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Abstract

Both due to the increasing complexity of VLSI circuits and due to the increasing trend to design
automation, error diagnosis of digital circuits becomes more and more important. In this paper
we present a filter based approach to diagnosis of multiple design errors. Although we present
an exact solution to identifying the error location, experimental results showthe efficiency of
our approach. Our approach is based on the combination of structuralarguments and numerous
methods differing in their accuracy and complexity. We also present a novel search strategy for
error candidates based on recursive partitioning.

1 Introduction
Verification, i.e. the check whether a circuit implementation fulfills its specification, is a crucial task
in VLSI CAD. Growing interest in universities and industry has lead to new results and significant ad-
vances concerning topics like property checking, state space traversal and combinational equivalence
checking [3, 5, 11, 8].
However, developing automated methods for errordetectionis not enough. After obtaining the result
that a circuit implementation does not fulfill its specification, circuit designers will have the task of
identifying the exact error location and of fixing the error by redesigning the erroneous parts of the
design. Due to the complexity of modern designs computer-aided methods for errordiagnosisare
definitely needed. The focus of this paper is to provide automatic methods which help the designer to
identify possible error locations in combinational circuits. Our methods work both for single errors
and for multiple errors.
Previous work concerning error diagnosis can be roughly divided into two classes:

• testing based error diagnosis and

• synthesis based error diagnosis and rectification.

Testing based methods use simulation of test patterns for error location. Test patterns may be random
patterns or generated sets of patterns for some fault model,e.g. the stuck-at-fault model for testing
of combinational circuits. Abadir et al. [1] introduced theuse of complete test sets for the stuck-at
fault model for the detection of design errors, but they did not perform errorlocation. Moreover, they
introduced simple models for design errors (single gate or single wiring errors) which were used by
many authors in the sequel. Testing based error diagnosis methods typically need much CPU time
for test vector generation and/or simulation of a large number of input patterns, suffer from a lack of
precision in locating the error, or make use of restricted error models, for instance single gate errors or
single wiring errors. In many cases they use test patterns not for fault models like the stuck-at model,
but dedicated test patterns for design errors in a simple error model [15, 16, 12, 19, 20, 18]. However,
simple error models like single gate errors seem not to be realistic for large circuits. Moreover, some
approaches such as [19] will even not work for all cases when the replacement of a single gate makes
the implementationfunctionallyequivalent to the specification – structural similarities are needed as



well.1 Recently Boppana et al. [2] proposed the region-based error model, which is more general.
This error model is not restricted to single errors and uses the concept of locality. The region-based
error model in connection with a three-valued logic was usedfor error location in [2], [6], and [14].
However, the methods [2, 6, 14] do not lead to a minimal numberof candidate regions for error
location due to approximate reasoning.
Synthesis based approaches such as [10, 9, 4] are typically exact solutions in the sense that they are
able to restrict the candidate places for error location exactly to those places where the errors can be
corrected. Since they use symbolic methods to compute and represent all possible rectifications for the
error, they usually show a large memory consumption. E.g. [10] is restricted to single gate errors and
has only a very simple concept for searching for the error location: For each possible location there
is a check whether the error can be rectified at this place. At least if a single candidate region for the
error location is given, methods like the theory of permissible functions [21], which were developed
for synthesis and optimization of combinational circuits,can be used for error detection, too. Also
in this case all possible rectifications of the error are represented and there is not any sophisticated
concept for searching for the error location.
In this paper we present a method of diagnosis for multiple design errors which makes the following
contributions:

• In contrast to first approaches to error location using a three-valued logic [2, 6, 14] our method
is exact, i.e., if our method identifies a candidate region for error location, then it is indeed
possible to correct the error by changing the design only in this candidate region.

• We intentionally restrict ourselves to exact solutions of thediagnosistask. We do not compute
a rectification. This leads to a considerable speed-up compared to synthesis methods such as
[10, 9, 4, 21]. Because we do not have to represent all possiblerectifications for the error, we
can make use of optimizations like early quantification [17]when we check whether the error
can be corrected within some candidate region.

• Based on the observation that synthesis based methods for error diagnosis typically make a
considerable effort even for simple instances we use a filterbased approach which applies a
series of more and more exact methods for deciding whether the error is restricted to some
candidate region. When weaker methods like the simulation for a few input vectors already
prove that the errors are not included in or rather are not restricted to a candidate region, we do
not need to use more expensive methods. Experimental results prove that simple methods are
sufficient to exclude a large number of candidate regions. Here algorithms from [13], which
we developed to solve equivalence checks for partial designs, are applied as filters for error
diagnosis.

• Moreover, we make use of structure based arguments. We show that in many cases already
simple arguments based on the circuit structure are enough to exclude candidate regions for
design errors. In addition, structure based arguments are successful in making other filters for
error diagnosis more efficient.

We provide efficient solutions to two essential problems which need to be solved for error location:

• Given a candidate region for the error location it has to be checked efficiently whether the error
can be corrected only by changing this candidate region.

• Efficient search methods have to be developed whichgeneratecandidate regions for error loca-
tion and compute one or all possible error locations using the checks mentioned above.

The paper is structured as follows: In Section 2 basic definitions and notations are given. Section 3
explains how the error location problem is related to the so-calledBlack Box Equivalence Checking

1In [19] this comes into play whenternary input patterns are used and the output of the specification isX for some
input pattern. Then the error is said to be corrected only if the implementation producesX for this input pattern, too.
However, due to theX-propagation rules the fulfillment of this requirement may ask for some structural similarities
between specification and implementation.



Figure 1: Black Box Equivalence Checking problem.

problem and briefly reviews basic algorithms from [13]. In Section 4 we describe how arguments
concerning the circuit structure can be exploited both for deciding Black Box Equivalence Checks and
for simplifying Black Box Equivalence Checks. Section 5 explains how the methods from Sections
3 and 4 are used to perform error diagnosis for the region-based error model. Section 6 introduces a
novel concept for the search for candidate regions based on recursive partitioning. Finally, we present
experimental results in Section 7 and Section 8 summarizes the paper.

2 Preliminaries
Throughout this paper we consider a (combinational) Booleancircuit implementationCI , which
implements a Boolean functionf I : {0, 1}n → {0, 1}m. As usual,f I is regarded as a vector
(f I

1
, . . . , f I

m) of Boolean functionsf I
j : {0, 1}n → {0, 1} (1 ≤ j ≤ m). The specification is given by

a Boolean functionfS : {0, 1}n → {0, 1}m. Error diagnosis comes into play when a circuit verifier
has detected thatf I 6= fS.
Error diagnosis is supposed to find a subseteg := {g1, . . . , gk} of the gates ofCI such that there is a
replacement of the gatesgi by gatesg′

i (1 ≤ i ≤ k) leading to a Boolean circuitCI′ which implements
the Boolean functionf I′ = fS. Since Boolean circuits do not provide a canonical representation for
Boolean functions, the set{g1, . . . , gk} and the replacing gates{g′

1
, . . . , g′

k} are not unique. Thus, our
goal is to find a minimal set{g1, . . . , gk} or our goal is to find all possible choices for{g1, . . . , gk}.
Of course, in an erroneous implementation not all outputs need to be erroneous. So we differentiate
between two sets of output functions: The setEO := {f I

j | f I
j 6= fS

j } of erroneous output functions
and the setCO := {f I

j | f I
j = fS

j } of correct output functions. During our structure based prepro-
cessing (see Section 4) we consider for each outputi the set of gatesTFIi connected (directly or
indirectly) to the gate computing this output.2 If f I

j ∈ EO, thenTFIj is called an‘error cone’ and if
f I

j ∈ CO, thenTFIj is called a‘correct cone’. Of course, cones of different output functions have
not to be disjoint, i.e. some gates may be both in an error coneand in a correct cone.

3 Black Box Equivalence Checking
In this section we describe the relation between error diagnosis and the so-called Black Box Equiva-
lence Checking problem. Moreover we give a brief review of different algorithms which we developed
in [13] for solving the Black Box Equivalence Checking problem for combinational circuits.

3.1 Black Box Equivalence Checking and Error Diagnosis
The Black Box Equivalence Checking problem is used for checkingthe correctness of partial designs
[6, 13]. Figure 1 illustrates a Black Box Equivalence problem with one Black Box: Suppose we have
a complete specificationSPEC and a partial implementationIMPL. The partial implementation
contains a so-called Black Box (which is a part of the circuit that is not finished, not known or
abstracted away). The Black Box Equivalence Checking problem asks if there is a replacement of
the Black Box by some circuit which makes the overall implementation correct, i.e. which makes the

2This set of gates is usually denoted as ‘transitive fan-in’ or as ‘Cone-of-Influence’ (COI) of outputi.



implementationIMPL functionally equivalent to the specificationSPEC.
The relation between error diagnosis and the Black Box Equivalence Checking problem is straight-
forward: If a complete implementation, which was proven to be incorrect, and a candidate region for
the error location are given, then it can be decided using Black Box Equivalence Checking whether
it is possible to correct the error by changing gates only in this candidate region. The gates of the
candidate region are simply combined into a Black Box and Black Box Equivalence Checking is ap-
plied. If Black Box Equivalence Checking leads to a positive result, then we know that it is possible
to find a Black Box implementation which makes the overall implementation correct. This means
that the assumption about the error location was correct. Onthe other hand, if Black Box Equivalence
Checking leads to a negative result, then the error can not be corrected just by changing gates in the
given candidate region, i.e., there has to be an error also outside the Black Box.

3.2 Algorithms for Black Box Equivalence Checking
We briefly review basic algorithms which can be used for an approximate solution to the Black Box
Equivalence Checking problem [13]. The algorithms need different amounts of resources (space and
time) and differ from their accuracy: They range from non-symbolic simulations using a ternary
(0, 1, X)-logic for approximating the solution up to an exact solution to the problem. In this context
an algorithm is called approximate, if it is able to find errors in the partial implementation, but it does
not necessarily detect all errors. However, the algorithm has to be sound in the sense that it never
reports an error, if there is a Black Box implementation which makes the overall implementation
correct. Thus, with respect to error diagnosis an approximate algorithm is only able to definitely
exclude candidate regions for errors (when it produces a negative result for the candidate region as a
Black Box), but it can never guarantee that an implementation can be corrected only by changing gates
from some candidate region, since a positive answer of the algorithm can be due to its approximative
character.
However, it makes sense to apply approximate algorithms allthe same, since they provide an efficient
method to exclude candidate regions.
So approximate algorithms can give two different answers: ‘there has to be an error outside the Black
Box’ and ‘all errorsmaybe inside the Black Box’. Exact algorithms give either the answer ‘there has
to be an error outside the Black Box’ or ‘all errors aredefinitelyinside the Black Box’.
For checking whether design errors are included in some candidate region we use the following series
of algorithms for Black Box Equivalence Checking:
3.2.1 Non-symbolic simulation using a ternary0, 1, X-logic
The first check is based on non-symbolic simulation. First ofall, a set of ‘erroneous input vectors’
from {0, 1}n is identified for which the results at the outputs of implementation and specification are
different. For each candidate region a Black Box is introduced. The outputs of the Black Box are
assigned to the valueX (for any unknown value) and erroneous input vectors are simulated using the
ternary0, 1, X-logic [2]. Whenever we observe a 0 at some output of the implementation and a 1 at
the corresponding output of the specification (or vice versa), we can conclude that this difference will
exist for all Black Box implementations, since it does not depend on theX-values at the Black Box
outputs. Thus, this region is no longer a candidate region for the error correction.
3.2.2 Symbolic simulation based on0, 1, X-logic
Since non-symbolic simulation usually considers only a subset of the erroneous input vectors, a more
exact algorithm can be obtained using symbolic simulation.In [13] a modified symbolic simulation
is defined which computes for each outputj of the implementationCI a BDD representation of the
Boolean functionf̃ I

j (x1, . . . , xn, Z) with

f̃ I
j |x1=ǫ1,...,xn=ǫn

=

{
1 , if non-symbolic(0, 1, X)-simulation with input(ǫ1, . . . , ǫn) produces1
0 , if non-symbolic(0, 1, X)-simulation with input(ǫ1, . . . , ǫn) produces0
Z, if non-symbolic(0, 1, X)-simulation with input(ǫ1, . . . , ǫn) produces X

An error outside the Black Boxes is detected if there is an output 1 ≤ j ≤ m with ∀Z
(
f̃ I

j ⊕ fS
j

)
6= 0.

3.2.3 SymbolicZi-simulation, local check
Again, a more exact (but computationally more expensive) result is obtained, if unknown values at
the Black Box outputs are not modelled by a single variableZ, but by different variablesZi for each



Black Box output. In [13] for each primary outputj of the implementation a function̂f I
j is computed

which depends on the primary input variablesx1, . . . , xn andl variablesZ1, . . . , Zl (supposed there
arel outputs of the Black Boxes). A similar check for errors is performed for each outputj as in the
case of symbolic simulation based on(0, 1, X)-logic: An error outside the Black Boxes is detected if

there is an output1 ≤ j ≤ m with ∀Z1 . . . ∀Zl

(
f̂ I

j ⊕ fS
j

)
6= 0.

3.2.4 SymbolicZi-simulation, output exact check
The next check is based on the same symbolic representation of functionsf̂ I

j as the previous one, but
it takes correlations of correctness conditions for different outputs into account. It detects an error
already when the correctness conditions for different outputs can not be fulfilled by all outputs1 ≤

j ≤ m at the same time. From Section 3.2.3 a local correctness conditioncondj = f̂ I
j ≡ fS

j is derived

for each output and an error outside the Black Boxes is detectediff ∀Z1 . . . ∀Zl

(∨m

j=1
condj

)
6= 0.

3.2.5 SymbolicZi-simulation, input exact check
The last check takes into account that in the general case a Black Box implementation cannot compute
its output functions simply based on the primary inputs. TheBlack Box output functions are computed
based on the input functions provided to the Black Box inputs bythe implementationCI . So the Black
Box outputs cannot compute arbitrary functions in terms of primary inputs and this fact is exploited to
tighten the previous check once more. Assume that there is only one Black Box with input variables
Y1, . . . , Yk and output variablesZ1, . . . , Zl and assume that the relationship between the values at the
primary inputsx1, . . . , xn of CI and the input variables of the Black BoxY1, . . . , Yk is given by the
Boolean functionH(x1, . . . , xn, Y1, . . . , Yk).3 Then the so-called input exact check reports an error
outside the Black Box iff

∀Z1 . . . ∀Zl∃x1 . . . ∃xn

[
H(x1 . . . xn, Y1, . . . , Yk) · (

m∨

j=1

condj(x1, . . . , xn, Z1, . . . , Zl))

]
6= 0.

Note that [13] proves this check to be exact, i.e., if it does not report an error outside the Black Box,
then it is possible to find an implementation of the Black Box which makes the overall implementation
correct. In [13] also the case of multiple Black Boxes is considered.

4 Exploiting Structure Based Arguments
The algorithms described in Section 3.2 provide a series of more and more exact checks for the Black
Box Equivalence Checking problem. In this section we present how to improve this series by simple
arguments on the structure of circuitCI . Structure based arguments are used for a simple check
excluding candidate regions for error location and, moreover, they are used to make the checks from
Section 3.2 more efficient.

4.1 A simple structure based check for the Black Box Equivalence Checking
problem

First of all, we make use of error cones as defined in Section 2.It is straightforward that in some
candidate region for the error location not all errors can beincluded, if its intersection with some
error cone is empty. Of course, this candidate region cannotcorrect the error for the primary output
corresponding to this error cone. So we can restrict ourselves to candidate regions whose intersection
with all error cones is not empty. This simple check is applied already before non-symbolic0, 1, X-
simulation.
If we restrict ourselves to a single error model, i.e., if we assume that there is only one erroneous gate
in the circuitCI , then this check can be tightened: Under this assumption it is a necessary condition
for some candidate region to contain the error that there is at least one gate in this region which is
in the intersection of all error cones. (Due to the single error assumption the replacement of the
erroneous gate has to correct all erroneous outputs.) Moreover, in this case candidate regions can be
made smaller by a restriction to the gates in the intersection of all error cones.

3H(x1, . . . , xn, Y1, . . . , Yk) = 1 if and only if the simulation of the implementationCI with input vector(x1, . . . , xn)
produces the value(Y1, . . . , Ym) at the Black Box inputs.



4.2 Simplifying checks using structure based arguments
Structure based arguments can be used to make the checks fromSection 3.2 more efficient (especially
the output and the input exact check). These checks can be simplified, if the correct cones are removed
from CI (and from the specification). Experimental results (see Section 7) have shown that the sizes
of the BDDs, the number of variables and the complexity of operations (in particular quantifications
with respect to a smaller number of variables) are reduced toa great extend by this simple measure.

5 Diagnosis for Region-Based Model
In this section we describe how we use the checks from Sections 4 and 3.2 in connection with the
region-based error model introduced by Boppana et al. [2]. Inthis error model Boppana et al. make
the assumption of locality of errors. Typically a region consists of a gate in the circuit and all its
surrounding gates. The radius of a region specifies the actual size of the region. E.g. a region of
radius 0 around a gate consists only of the gate itself. A region of radius 1 consists of the gate and
all its immediate successors and predecessors in the circuit. Since each gate can be used as the center
gate of a region, there will be as many regions of a fixed radiusas the number of gates in the circuit.
However, the regions will be overlapping with each other when their radii are greater than 0. The
region-based error model allows multiple errors in the regions, but all errors will be restricted to a
region of a given radius.
According to the region-based error model we start with a number of regions of fixed radius which is
equal to the number of gates in the circuitCI . To cut down the number of candidate regions we do
not use a single algorithm, but we use the series of algorithms given in Sections 4 and 3.2.
Thus, we begin with simple structure based arguments and apply them to all candidate regions to
reduce their number. Then we perform a non-symbolic event-driven (0, 1, X)-simulation. Note that
during the non-symbolic event-driven(0, 1, X)-simulation we pass through all candidate regions for
the simulation of one erroneous input vector before we proceed to the next erroneous input vector. In
this way, the event-driven simulation can reuse parts of thesimulation results for the same erroneous
vector when simulation is applied for different locations of the candidate region. After non-symbolic
(0, 1, X)-simulation we apply the symbolic(0, 1, X)-based simulation to the remaining candidates,
and so on.
Using this filter-based approach we avoid shortcomings of synthesis based methods for error diag-
nosis: We do not spend a lot of run time for instances which arenot really hard. Instances which
can be solved using weaker methods are not presented to the more powerful and more expensive
checks. Moreover, the number of instances presented to the more powerful checks becomes smaller
and smaller. And furthermore, we are able to profit from optimization techniques like early quantifi-
cation [17], since our checks just produce a Boolean output instead of providing the set of all possible
rectifications.

6 Recursive Partitioning Approach
In this section we present a concept for error diagnosis in the case that no error model exists. In
particular, we do not make any assumption about locality of errors as in the previous section. The
concept is based on recursive partitioning and the series ofmore and more exact algorithms given in
Sections 4 and 3.2.
A sketch of the algorithm is given in Figure 2. The algorithm is invoked with a parameter
regions to partition which is a partition of a subset of all gates inCI . At the beginning
regions to partition = {CI}. (HereCI means the set of gates in the erroneous implementation
CI). The result of the procedure is a set of gates inCI which can be replaced to correct the imple-
mentation.
We always maintain two invariants (lines 2–4): Invariant 1 (line 2) says that the errors can be corrected
by reimplementing the region which consists of the union of all sets inregions to partition. At
the beginning, whenregions to partition = {CI} this is certainly true.4 Moreover, we maintain
Invariant 2 (lines 3, 4) which says that we cannot omit any element ofregions to partition as a
wholewithout destroying this property. Of cause, this property holds at the beginning, too, since
omittingCI in regions to partition = {CI} removes all gates of the erroneous implementation.
During the execution of the algorithm we reduce the size of

⋃
region∈regions to partition region step by

4We assume that the implementationCI has the same number of inputs and outputs as the specification.



1 setof gatesfunction recursivepartitioning(setof setsof gatesregions to partition)
2 // Invariant 1: Errors can be corrected inside

⋃
region∈regions to partition region

3 // Invariant 2: There is noregion′ ∈ regions to partition such that the error can be corrected inside
4 //

⋃
region∈regions to partition\{region′} region

5 curr region to partition := largestelementof(regions to partition)
6 if number of gates(curr region to partition) = 1 then return

⋃
region∈regions to partition region fi;

7 regions to partition := regions to partition \ curr region to partition;
8 (part0, part1) := partition(curr region to partition);
9 black box0 := part0 ∪

⋃
region∈regions to partition region;

10 black box1 := part1 ∪
⋃

region∈regions to partition region;

11 (result0, result1) := check(black box0, black box1);
12 if resulti = error definitely inside bb

13 then
14 return recursivepartitioning(regions to partition ∪ {parti});
15 fi
16 if result0 = result1 = error outside bb

17 then
18 Retry partitioning and checking, i.e. goto line 8 until upper limit for retries is reached
19 if upper limit of retries is reached
20 then
21 return recursivepartitioning(regions to partition ∪ {part0, part1});
22 fi
23 fi

Figure 2: Pseudo code forrecursivepartitioning.

step until no further reduction can be accomplished and finally the computed set of erroneous gates
is equal to

⋃
region∈regions to partition region for the resultingregions to partition. At the end of the

algorithm regions to partition consists only of singletons. In order to achieve this goal, we use
the idea of dividing single elementsregion of regions to partition into two parts such that we can
remove one of these two parts ofregion in regions to partition.
We give a sketch the algorithm by describing the execution starting with regions to partition =
{CI}. Then in line 8 the set of gates ofcurr region to partition = CI is divided into two (about
equal sized) setspart0 andpart1.5 After that, we try two candidate sets for error location: We check
the hypothesis that the errors are completely contained inpart0 (black box0 = part0, line 9) and the
hypothesis that the errors are inpart1 (black box1 = part1, line 10). These checks are performed by
the functioncheck which implements exactly the series of checks described in Section 5, now applied
to exactly two candidate regionsblack box0 andblack box1.
Remember that approximate checks can provide exactly two answers: ‘there has to be an error outside
the Black Box’ (resulti = error outside bb) and ‘the errorsmaybe inside the Black Box’ (resulti =
error maybe inside bb). Exact algorithms can provide either the answer ‘there hasto be an error
outside the Black Box’ (resulti = error outside bb) or ‘all errors aredefinitely inside the Black
Box’ (resulti = error definitely inside bb).
If the series of checks provides the resultresulti = error definitely inside bb for at least one
i ∈ {0, 1} (lines 12–15), then we know that the error can be corrected inpart i of the circuit only
and thus we apply recursive partitioning to this part of the circuit to obtain even more information on
the error location (byrecursivepartitioning({parti}) (line 14) in this case). If we obtain the result
‘error outside bb’ for bothparts of the circuit (line 16), then we know that our partitioning in line
8 did not succeed in separating the error locations from the remainder of the circuit. So we retry
partitioning and checking for a number of attempts (line 18).6 If an upper limit for retries has been
reached (line 19), we give up the attempt of separating the error locations by partitioning in line 8
and we have to use recursive partitioning to solve this task.To do so, we invoke the procedure by
recursivepartitioning({part0, part1}) (line 21). During this recursive call, the larger part, saypart0,
e.g., is partitioned into two partspart0,0 andpart0,1 and we check whether the error locations are

5In a prototype implementation of the algorithm we use METIS [7] to perform this partitioning.
6We compute another partition by invoking METIS with different parameters.



Circuit #erroneous #regions struct. non-symb. struct. symb. Zi-sim., Zi-sim., Zi-sim.,
vectors check 1 0, 1,X-sim. check 2 0, 1,X-sim. local out. ex. inp. ex.

C432 90.90 216 130.60 11.60 11.60 11.60 5.90 5.30 1.70
C499 134.30 246 177.70 15.10 15.10 15.10 11.80 10.60 4.30
C880 91.20 409 93.10 7.10 7.10 7.00 6.80 6.80 2.50
C1355 119.60 558 398.00 23.20 23.20 23.00 17.60 17.60 3.90
C1908 298.20 1056 581.30 34.10 34.10 34.10 19.90 18.20 10.10
C2670 120.0 1460 124.90 24.80 24.50 22.30 16.70 16.40 4.40
C3540 265.90 1981 662.60 24.00 23.90 23.10 16.60 15.90 4.30
C5315 254.30 2963 242.60 25.90 25.90 20.10 18.20 17.30 3.50
C6288 60.0 2416 1156.60 246.40 - - - - -
C7552 369.50 4040 752.20 95.90 95.90 94.60 67.80 66.80 6.30

Table 1: Number of candidate regions after application of different filters.

restricted topart0,0 ∪ part1 or topart0,1 ∪ part1, i.e., the gates inpart1 are fixed in the Black Box.
In the general case, the procedure is called byrecursivepartitioning(regions to partition) where
regions to partition is a set of sets of gates. As mentioned above we always maintain invariants
1 and 2. The sets inregions to partition are candidates for further partitioning and we select the
largest set for further partitioning (line 5). The other sets are fixed in the Black Box in both variants
black box0 andblack box1 of Black Boxes (lines 9, 10). Partitioning finishes exactly if all sets in
regions to partition contain only one gate (lines 5, 6). In this case we have achieved our goal, since
Invariant 2 says that we cannot omit any gate without destroying the property that the errors can be cor-
rected by reimplementing the region defined by the union of gates in

⋃
region∈regions to partition region.

In particular for large circuits, the check of line 11 needs to be discussed in more detail. Accord-
ing to Section 5 and the description of procedurerecursivepartitioning given above we apply the
series of more and more exact checks until we obtain the result ‘error outside bb’ for both can-
didates (probably by an approximate algorithm) or until theexact algorithm produces the result
error definitely inside bb for at least one of the two candidates. For instances where anexact solu-
tion is too expensive it seems to be advisable to change the algorithm such that we can also get into line
14 in case ‘resulti = error maybe inside bb’ instead of ‘resulti = error definitely inside bb’,
when we assume that the probability for error correction inside black boxi is high enough. (This
may especially be the case when we obtained the result ‘error outside bb’ for the other Black Box.)
However, we then have to provide a backtracking mechanism for the case that we realize later on
during the algorithm that this assumption was incorrect.
The situation becomes much easier when we can assume single errors: If only one gate is erroneous,
then the result ‘resulti = error outside bb’ for one of the Black Boxes (possibly obtained by some
‘weak’, approximate algorithm) definitely implies ‘result1−i = error definitely inside bb’ for the
other Black Box. However, as already mentioned in Section 1, the single error model does not seem
to be realistic, since we do not expect to observe many instances that contain exactly one erroneous
gate. But note that – in contrast to other approaches such as [19] – our algorithms do not imply a
restriction of the notion of ‘single gates’ to pureand gates,or gates or inverters. If we consider the
single error model not for single gates in the classical sense but for larger functional blocks, then it
can make sense all the same. Applying the search procedure first at the level of functional blocks with
a single error model will restrict the error location to somefunctional block. Later on, the candidate
region for error location may be further narrowed down by dismissing the single error model.

7 Experimental Results
We performed experiments to locate errors both under the assumption of the region-based error model
and using the recursive partitioning approach. First results for the recursive partitioning approach are
promising, but due to lack of space we only present results for the region based error model here.
All experiments were performed underDebian Linux 4.0on an AMD XP 1600+ machine with 1 GB
main memory. We applied the method to all benchmarks from theISCAS85 benchmark set. To inject
errors we selected a random gate, considered a region of radius 1 surrounding this gate and changed
gates of this region with a probability of 70%. The error typewas also selected randomly between
several choices: We added/removed an inverter for an input or output signal of the gate, changed the



Circuit struct. non-symb. BDD struct. symb. Zi-sim., Zi-sim., Zi-sim.,
check 1 0, 1,X-sim. spec. impl. check 2 0, 1,X-sim. local check output exact input exact

C432 < 0.01 0.01 0.18 0.09 < 0.01 0.01 0.63 0.70 0.41
C499 < 0.01 0.02 7.37 7.88 < 0.01 2.01 3.91 37.98 22.75
C880 < 0.01 < 0.01 0.62 0.15 < 0.01 0.05 0.30 16.74 12.03
C1355 < 0.01 0.34 5.21 6.76 < 0.01 0.58 24.29 30.27 35.76
C1908 < 0.01 5.33 1.93 0.52 < 0.01 1.02 2.63 3.48 2.02
C2670 < 0.01 1.75 3.19 1.03 < 0.01 1.06 2.07 1.47 1.20
C3540 < 0.01 4.51 13.09 5.89 < 0.01 13.03 155.14 34.56 24.09
C5315 < 0.01 9.27 1.74 0.53 < 0.01 0.01 0.14 0.65 0.84
C6288 < 0.01 49.56 - - - - - - -
C7552 < 0.01 27.64 8.05 1.50 < 0.01 0.04 10.20 4.77 2.69

Table 2: CPU times in CPU seconds.

type of the gate (and2 to or2 or or2 to and2) or removed an input line from anand or or gate. All
experiments are an average of 10 random error insertions. Weused a limit of 3 CPU hours for each
experiment.
Tables 1 and 2 show the results of the method presented in Section 5 under the assumption of a
region-based error of radius 1. Column 1 of table gives the name of the circuit, column 2 the av-
erage number of erroneous input vectors used for non-symbolic (0, 1, X)-simulation of the various
circuits. Erroneous input vectors were obtained by random simulation. The remaining columns show
the successive decrease of the number of candidate regions for errors. Column 3 gives the number
of different regions of radius 1, respectively. This numberis reduced by a sequence of more and
more exact checks which also increase with respect to their need for computational resources. Col-
umn 4 shows that a large number of candidate regions can already be removed based on very simple
structural arguments (see Section 4). Again, many candidate regions can be removed by a simulation
based method, see Column 5. After simulating the designs witherroneous input vectors the number
of candidate regions is further reduced using symbolic methods. Since simulation can not always
identify all erroneous outputs, the structure based check is repeated after computing BDDs for spec-
ification and implementation, i.e. after obtaining exact knowledge on the erroneous outputs. Since
we potentially identify new outputs as erroneous, the results of the structural check of Section 4 may
improve (see column 6). Column 7 shows the results after symbolic simulation based on(0, 1, X)-
logic. Columns 8, 9, and 10 show the results of the checks basedon Zi-simulation combined with
local check, output exact check and input exact check, respectively. It can be observed that for this
set of experiments – apart from an initial decrease of the number of candidate regions by structural
arguments and by non-symbolic simulation – the most obviousdecrease of the number of candidate
regions occurs during the local check ofZi-simulation and during the final input exact check. Note
that the final input exact check is exact. Thus the errors can indeed be corrected by changes in several
candidate regions (on the average between 1.7 and 10.1 regions for this set of experiments). C6288
was the only circuit where the experiment had to be aborted due to the limit on CPU time.7

Table 2 gives some more information on CPU times. The labelling of columns is similar to Table
1. Columns 4 and 5 show CPU times in seconds for BDD construction of specification and imple-
mentation, respectively. All other columns give CPU times for the different checks already described
for Table 1. The table shows the surprising result that all problems except for the multiplier could
be solved within a few seconds. The longest run time occurredfor C3540 and amounts to about 250
seconds altogether – during this time the number of candidate regions could be reduced to theexact
minimum. Even for the more complex checks for solving the Black Box Equivalence Checking prob-
lem (columns 9, 10) the requirements for run times were moderate and did not substantially exceed
the run times for simpler checks . Most surprisingly, also the last and exact check (input exact check,
see column 10) could be completed within a few seconds for theremaining candidates.
The first reason for this observation lies in the fact that themore powerful checks are used for fewer
candidate regions: They are used only for candidate regionswhich were not already excluded by
weaker checks. We do not use powerful checks for simple problems.

7After structural checks and non-symbolic simulation the BDD construction for the multiplier could not be performed
with available resources.



The second reason lies in the fact that these checks have beenoptimized: Since we restrict ourselves
to error location, we do not need to represent the set of all possible rectifications of the error. Our
checks only produce a Boolean information. This makes it possible to use techniques like early
quantification [17] to optimize the checks. Moreover, the checks could be simplified to a great extend
by using simple structure based arguments as described in Section 4.2.

8 Conclusions and future work
We have presented a filter based approach to error diagnosis.This approach uses a series of more
and more exact filters in order to exclude candidate regions step by step. In this way we do not
waste run time by processing simple instances with powerfulmethods. Moreover, a concept for error
location without any error model using a recursive partitioning approach was presented. Experimental
results under the assumption of the region-based error model were given to prove the efficiency of our
approach.
For the future we plan to make use also of SAT based checks for error diagnosis. To do so, we intend
to improve existing approaches [6] and to develop more exactchecks based on SAT-engines. Another
interesting question is how the methods can be extended to perform error diagnosis for sequential
circuits.
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