satisfiesψ (i.e. is
in SatE(ψ)), the current state possibly satisfiesEXψ and is
thus included inSatE(EXψ):

χSatE(EXψ)(~q, ~x) :=

∃~q ′
(

χRE
(~q, ~x, ~q ′) · ∃~x ′

(

χSatE(ψ)| ~q←~q ′

~x←~x ′

)

(~q ′, ~x ′)
)

On the other hand, if in each setS~q ′ of possible successors
of (~q, ~x) there is at least one state that definitely satisfiesψ

(i.e. is in SatA(ψ)), then for each Black Box implementation
at least one successor of state(~q, ~x) satisfiesψ and thus, the
current state(~q, ~x) definitely satisfiesEXψ and is included in
SatA(EXψ):

χSatA(EXψ)(~q, ~x) :=

∀~q ′
(

χRE
(~q, ~x, ~q ′) → ∃~x ′

(

χSatA(ψ)| ~q←~q ′

~x←~x ′

)

(~q ′, ~x ′)
)

Fig. 8 illustrates the sets.
Negation is evaluated as follows: SinceSatE(ψ) is an over-

approximation of all states in whichψ may besatisfied for
some Black Box replacement, we do know that for an arbitrary
state inB

|~q|×B
|~x|\SatE(ψ) there is no Black Box replacement

so that ψ is satisfied in this state or, equivalently,¬ψ is
definitely satisfied in this state for all Black Box replacements.

q′
6
x′

1

Sq′6
q′
6
x′

2

q′
3
x′

1

Sq′3
q′
3
x′

2

q′
4
x′

1

Sq′4
q′
4
x′

2

q′
5
x′

1

Sq′5
q′
5
x′

2

SatE(ψ) (over-appr.) SatA(ψ) (under-appr.)

q
1
x

1
q
2
x

2into SatE(EXψ)
(over-appr.)

into SatA(EXψ)
(under-appr.)

Fig. 8. Evaluation ofSatA(EXψ), SatE(EXψ)

This means that we can useB
|~q|×B

|~x| \SatE(ψ) as an under-
approximationSatA(¬ψ). Since an analogous argument holds
for SatA(ψ) andSatE(¬ψ) we define

χSatA(¬ψ)(~q, ~x) := χSatE(ψ)(~q, ~x) and

χSatE(¬ψ)(~q, ~x) := χSatA(ψ)(~q, ~x).

SatA(ψ1 ∨ ψ2) is build by the union ofSatA(ψ1) and
SatA(ψ2), analogously forSatE(ψ1 ∨ ψ2).

Finally, ϕ = EGψ and ϕ = Eψ1Uψ2 can be evaluated
by their standard fixed point iterations (see Fig. 2) based on
the evaluation ofEX defined above (two separate fixed point
iterations forSatA andSatE). We do not need to define more
CTL operations, since other CTL operations can be expressed
using the operations discussed so far.

Finally, the result of the recursive computation can be
evaluated as follows:7

(

∀~x(χSatA(ϕ)|~q=~q 0)
)

= 1 =⇒ ϕ is valid
(

∃~x(χSatE(ϕ)|~q=~q 0)
)

= 1 =⇒ ϕ is not realizable

C. IncludingZi-Variables into the State Space

A further improvement on the accuracy of the two approxi-
mated sets considered above can be obtained by includingZi-
variables assigned to Black Box outputs into the state space.

As a motivation for this, consider the simple CTL formula
EF (y ∧ ¬y) for a design in which a Black Box output is
directly connected to the primary outputy. In every state(~q, ~x)
both y and¬y arepossiblysatisfied (depending on the Black
Box implementation), but they are notdefinitely satisfied.
Thus, the method given in the last section computes the result
that y ∧ ¬y is possibly satisfied in every state(~q, ~x), but not
definitely, and the same result holds forEF (y ∧¬y). For this
reason the method from Section IV-B is neither able to prove
validity nor to falsify realizability for the given incomplete
design and the given formula.

However, it is clear that there will be no point in time
during the computation wherey is simultaneously true and
false. Problems of this kind can be solved if we includeZi-
variables assigned to Black Box outputs into the states of the
Kripke structure. In this way the according Black Box output

7Remember that~q 0 is the initial state of the circuit.

8

valuesZi are constant within each single state and therefore
in our exampley has a fixed value for each state.

Note that it is not always necessary to includeall Zi’s into
the state space; this provides another possibility of flexibly
processing the unknowns at this point, which can be used as
a tradeoff between efficiency and accuracy.

Let ~Zo be theZi-simulated Black Box outputs that are
included into the state space and let~Zl be theZi-simulated
Black Box outputs that are not included. Then the values of
~Zo are constant within each single state, while the values of
~Zl are arbitrary as they were before.

Both the output functionλ(~q, ~x, Z, ~Zl, ~Zo) and the transition
function δ(~q, ~x, Z, ~Zl, ~Zo) can be computed by using the
symbolic simulation from Sect. IV-A, whereas for symbolic
simulation it is not necessary to distinguish between~Zl and
~Zo.

We now describe how to compute the sets of states definitely
or possibly satisfying the atomic CTL formulayi:

If λi|~q=~q fix, ~x=~x fix, ~Zo=~Z fix
o

=1 for some state(~q fix, ~x fix, ~Z fix
o) ∈

B
|~q|×|~x|×|~Zo|, then we know thatλi is 1 in this state indepen-

dently from the replacement of the Black Boxes, so we include
(~q fix, ~x fix, ~Z fix

o) into SatA(yi) andSatE(yi).
If λi|~q=~q fix, ~x=~x fix, ~Zo=~Z fix

o
= 0, then the outputλi is 0 in

this state independently from the replacement of the Black
Boxes, so we include(~q fix, ~x fix, ~Z fix

o) neither intoSatA(yi) nor
SatE(yi). In any other case, the value ofyi is unknown in
this state and thus we include(~q fix, ~x fix, ~Z fix

o) into SatE(yi),
but not intoSatA(yi).

Based on this, the set of states definitely satisfying the
atomic propertyyi can now be computed as follows:

χSatA(yi)(~q, ~x,
~Zo) := ∀Z∀~Zl

(

λi(~q, ~x, Z, ~Zl, ~Zo)
)

χSatE(yi)(~q, ~x,
~Zo) := ∃Z∃~Zl

(

λi(~q, ~x, Z, ~Zl, ~Zo)
)

.

Analogously, we define the characteristic function of possi-
ble transitions:

χRE
(~q, ~x, ~Zo, ~q

′) :=
(

|~q|−1
∏

i=0

∃Z∃~Zl
(

δi(~q, ~x, Z, ~Zl, ~Zo) ≡ q′i
)

)

As for formulas (6) and (7), an additional improvement of
approximations can be obtained by

χRE
(~q, ~x, ~Zo, ~q

′) :=
(

∃~Zl

|~q|−1
∏

i=0

∃Z
(

δi(~q, ~x, Z, ~Zl, ~Zo) ≡ q′i
)

)

.

Based onχRE
, we defineSatA(EXψ) andSatE(EXψ) as

follows:
χRE

(~q, ~x, ~Zo, ~q
′) gives us the~q ′values of possible successors

of a state(~q, ~x, ~Zo). Now each of these different~q ′ values
represents a setS~q ′ := {(~q ′, ~x ′, ~Z ′o) | ~x

′ ∈ B
|~x|, ~Z ′o ∈

B
| ~Zo|} possible successor states sharing this~q ′ value. For

SatE(EXψ), we include all states(~q, ~x, ~Zo), for which there
exists a possible successor setS~q ′ in which there is a~x ′, so
that for at least one Black Box output value~Z ′o: (~q ′, ~x ′, ~Z ′o)
possibly satisfiesψ, i.e.

χSatE(EXψ)(~q, ~x, ~Zo) :=

∃~q ′
(

χRE
(~q, ~x, ~Zo, ~q

′)· ∃~x ′∃~Z ′o
(

χSatE(ψ)| ~q←~q ′

~x←~x ′
~Zo←~Z′o

)

(~q ′, ~x ′, ~Z ′o)
)

.

δ ∃~xχX

~x

~q (~q)

Fig. 9. Illustration for the functional preimage computation for complete
designs.

Similarly, for SatA(EXψ), we include all states(~q, ~x, ~Zo), for
which in all possible successor setsS~q ′ there is a~x ′, so that for
all Black Box output values~Z ′o: (~q ′, ~x ′, ~Z ′o) definitely satisfies
ψ, i.e.

χSatA(EXψ)(~q, ~x, ~Zo) :=

∀~q ′
(

χRE
(~q, ~x, ~Zo, ~q

′)→∃~x ′∀~Z ′o
(

χSatA(ψ)| ~q←~q ′

~x←~x ′
~Zo←~Z′o

)

(~q ′, ~x ′, ~Z ′o)
)

.

The computation of all remaining CTL operators¬, EG
andEU is performed as described above. The result of the
recursive computation can be evaluated as follows:

(

∀~x∀~Zo(χSatA(ϕ)|~q=~q 0)
)

= 1 =⇒ ϕ is valid
(

∃~x∀~Zo(χSatE(ϕ)|~q=~q 0)
)

= 1 =⇒ ϕ is not realizable

Obviously, including allZi-variables into the state space
is one extreme case of the method presented in this section.
If we include only a part of theZi-variables into the state
space, then smaller sets of states and transitions have to be
considered, which can lead to a less complex model checking
run without necessarily losing the accuracy needed for solving
the problem.

D. Functional Preimage Computation

For complete designs, there are two methods to compute
the preimage of a given set of states, as it is needed for the
computation ofSat(EXψ) [24], [25]:

So far, we used therelational approach in our approximate
model checking approach for incomplete designs. For com-
plete designs this approach builds the characteristic function
of the transition relation

χR(~q, ~x, ~q ′) :=
∏|~q|−1

i=0

(

δi(~q, ~x) ≡ q′i
)

which is then used in the actual preimage computation for a
given set of states (represented byχX in this case):

χEX(χX)(~q, ~x) := ∃~q ′∃~x ′
(

χR(~q, ~x, ~q ′) ·
(

χX | ~q←~q ′

~x←~x ′

)

(~q ′, ~x ′)
)

The functionalapproach uses thecomposeoperator, defined
by f |xi←g := g · f |xi=0 + g · f |xi=1 for f, g : B

n → B and
an input variablexi of f . Based on the compose operator, the
preimage of a set of states given byχX can be computed as
follows:

χEX(χX)(~q, ~x) :=
(

∃~xχX(~q, ~x)
)

|
~q←~δ(~q,~x)

Note that the number of necessary variables can be de-
creased by using compose operations instead of transition
relations, since the~q ′variables are no longer needed. Moreover,
the computation of the transitionrelation is not needed. Due to

9

δ ∃~xχX

~q (~q)
BB

~x

Z

Fig. 10. Illustration for the functional preimage computation for incomplete
designs in which the Black Box outputs are modeled byZ.

this, the functional version of preimage computation is often
more efficient than the relational version [24].

We now look into the question of how to generalize func-
tional preimage computation so that we can use it for model
checking of incomplete designs. In doing so, we (first) confine
ourselves to the case where all Black Box outputs are modeled
with Z.

To prepare the generalization to incomplete circuits, we
first illustrate functional preimage computation for complete
designs by a (straightforward) interpretation of the involved
BDDs as Boolean circuits as shown in Fig. 9: The BDD for
the characteristic function

(

∃~xχX
)

(~q) may be interpreted as
a (multiplexer) circuit for which variablesqi are replaced by
the corresponding transition functionsδi(~q, ~x). The result is
a characteristic function depending on variables(~q, ~x) which
represents the set of states having a successor in the setX

(represented byχX).
For incompletedesigns we have to consider the fact that

δ now depends on the additional variableZ (which models
the unknown valueX). Again, we interpret the BDD for
the characteristic function

(

∃~xχX
)

(~q) as a multiplexer circuit
and replace the inputsqi by the circuit representing the
transition functionδ(~q, ~x, Z) (remember that outputs of the
Black Boxes are replaced by variableZ). Now a symbolic
(0, 1, X)-simulationof the resulting circuit (compare Fig. 10)
produces a functionh with the following property:

h| ~q=ǫ~q
~x=ǫ~x

=

1, if state (ǫ~q, ǫ~x) definitely
has a successor inχX

0, if state (ǫ~q, ǫ~x) definitely
has no successor inχX

Z, if state (ǫ~q, ǫ~x) possibly
has a successor inχX .

However, since we already have BDD representations for
(

∃~xχX
)

(~q) andδ(~q, ~x, Z), we avoid a conversion of the BDDs
into circuits followed by a symbolic(0, 1, X)-simulation, but
we use Fig. 10 only as a conceptual illustration motivating the
definition of a (modified) compose operator on BDDs which
produces the same result. The compose operator needs to be
adjusted to the additional variableZ in order to mimic the
behavior of the symbolic(0, 1, X)-simulation. As a result we
obtain a newcompose-Z operator forf : B

n → B with input
variablesx1, . . . , xn and g : B

n+1 → B with input variables
x1, . . . , xn, Z which is based on the following equation:

f |Zxi←g := g|Z←Z · f |xi=0 + g · f |xi=1 (8)

(Note that we have to replaceZ by Z after negation in
this formula just as in the definition of symbolic(0, 1, X)-
simulation in Sect. IV-A.) Using this compose-Z operator for

the BDD representations
(

∃~xχX
)

(~q) andδ(~q, ~x, Z) we obtain
the same result as if we would perform a symbolic(0, 1, X)-
simulation of the circuit in Fig. 10.

For the special case of the compose-Z operator we can
even improve the accuracy of the simple symbolic(0, 1, X)-
simulation by replacing equation (8) by equation (9):

f |Zxi←g := g|Z←Z · f |xi=0 + g · f |xi=1 + f |xi=0 · f |xi=1 (9)

The last term may seem to be unnecessary at first sight, yet
it is easy to see that for

(

f |xi=0

)

|~x=~ǫ = 1,
(

f |xi=1

)

|~x=~ǫ = 1
and g|~x=~ǫ = Z equation (8) results in

(

f |Zxi←g

)

|~x=~ǫ = Z,
whereas equation (9) results in

(

f |Zxi←g

)

|~x=~ǫ = 1 which is
more exact (contains more accurate information).

Using the compose-Z operator, we can now compute
χSatA(EXψ) andχSatE(EXψ): For χSatA(EXψ), we include the
states for which there is definitely a successor which definitely
satisfiesψ (thus is inχSatA(ψ)):

χSatA(EXψ)(~q, ~x) := ∀Z
(

(

∃~xχSatA(ψ)

)

|Z~q←δ(~q,~x,Z)

)

Analogously, for χSatE(EXψ), we include the states for
which there possibly is a successor possibly satisfyingψ (thus
being inχSatE(ψ)):

χSatE(EXψ)(~q, ~x) := ∃Z
(

(

∃~xχSatE(ψ)

)

|Z~q←δ(~q,~x,Z)

)

Functional preimage computation can be easily extended
to the cases that some Black Box outputs are modeled by
Zi’s and that some of theZi-variables are included into the
state space in analogy to Sections IV-A and IV-C. Details are
omitted here.

Experiments showing advantages of model checking using
the compose-Z operator instead of the relational approach will
be given in Sect. VI.

V. EXACT SYMBOLIC MODEL CHECKING FORBLACK

BOXES WITH BOUNDED MEMORY

In the last section, we introduced a method to approximate
both Satexact

E (ϕ), the set of states, for which there is at
least one Black Box replacement so thatϕ is satisfied, and
Satexact

A (ϕ), the set of states, for whichϕ is satisfied for all
Black Box replacements. Based on these sets, we were able
to provide sound results for falsifying realizability and for
proving validity of incomplete designs. Yet, it is not possible
to provide a result in every scenario due to the approximate
nature of our methods.

In this section we will present a concept for anexactmethod
under the assumption that there is a fixed upper bound on the
number of flip-flops the possible substitutions of the Black
Boxes are allowed to have. Due to this ‘bounded memory
assumption’, the number of different Black Box behaviors is
finite and thus, it is conceptually possible to computeSatR(ϕ)
for each possible replacementR of each Black Box. Then, a
CTL formulaϕ is realizable iff there is a replacementR with
all initial states lying inSatR(ϕ) and a CTL formulaϕ is valid
iff all initial states lie inSatR(ϕ) for all possible replacements
R.

Note that the Black Box replacements we will consider are
not allowed to use any signals other than the ones connected to

10

~qm

Black
~a ~Z ~a ~Z

~q ′

m

⇒Box

Black

Box

Fig. 11. Extracting flip-flops from a Black Box with bounded memory

the inputs of the Black Box. Thus, the exact method we will
present in the following is able to provide an exact answer
for the case that the Black Boxes have noglobal knowledge
of the surrounding circuit. If the Black Boxes would be
allowed to read every signal in the circuit, then we could
also use game-theoretic approaches such as [26] for solving
the problem. However, considering the small example from
Fig. 4 a) together with formulaϕ4 = ¬AG(AXy0 ∨AX¬y0)
(see Sect. III, Hypothesis 4, on page 4) it is easy to see that
ϕ4 is not realizable (no matter how much memory is used for
the Black Box), but the approach from [26] would consider
it as realizable due to its implicit assumption that the Black
Box behavior may depend on all signals of the circuit.

On the other hand, an explicit approach is obviously not
applicable in practice due to the enormous number of possible
Black Box substitutions. For that reason we will use symbolic
methods to implicitly consider all possible choices for the
Black Box substitutions in parallel.

We will first show how Black Boxes with bounded memory
can be transformed into combinational Black Boxes, i.e. Black
Boxes that may only be substituted by combinational circuits.
We will then take a look at a concept forexact symbolic model
checkingfor circuits containing one combinational Black Box.

A. Extracting Flip-Flops from a Black Box with Bounded
Memory

We consider a Black Box with bounded memory, which
means that there is a fixed upper bound on the number of flip-
flops the possible substitutions are allowed to have; letm be
this upper bound.

Given this assumption, we can separate the flip-flops from
the Black Box without changing the behavior: We have to
addm additional outputs~qm′ leading to the flip-flop inputs
and m additional inputs~qm going back to the Black Box
as shown in Fig. 11. The resulting transformed Black Box
is combinational, i.e. the possible substitutions are limited to
combinational circuits.

Since we can reduce Black Boxes with bounded memory to
combinational Black Boxes, it is now sufficient to solve the
model checking problem for combinational Black Boxes.

B. A Concept for Exact Symbolic Model Checking of Incom-
plete Designs with One Combinational Black Box

For the time being, we restrict our view to incomplete
circuits containing exactly one combinational Black Box. We
showed above that Black Boxes with bounded memory can be
reduced to combinational Black Boxes and we will show later
how to extend the methods presented here to multiple Black
Boxes.

~x

~q
~q ′

~y

Black
λ

δ

α ~a ~Z

~x

~q
~q ′

~y
λ

δ

α ~a

~ZΩ
Multiplexer

Tree

Box
β

⇓

~Z

|~a|

2
|~Z|

Black Box

truth table

Fig. 12. Incomplete circuit with one combinational Black Box and the
modified circuit in which the Black Box has been replaced by its truth table
variables and a select function.

Given an incomplete circuit containing exactly one combi-
national Black Box, we can divide the combinational part of
the Mealy automaton into four parts (see upper part of Fig. 12):

Since the Black Box considered in this section is lim-
ited to have only combinational substitutions, we can as-
sume the Black Box to compute an unknown boolean func-
tion β : B

|~a| →B
|~Z|. Furthermore, letα : B

|~q|× B
|~x| → B

|~a|

be the boolean function of the circuit part computing the
Black Box inputs~a and λ : B

|~q|× B
|~x| × B

|~Z|→B
|~y| resp.

δ : B
|~q|× B

|~x| × B
|~Z|→B

|~q ′| be the boolean functions of the
circuit parts computing the primary output resp. the next
state. Whileα just depends on the primary input~x and the
current state~q, δ andλ additionally depend on the Black Box
outputs~Z. All these functions can be computed using symbolic
simulation.

Now we describe how to develop a concept for exact
solutions to realizability and validity. To achieve this, we will
reduce the question whether there exists a boolean functionβ

so thatϕ is satisfied (realizability) and the question whetherϕ

is satisfied for all boolean functionsβ (validity) to existential
resp. universal abstraction in propositional logic.

Every function f : B
n → B

m can be described by its
corresponding truth table withm · 2n entries; likewise, we
can describe the Black Box functionβ : B

|~a| → B
|~Z| by a

truth table with|~Z| · 2|~a| entries.
We consider each entry of this truth table to be a boolean

variableZi,j ∈ B (0 ≤ i < 2|~a|, 0 ≤ j < |~Z|). We use~Z :=
(Z0,0, . . . ,Z0,|~Z|−1, . . . ,Z2|~a|−1,|~Z|−1) for the whole truth ta-

ble. An assignment of constant values to variables~Z fixes
one possible replacement of the (combinational) Black Box.
During symbolic model checking the variables~Z are included
into the state space(~q, ~x, ~Z). The values of~Z do not change
during a single run of the resulting system, and thus, fixing the
values for~Z in an initial state of the system means selecting
a certain replacement of the Black Box by a combinational

11

function.
In order to define both transition function and output

function depending on assignments to variables~Z we have
to introduce a select functionΩ: B

|~a| × B
(|~Z|·2|~a|) → B

|~Z|

that ‘selects’ entries from the Black Box truth table variables
~Z depending on the value of~a (see lower part of Fig. 12).
Formally, Ωi(~a, ~Z) := Za,i, whereasa is the integer value
described by the binary numbera|~a|−1 . . . a1a0. (This select
function may be seen as a multiplexer tree.)

Now the output functionλ and the transition functionδ can
be defined using

λ(~q, ~x, ~Z) := λ
(

~q, ~x,Ω
(

α(~q, ~x), ~Z
))

and δ(~q, ~x, ~Z) := δ
(

~q, ~x,Ω
(

α(~q, ~x), ~Z
))

.

For our exact symbolic model checking, we essentially
perform conventional symbolic model checking (see Sect. II)
based onλ and δ with a state space extended by variables
~Z. Transitions from one state to its successor in this extended
state space(~q, ~x, ~Z) do not change the values assigned to~Z.
This keeps the functionality of the Black Box fixed during an
entire run of the system which starts with a certain initial state
specifying a constant assignment to~Z.

Since~Z represent the complete truth table of the Black Box
β, thus its whole functionality, there is a substitution ofβ so
that a property is satisfied in a certain initial state(~q 0, ~x) iff
there is some assignment to~Z so that the property is satisfied
in the corresponding state(~q 0, ~x, ~Z) of the transformed design
(see Fig. 12). Likewise, a property is satisfied in(~q 0, ~x) for all
substitutions ofβ iff it is satisfied in(~q 0, ~x, ~Z) for all possible
assignments to~Z. Thus, after a conventional symbolic model
checking (with extended state space(~q, ~x, ~Z)) we can reduce
the validity/realizability question to an universal/existential
abstraction of~Z:

(

∀~Z∀~x(χSat(ϕ)|~q=~q 0)
)

= 1 ⇐⇒ ϕ is valid (10)
(

∃~Z∀~x(χSat(ϕ)|~q=~q 0)
)

= 1 ⇐⇒ ϕ is realizable (11)

Example: We check the circuit shown in Fig. 13a with the
CTL formulaϕ = AFy0. First, we model the combinational
Black Boxβ by the corresponding21=2 truth table variables
~Z = (Z0,Z1) and the select functionΩ — in this case, just
a multiplexer. The modified circuit is shown in Fig. 13b. We
can now computeλ andδ:

λ(~q, ~x, ~Z) =
(

x0 ⊕ q0 ⊕ (x0 · Z0 + x0 · Z1)
)

δ(~q, ~x, ~Z) =
(

q0 ⊕ (x0 · Z0 + x0 · Z1)
)

This eventually leads to

χSat(AFy0)(~q, ~x,
~Z) =

(

Z0 ≡ (x0 ≡ q0)
)

+ x0 · (Z0 ⊕ Z1)

Validity and realizability checking:
(

∀~Z∀~x(χSat(AFy0)|~q=~q 0)
)

= 0 ⇐⇒ AFy0 is not valid
(

∃~Z∀~x(χSat(AFy0)|~q=~q 0)
)

= 1 ⇐⇒ AFy0 is realizable

So, ϕ = AFy0 is satisfied for at least one, but not all
Black Box substitutions (more precisely, a substituting inverter
causesϕ to be satisfied, while all other possible substitutions
— constant0 function, constant1 function, wire — do not).

x0

Z0

q0

q′
0

y0

FF 0

Black

Box

x0

Z0

q0

q′
0

y0

FF 0

a0

a0

MUX2

0

1

Z0

Z1

⇒

a) Incomplete design b) Modified design

B
la

c
k

B
o
x

t
ru

t
h

t
a
b
le

Fig. 13. Example for exact symbolic model checking of incomplete designs
with one combinational Black Box.

C. Multiple Black Boxes

It is easy to see that the method presented in this section
can be extended to circuits containing multiple Black Boxes
by separately replacing them by corresponding truth table
variables.

VI. EXPERIMENTAL RESULTS

A. Approximate Model Checking for Incomplete Designs

To demonstrate the feasibility and effectiveness of the
presented methods we implemented a model checker that is
capable of performing symbolic model checking with flexible
modeling of unknowns and exact symbolic model checking.
The model checker is based on the BDD package CUDD 2.41
[27] and uses ‘Lazy Group Sifting’ [28], a reordering tech-
nique particularly suited for model checking, and partitioned
transition functions [29].

For our experiments we used a class of simple synchronous
pipelined ALUs (see Fig. 3) with a register file and a
forwarding unit; the circuit is based on the design used in [3].
The ALU itself was able to perform the four logic operations
AND, OR, XOR and XNOR as well as the three arithmetic
operations ADD, SUB and MUL.

We checked the CTL formula

ϕ = AG
(

“R2 := R0 ⊕ R1”

→
(

(AX)2R0 ⊕ (AX)2R1 ≡ (AX)3R2

)

)

which corresponds to formula (1) in [3]. It says that whenever
the instructionR2 :=R0⊕R1 is given at the inputs, the values
in R2 three clock cycles in the future will be identical to the
exclusive-or ofR0 and R1 in the state two clock cycles in
the future (R0, R1 andR2 are the respective first, second and
third register in the register file).

All experiments were performed on an Dual Opteron 2GHz
with 4GB RAM.

In a first experiment, we inserted an error to the imple-
mentation of the XOR operation8, so it produced incorrect
results. We compared a series of complete pipelined ALUs
with 16 registers in the register file and varying word width
to two incomplete counterparts: For the first, the adder and
the multiplier were substituted by Black Boxes and for the
second, 12 of the 16 registers in the register file were masked
out as well.

It can be seen that propertyϕ is violated for the complete
and incomplete designs, independently of the implementation

8The lowest bit of the output was the result of an OR instead of an XOR
of the two lowest input bits.

12

No Black Boxes Adder and multiplier replaced Adder, multiplier and 12 registers
by Z-assigned Black Boxes replaced byZ-assigned Black Boxes

word BDD memory BDD BDD memory BDD BDD memory BDD
width vars used nodes time vars used nodes time vars used nodes time

2 117 30049824 201041 8.94 117 15901440 87123 4.54 69 11954432 26374 0.89
4 193 42185472 407339 69.92 193 18527040 101504 8.63 97 11490336 15550 1.00
6 269 73541376 1349311 356.69 269 43841504 115167 15.98 125 14406528 22402 1.54
8 345 238844096 6295929 2780.98 345 47203616 90543 13.89 153 16477632 20557 1.92

12 timeout 497 43848096 83255 24.88 209 26694944 34044 4.79
16 timeout 649 48474368 88473 47.13 265 35660672 28362 5.36
24 timeout 953 44654720 93991 91.29 377 39617536 35514 12.10
32 timeout 1257 53717088 216086 232.21 489 47448224 34562 17.53
48 timeout 1865 61818176 143362 493.07 713 48465760 46259 45.13
64 timeout 2473 64708160 167102 3030.55 937 44284576 46996 82.35

TABLE I

FAULTY PIPELINED ALU WITH 16 REGISTERS:

FALSIFYING THE REALIZABILITY OF ϕ = AG
`

“R2 := R0 ⊕ R1” →
`

(AX)2R0 ⊕ (AX)2R1 ≡ (AX)3R2

´´

ASSIGNINGZ TO THE BLACK BOX OUTPUTS AND USING TRANSITION RELATIONS.

No Black Boxes Adder and multiplier replaced Adder, multiplier and 12 registers
by state spaceZi Black Boxes replaced by state spaceZi Black Boxes

word BDD memory BDD BDD memory BDD BDD memory BDD
width vars used nodes time vars used nodes time vars used nodes time

2 117 18211616 186320 8.27 121 13469376 49559 2.42 97 13233664 52030 1.81
4 193 43028512 427505 57.26 201 28242464 74669 4.00 153 13768448 57472 4.96
6 269 81169184 1386382 395.44 281 30440352 60754 8.23 209 27957920 70160 4.48
8 timeout 361 40483328 88051 12.90 265 27256864 89714 14.48

12 timeout 521 47836160 116303 33.91 377 34484672 81459 20.46
16 timeout 681 48264384 135068 59.06 489 47732928 98150 35.67
24 timeout 1001 45233152 90236 83.84 713 45776928 113550 66.39
32 timeout 1321 44077024 149996 207.71 937 44598144 91438 83.03
48 timeout 1961 65595168 165290 457.32 1385 50398272 152227 175.17
64 timeout 2601 66618208 182767 2283.81 1833 62326016 160155 287.71

TABLE II

(CORRECT) PIPELINEDALU WITH 16 REGISTERS:

PROVING THE VALIDITY OF ϕ = AG
`

“R2 := R0 ⊕ R1” →
`

(AX)2R0 ⊕ (AX)2R1 ≡ (AX)3R2

´´

USINGZi ’ S IN THE STATE SPACE FOR ALLBLACK BOX OUTPUTS AND USING TRANSITION RELATIONS.

Outputs of the Black Boxes in Register File modeled with...
...separateZi variablesin the ...separateZi variablesnot in the ...one singleZ variablenot in the ...one singleZ variablenot in the

state space, using transition relationsstate space, using transition relationsstate space, using transition relationsstate space, using compose-Z
word BDD memory BDD BDD memory BDD BDD memory BDD BDD memory BDD
width vars used nodes time vars used nodes time vars used nodes time vars used nodes time

2 605 578468608 12865546 28945.46 605 24413760 50222 16.80 101 19342304 98152 7.64 67 15842144 85207 3.91
4 1141 628070432 13523750 71524.01 1141 35190400 91815 63.51 133 31807552 86563 7.93 85 16285824 69296 4.22
6 timeout 1677 44675616 115583 114.95 165 35522752 168618 17.43 103 17461920 66970 2.85
8 timeout 2213 54856160 135796 192.02 197 33882944 88538 8.08 121 34211072 102188 7.91

12 timeout 3285 74282144 138534 184.78 261 45648128 151989 26.20 157 30730624 90524 6.02
16 timeout 4357 92998880 155438 257.61 325 48306848 128800 26.52 193 42073920 96041 8.54
24 timeout 6501 216046752 173549 331.88 453 48442432 147198 45.62 265 40262336 105927 16.83
32 timeout 8645 219996512 260208 603.10 581 50662656 102933 60.61 337 48314016 86354 15.18
48 timeout 12933 249238816 355851 725.76 837 45299584 126438 100.89 481 48770368 126000 58.69
64 timeout 17221 564282080 449412 1277.96 1093 55079040 112916 141.08 625 46858432 146922 77.88

TABLE III

(CORRECT) INCOMPLETE PIPELINEDALU WITH 256 REGISTERS: PROVING THE VALIDITY OF

ϕ=AG
`

“R2 :=R0 ⊕ R1”→
`

(AX)2R0⊕(AX)2R1≡(AX)3R2

´´

USINGZi ’ S IN THE STATE SPACE FOR THEBLACK BOXES REPLACING THE ADDER

AND THE MULTIPLIER AND DIFFERENT METHODS FOR THEBLACK BOXES IN THE REGISTER FILE.

of the adder function, the multiplier function and the registers
replaced by Black Boxes.

In Tab. I we give the results for both complete and incom-
plete pipelined ALUs with varying word width tested with
ϕ. For each word width and each pipelined ALU, the table
shows the number of BDD variables (‘BDD vars’), the peak
memory usage in bytes, the peak number of BDD nodes and
the overall time in CPU seconds. The timeout was 12.000
CPU seconds. For this experiment, transition relation based

preimage computation was used.

Since multipliers have a large impact on BDD size and
thus on computation time, the model checking procedure for
complete pipelined ALUs with multipliers of word width
beyond 8 bit exceeds the time limit (see Tab. I, columns 2–5).

For the incomplete pipelined ALUs we observed the re-
sult that already our weakest method for approximate model
checking (using symbolic(0, 1, X)-simulated Black Boxes)
was able to prove that the propertyϕ is not realizable.

13

This can be verified for the incomplete pipelined ALUs
without adder and multiplier up to a word width of 64 bit
within moderate CPU times and moderate memory consump-
tion (see Tab. I, columns 6–9).

The results for the incomplete pipelined ALU, in which
most of the register file has been replaced by Black Boxes
as well, show a further speedup compared to the complete
pipelined ALU (see Tab. I, columns 10–13). This is mainly
due to the decrease of needed BDD variables, caused by the
reduction of manyqi and q′i variables to a singleZ variable
and the simplification of the transition function, which does
no longer depend on the input functions of the registers that
have been masked out.

Thus, we are able to mask out the most complex parts of the
pipelined ALU — the multiplier and the adder — and most of
the register file without losing any significance of the result.
Note thatall Black Boxes lie in the cone of influence for this
property.

In a second experiment we considered the same CTL for-
mula as above, yet this time we used acorrect implementation
of the XOR operation. In this case,ϕ is satisfied for the
complete and valid for the incomplete pipelined ALUs.

In Tab. II we give the results for both complete and
incomplete pipelined ALUs tested withϕ. Again, the timeout
was 12.000 seconds and preimages were computed using a
relation transition.

In this example, the weaker methods assigningZ or non-
state-spaceZi’s to the Black Box outputs were not powerful
enough to prove the validity ofϕ. However, in all cases the
formula could be proven to be valid by assigningZi’s to the
Black Box outputs and including them into the state space.

The number of BDD variables needed for the incomplete
pipelined ALU has increased in comparison to symbolicZ-
model checking (compare the corresponding columns in Tables
I and II); this is due to the use of separateZi variables
for each Black Box output instead of one singleZ variable.
The effect can be observed best for the pipelined ALU with
partially masked register file. Although slower than the model
checking runs in the first experiment, for which all Black
Box outputs were modeled withZ, model checking of the
incomplete pipelined ALUs withZi’s in the state space clearly
outperforms the conventional model checking of the complete
version, for the same reasons as given above.

For a third experiment, we analyzed a pipelined ALU with a
larger register file now containing 256 registers. Both the adder
and the multiplier of the pipelined ALU were substituted by
Black Boxes, and all but the lowest four registers were masked
out as well. We again considered the validity ofϕ.

First, we used separateZi-variables for all Black Box
outputs, all included into the state space (just as in the second
experiment before). We then made use of the flexibility of
our method: We reduced the accuracy for the Black Boxes
in the register file by removing the accordingZi’s from the
state space, while keeping the ones for the Black Boxes
replacing the adder and the multiplier. In a third series, a
further reduction of accuracy for the Black Boxes in the
register file was achieved by modeling their outputs with the
single variableZ.

Except for the timeouts, we always were able to prove the
validity of ϕ for the incomplete designs.9

In Tab. III, columns 2–13, we give the results for the
incomplete pipelined ALUs with varying word width tested
with ϕ, using the different methods for the Black Boxes in the
register file andZi’s in the state space for the Black Boxes
replacing the adder and the multiplier. Here, the timeout was
86.400 seconds (= 1 day).

If all Black Boxes are modeled withZi’s in the state space,
a complex transition relation has to be build between states
that contain a considerable number ofZi variables, including
Zi variables representing the outputs of registers which were
masked out. On account of this, it is only possible to prove
validity for a word width up to 4 bit before exceeding the time
limit (see Tab. III, columns 2–5).

If only the Zi’s of the Black Boxes masking out the
multiplier and the adder are included into the state space, we
have to deal with a smaller state space and a less complex
transition relation, which leads to the result that we are able
to prove validity for all instances within the time limit (see
columns 6–9 of Tab. III).

In the case that all Black Box outputs in the register file
are modeled using one singleZ variable (columns 10–13 of
Tab. III), there is a significant decrease in the number of
necessary BDD variables. For this reason, there is a further
speedup compared to the last experiment and validity could
be proven for all bit widths up to 64 within less than 2.5 CPU
minutes.

In a last experiment we evaluated the efficiency of our
functional preimage computation based on thecompose-Z
operator as introduced in Sect. IV-D. For that purpose we
reran the third series of experiments (Z-modeled Black Boxed
in the register file and state spaceZi-modeled Black Boxes
replacing the adder and the multiplier), now usingcompose-Z
for preimage computation. The results are given in columns
14–17 of Tab. III, whereas the corresponding results for
preimage computation based on transition relations can be
found in columns 10–13.

The results clearly show that the functional approach using
compose-Z performs even better than the relational approach
in this case.

Taken together, the results show that symbolic model check-
ing for incomplete designs with flexible modeling of unknowns
is able to provide sound and useful results, yet within shorter
time and with fewer memory consumption compared to sym-
bolic model checking for complete designs.

B. Exact Symbolic Model Checking for Black Boxes with
Bounded Memory

For a first evaluation of our exact symbolic model checking
method that has been presented in Sect. V, we considered a
class of arbiters as described in [4]. Given a resource and a
number of clients trying to access the resource, the purpose

9Whereas reducing the accuracy for the Black Boxes that replace the adder
and the multiplier (removing correspondingZi’s from the state space or
replacing them by the single variableZ) would lead to the situation that we
are not able to prove validity ofϕ as already seen in the previous experiment.

14

of an arbiter is to grant access only to a single client for
each clock cycle. An arbiter forn clients hasn request inputs
req0 . . . reqn−1, whereasreqi = 1 iff client i requests access
to the resource, andn acknowledge outputsack0 . . . ackn−1,
whereasacki = 1 iff the arbiter acknowledges the request of
client i.

In [4], three CTL properties are given that an arbiter for
n clients must satisfy in order to work as expected:

ϕn1 =
∧

0≤i<j<n

(

AG¬(acki ∧ ackj)
)

ϕn2 =
∧

0≤i<n

(

AGAF (reqi → acki)
)

ϕn3 =
∧

0≤i<n

(

AG(acki → reqi)
)

Propertyϕn1 essentially says that no two acknowledge out-
puts are asserted simultaneously,ϕn2 states that every persistent
request should be eventually acknowledged andϕn3 checks
whether no acknowledge is asserted without an according
request.

For an arbiter withn clients, [4] provides an implementation
that uses2 · n flip-flops.

We now focus on the question whether there is an im-
plementation using less than2 · n flip-flops. For this, we
consider an arbiter withn clients as an incomplete circuit that
consists only of one Black Box withn inputsreq0 . . . reqn−1,
n outputs ack0 . . . ackn−1 and a bounded memory of size
m. If exact symbolic model checking for this circuit and the
CTL formulaϕn =ϕn1 ∧ ϕn2 ∧ ϕn3 states that this problem is
realizable, then there is an implementation of the Black Box
such thatϕn is satisfied.

Considering an arbiter for2 clients, the implementation
given in [4] has 4 flip-flops. However, our model checker was
able to prove that for bounded memory sizem = 1, there is
an implementation of the Black Box satisfyingϕ2 (but there
is no memoryless implementation withm=0). This result was
achieved in0.06 seconds with a peak live BDD node count
of 667.

For 3 clients, the implementation shown in [4] has 6 flip-
flops. Whereas we were able to show that1 flip-flop is not
sufficient (ϕ3 ‘not realizable’ with 1 flip-flop, shown in0.39
seconds with a peak live BDD node count of3162), we could
prove that there is a realization with bounded memory size of
2. The proof was completed within409.3 minutes with a peak
live BDD node count of13556734.

As an interesting side effect, if realizability can be shown,
it is also possible to extract implementations realizing the
property from the result of our model checking run: Having
a closer look at the realizability check given by formula (11)
of Sect. V (see page 11) one can see that every satisfying
assignment to the~Z variables in∀~x

(

χSat(ϕn)|~q=~q 0

)

represents
a Black Box implementation satisfying the property.

In our experiments we obtained the result that for the
arbiter with 2 clients, there is a total of16777216 boolean
functions the Black Box can be replaced with, whereof288
substitutions satisfyϕ2. In the case of3 clients,1.1857 · 1023

out of1.4615·1048 possible substitutions satisfyϕ3. The BDD
that represented all substitutions satisfyingϕ3 had a size of
1134840 nodes.

For the case of3 clients we extracted one possible im-
plementation by the following method: First we identified a
shortest path from the1-terminal to the root in the BDD repre-
senting∀~x

(

χSat(ϕ3)|~q=~q 0

)

. The corresponding assignment to
the ~Z variables can be interpreted as the entries of a function
table for the Black Box, thus giving an implementation.
Variables with no assignment can be seen as don’t-cares in
the function table. Based on this, we used SIS [30] to obtain
a minimized circuit. Interestingly, the resulting circuiteven
holds additional useful properties not required byϕ3: Every
time a request is made, at least one of them is asserted.
Additionally, all requests are asserted at the latest of twosteps
in the future (if the request is persistent).

The method presented in Sect. V is able to prove or disprove
realizability or validity of properties for incomplete designs
under the assumption that an upper bound on the amount of
memory inside the Black Boxes is given. The method is exact
also taking into account that the Black Boxes may have only
restricted access to information present in the system, which
is reflected by the fact that only a subset of the signals in the
circuit is defined as the inputs of the Black Box. Whereas the
method is able to provide interesting results as shown in this
section, BDD sizes in our experiments also indicate that the
exact method will be applicable to benchmarks of moderate
size only. This again gives us a motivation for considering
approximatemethods for solving realizability and validity
questions.

VII. C ONCLUSIONS

We introduced a method that is able to use different methods
for modeling unknowns at the outputs of Black Boxes within
a single model checking run. This allows us to handle less
relevant (in terms of the CTL formula) Black Boxes with larger
approximation and thus faster, without necessarily losingim-
portant information only more exact methods can provide.

Experimental results using our implementation proved that
the need for computational resources (both memory and time)
could be substantially decreased by masking complex parts
of the design and by using model checking for the resulting
incomplete design. The increase of efficiency was obtained
while still providing sound and useful results (even if the Black
Boxes lie inside the cone of influence for the considered CTL
formula).

Moreover, we presented a concept for exact symbolic model
checking of incomplete designs containing several Black
Boxes with bounded memory. This method is based on a
reduction of the problem to a conventional model checking
problem by applying transformations to the incomplete design
at hand.

REFERENCES

[1] E. Clarke, E. Emerson, and A. Sistla, “Automatic Verification of Finite–
State Concurrent Systems Using Temporal Logic Specifications,” ACM
Trans. on Programming Languages and Systems, vol. 8, no. 2, pp. 244–
263, 1986.

[2] R. Bryant, “Graph - based algorithms for Boolean function manipula-
tion,” IEEE Trans. on Comp., vol. 35, no. 8, pp. 677–691, 1986.

15

[3] J. Burch, E. Clarke, K. McMillan, D. Dill, and L. Hwang, “Symbolic
Model Checking:1020 States and Beyond,”Information and Computa-
tion, vol. 98(2), pp. 142–170, 1992.

[4] K. McMillan, Symbolic Model Checking. Kluwer Academic Publisher,
1993.

[5] A. Cimatti, E. Clarke, F. Giunchiglia, and M. Roveri, “NUSMV: A
New Symbolic Model Verifier,” inProceedings Eleventh Conference
on Computer-Aided Verification (CAV’99), N. Halbwachs and D. Peled,
Eds. Trento, Italy: Springer Verlag, July 1999, pp. 495–499. [Online].
Available: http://citeseer.ist.psu.edu/cimatti99nusmv.html

[6] The VIS Group, “VIS: A system for verification and synthesis,” in
Computer Aided Verification, ser. LNCS, vol. 1102. Springer Verlag,
1996, pp. 428–432.

[7] K. L. McMillan, The SMV language, Cadence Berkeley Labs, 1999.
[8] K. McMillan, The SMV system - for SMV version 2.5.4, Carnegie Mellon

University, Nov. 2000.
[9] T. Villa, G. Swamy, and T. Shiple,VIS User’s Manual, Electronics

Research Laboratory, University of Colorado at Boulder, 1996.
[10] C. Scholl and B. Becker, “Checking equivalence for partial implemen-

tations,” in Design Automation Conf., 2001, pp. 238–243.
[11] T. Nopper and C. Scholl, “Approximate symbolic model checking for

incomplete designs,” inFormal Methods in Computer-Aided Design, ser.
LNCS, A. J. Hu and A. K. Martin, Eds., vol. 3312. Austin, Texas:
Springer Verlag, Nov 2004, pp. 290–305.

[12] A. Pnueli and R. Rosner, “Distributed systems are hard to synthesize,”
in 31th IEEE Symp. Found. of Comp. Science, 1990, pp. 746–757.

[13] M. Huth, R. Jagadeesan, and D. Schmidt, “Modal transition systems:
A foundation for three-valued program analysis,” inProceedings of
European Symposium on Programming, D. Sands, Ed., vol. 2028.
Springer, April 2001, pp. 155+.

[14] J. Burch and D. Dill, “Automatic verification of microprocessor control,”
in Computer Aided Verification, ser. LNCS, vol. 818. Springer Verlag,
1994, pp. 68–80.

[15] K. Sajid, A. Goel, H. Zhou, A. Aziz, and V. Singhal, “BDD Based
Procedures for a Theory of Equality with Uninterpreted Functions,” in
Int’l. Conf. on CAV, ser. LNCS, vol. 1447. Springer Verlag, 1998, pp.
244–255.

[16] S. Berezin, A. Biere, E. Clarke, and Y. Zhu, “Combining Symbolic
Model Checking with Uninterpreted Functions for Out-Of-Order Pro-
cessor Verification,” inFormal Methods in CAD, 1998, pp. 369–386.

[17] R. Bryant, S. German, and M. Velev, “Processor Verification Using
Efficient Reductions of the Logic of Uninterpreted Functions to Propo-
sitional Logic,” ACM Trans. on Computational Logic, vol. 2, no. 1, pp.
1–41, 2001.

[18] N. Yevtushenko, T. Villa, R. K. Brayton, A. Petrenko, and A. L.
Sangiovanni-Vincentelli, “Solution of parallel languageequations for
logic synthesis,” inInternational Conference on Computer Aided Design.
IEEE Press, 2001, pp. 103–110.

[19] M. Abramovici, M. Breuer, and A. Friedman,Digital Systems Testing
and Testable Design. Computer Science Press, 1990.

[20] C.-J. H. Seger and R. E. Bryant, “Formal verification by symbolic
evaluation of partially-ordered trajectories,”Formal Methods in System
Design: An International Journal, vol. 6, no. 2, pp. 147–189, March
1995.

[21] A. Jain, V. Boppana, R. Mukherjee, J. Jain, M. Fujita, and M. Hsiao,
“Testing, Verification, and Diagnosis in the Presence of Unknowns,” in
VLSI Test Symp., 2000, pp. 263–269.

[22] A. Mishchenko and R. K. Brayton, “A theory of nondeterministic
networks,” IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 25, no. 6, pp. 977– 999, 2006.

[23] R. Bryant, “Symbolic Boolean manipulation with ordered binary deci-
sion diagrams,”ACM, Comp. Surveys, vol. 24, pp. 293–318, 1992.

[24] T. Filkorn, “Functional extension of symbolic model checking,” in CAV
’91: Proceedings of the 3rd International Workshop on Computer Aided
Verification. Springer, 1992, pp. 225–232.

[25] P. Williams, A. Biere, E. Clarke, and A. Gupta, “Combining decision
diagrams and SAT procedures for efficient symbolic model checking,”
in Computer Aided Verification, ser. LNCS, vol. 1855. Springer Verlag,
2000, pp. 124–138.

[26] E. Asarin, O. Maler, and A. Pnueli, “Symbolic controller synthesis for
discrete and timed systems,” inHybrid Systems II. Springer, 1995, pp.
1–20.

[27] F. Somenzi,CUDD: CU Decision Diagram Package Release 2.3.1.
University of Colorado at Boulder, 2001.

[28] H. Higuchi and F. Somenzi, “Lazy group sifting for efficient symbolic
state traversal of FSMs,” inInt’l Conf. on CAD, 1999, pp. 45–49.

[29] R. Hojati, S. Krishnan, and R. Brayton, “Early quantification and
partitioned transition relations,” inICCD, 1996, pp. 12–19.

[30] E. Sentovich, K. Singh, L. Lavagno, C. Moon, R. Murgai, A. Saldanha,
H. Savoj, P. Stephan, R. Brayton, and A. Sangiovanni-Vincentelli, “SIS:
A system for sequential circuit synthesis,” University of Berkeley, Tech.
Rep., 1992.

