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Abstract

Both due to the increasing complexity of VLSI circuits and due to the incigearsind to design
automation, error diagnosis of digital circuits becomes more and moreitapt. In this paper
we present a filter based approach to diagnosis of multiple design erAdtbough we present
an exact solution to identifying the error location, experimental results sti@nefficiency of
our approach. Our approach is based on the combination of strucampiments and numerous
methods differing in their accuracy and complexity. We also present &l search strategy for
error candidates based on recursive partitioning.

1 Introduction

Verification, i.e. the check whether a circuit implemeraatfulfills its specification, is a crucial task
in VLSI CAD. Growing interest in universities and industrysiaad to new results and significant ad-
vances concerning topics like property checking, stateespaversal and combinational equivalence
checking [3, 5, 11, 8].

However, developing automated methods for ed@tections not enough. After obtaining the result
that a circuit implementation does not fulfill its specifioat circuit designers will have the task of
identifying the exact error location and of fixing the errgriedesigning the erroneous parts of the
design. Due to the complexity of modern designs computkgeaimethods for erradiagnosisare
definitely needed. The focus of this paper is to provide aatanmethods which help the designer to
identify possible error locations in combinational citsuiOur methods work both for single errors
and for multiple errors.

Previous work concerning error diagnosis can be roughlgldevinto two classes:

e testing based error diagnosis and
e synthesis based error diagnosis and rectification.

Testing based methods use simulation of test patternsrarlecation. Test patterns may be random
patterns or generated sets of patterns for some fault medglthe stuck-at-fault model for testing
of combinational circuits. Abadir et al. [1] introduced thse of complete test sets for the stuck-at
fault model for the detection of design errors, but they aditlperform errotocation Moreover, they
introduced simple models for design errors (single gaténmies wiring errors) which were used by
many authors in the sequel. Testing based error diagnoghsonetypically need much CPU time
for test vector generation and/or simulation of a large nemndb input patterns, suffer from a lack of
precision in locating the error, or make use of restrictedreanodels, for instance single gate errors or
single wiring errors. In many cases they use test patternfontault models like the stuck-at model,
but dedicated test patterns for design errors in a simpte erodel [15, 16, 12, 19, 20, 18]. However,
simple error models like single gate errors seem not to destiedor large circuits. Moreover, some
approaches such as [19] will even not work for all cases whemdplacement of a single gate makes
the implementatiofunctionallyequivalent to the specification — structural similarities aeeded as



well.! Recently Boppana et al. [2] proposed the region-based errdelnwhich is more general.
This error model is not restricted to single errors and ulsesbncept of locality. The region-based
error model in connection with a three-valued logic was useerror location in [2], [6], and [14].
However, the methods [2, 6, 14] do not lead to a minimal nundfezandidate regions for error
location due to approximate reasoning.

Synthesis based approaches such as [10, 9, 4] are typigalty golutions in the sense that they are
able to restrict the candidate places for error locatiorctyx#o those places where the errors can be
corrected. Since they use symbolic methods to compute @nelsent all possible rectifications for the
error, they usually show a large memory consumption. E@j.iflrestricted to single gate errors and
has only a very simple concept for searching for the erraatioa: For each possible location there
is a check whether the error can be rectified at this placeedstlif a single candidate region for the
error location is given, methods like the theory of perntiesfunctions [21], which were developed
for synthesis and optimization of combinational circudan be used for error detection, too. Also
in this case all possible rectifications of the error areesented and there is not any sophisticated
concept for searching for the error location.

In this paper we present a method of diagnosis for multipggteerrors which makes the following
contributions:

e In contrast to first approaches to error location using aetivadued logic [2, 6, 14] our method
is exact i.e., if our method identifies a candidate region for eramation, then it is indeed
possible to correct the error by changing the design onliiisyxdéandidate region.

¢ We intentionally restrict ourselves to exact solutionsh&fdiagnosistask. We do not compute
a rectification. This leads to a considerable speed-up cmrdda synthesis methods such as
[10, 9, 4, 21]. Because we do not have to represent all posgbtications for the error, we
can make use of optimizations like early quantification [When we check whether the error
can be corrected within some candidate region.

e Based on the observation that synthesis based methods dordeagnosis typically make a
considerable effort even for simple instances we use a bised approach which applies a
series of more and more exact methods for deciding whetleeeritor is restricted to some
candidate region. When weaker methods like the simulatiora fiew input vectors already
prove that the errors are not included in or rather are nttice=d to a candidate region, we do
not need to use more expensive methods. Experimentalsgsole that simple methods are
sufficient to exclude a large number of candidate regionse légorithms from [13], which
we developed to solve equivalence checks for partial desigre applied as filters for error
diagnosis.

e Moreover, we make use of structure based arguments. We stadvintmany cases already
simple arguments based on the circuit structure are enaugikdude candidate regions for
design errors. In addition, structure based argumentsuaeessful in making other filters for
error diagnosis more efficient.

We provide efficient solutions to two essential problemsairieed to be solved for error location:

¢ Given a candidate region for the error location it has to lexked efficiently whether the error
can be corrected only by changing this candidate region.

o Efficient search methods have to be developed whateratecandidate regions for error loca-
tion and compute one or all possible error locations usiegtiecks mentioned above.

The paper is structured as follows: In Section 2 basic defimstand notations are given. Section 3
explains how the error location problem is related to theatedBlack Box Equivalence Checking

1In [19] this comes into play wheternaryinput patterns are used and the output of the specificatioh fisr some
input pattern. Then the error is said to be corrected onlfiéfitnplementation produces for this input pattern, too.
However, due to theX-propagation rules the fulfillment of this requirement mak &r some structural similarities
between specification and implementation.
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Figure 1: Black Box Equivalence Checking problem.

problem and briefly reviews basic algorithms from [13]. Irc@n 4 we describe how arguments
concerning the circuit structure can be exploited both &miding Black Box Equivalence Checks and
for simplifying Black Box Equivalence Checks. Section 5 exptanow the methods from Sections
3 and 4 are used to perform error diagnosis for the regioeébasor model. Section 6 introduces a
novel concept for the search for candidate regions baseeloomsive partitioning. Finally, we present
experimental results in Section 7 and Section 8 summaieepdper.

2 Preliminaries

Throughout this paper we consider a (combinational) Bookiaruit implementationC?, which
implements a Boolean functiofi’ : {0,1}* — {0,1}™. As usual,f! is regarded as a vector
(ff,..., fl) of Boolean functiongf/ : {0,1}" — {0,1} (1 < j < m). The specification is given by
a Boolean functiory® : {0,1}" — {0,1}™. Error diagnosis comes into play when a circuit verifier
has detected that’ # f°.

Error diagnosis is supposed to find a subkget= {gi, ..., gx} of the gates o€/ such that there is a
replacement of the gatgsby gatesy, (1 < i < k) leading to a Boolean circuit’” which implements
the Boolean functiorf’’ = f°. Since Boolean circuits do not provide a canonical represient for
Boolean functions, the s¢y, . . ., g, } and the replacing gatdgy, . . ., g, } are not unique. Thus, our
goal is to find a minimal seflgy, . . ., g, } or our goal is to find all possible choices oy, . . ., g}

Of course, in an erroneous implementation not all outpuésirie be erroneous. So we differentiate
between two sets of output functions: The 8&b := {f/ | f/ # f7'} of erroneous output functions
and the seCO := {f/ | f] = f7'} of correct output functions. During our structure basegpmre
cessing (see Section 4) we consider for each outplé set of gate§’F'I; connected (directly or
indirectly) to the gate computing this outpulf fjf € EO, thenT FI; is called arferror cone’ and if

f] € CO, thenTFI; is called acorrect cone. Of course, cones of different output functions have
not to be disjoint, i.e. some gates may be both in an error aoden a correct cone.

3 Black Box Equivalence Checking

In this section we describe the relation between error agisigrand the so-called Black Box Equiva-
lence Checking problem. Moreover we give a brief review dedént algorithms which we developed
in [13] for solving the Black Box Equivalence Checking problesn ¢ombinational circuits.

3.1 Black Box Equivalence Checking and Error Diagnosis

The Black Box Equivalence Checking problem is used for chectkiageorrectness of partial designs
[6, 13]. Figure 1 illustrates a Black Box Equivalence probleithwne Black Box: Suppose we have
a complete specificatiof PEC and a partial implementatioh)M PL. The partial implementation
contains a so-called Black Box (which is a part of the circuéttls not finished, not known or
abstracted away). The Black Box Equivalence Checking probka #é there is a replacement of
the Black Box by some circuit which makes the overall impleragan correct, i.e. which makes the

2This set of gates is usually denoted as ‘transitive fan-irdo‘Cone-of-Influence’ (COI) of output



implementatior/ M P L functionally equivalent to the specificatichP EC'.

The relation between error diagnosis and the Black Box Eqeimead Checking problem is straight-
forward: If a complete implementation, which was provenearorrect, and a candidate region for
the error location are given, then it can be decided usingkBBaax Equivalence Checking whether
it is possible to correct the error by changing gates onhhia tandidate region. The gates of the
candidate region are simply combined into a Black Box and BlackBguivalence Checking is ap-
plied. If Black Box Equivalence Checking leads to a positivallieshen we know that it is possible
to find a Black Box implementation which makes the overall immatation correct. This means
that the assumption about the error location was correcth®nother hand, if Black Box Equivalence
Checking leads to a negative result, then the error can nobtveated just by changing gates in the
given candidate region, i.e., there has to be an error alsidethe Black Box.

3.2 Algorithms for Black Box Equivalence Checking

We briefly review basic algorithms which can be used for arr@pmate solution to the Black Box
Equivalence Checking problem [13]. The algorithms neecekffit amounts of resources (space and
time) and differ from their accuracy: They range from nombylic simulations using a ternary
(0, 1, X)-logic for approximating the solution up to an exact solntio the problem. In this context
an algorithm is called approximate, if it is able to find esror the partial implementation, but it does
not necessarily detect all errors. However, the algoritta® to be sound in the sense that it never
reports an error, if there is a Black Box implementation whicakes the overall implementation
correct. Thus, with respect to error diagnosis an approd@magyorithm is only able to definitely
exclude candidate regions for errors (when it produces ativegresult for the candidate region as a
Black Box), but it can never guarantee that an implementatorbe corrected only by changing gates
from some candidate region, since a positive answer of thegithm can be due to its approximative
character.

However, it makes sense to apply approximate algorithnmbalbame, since they provide an efficient
method to exclude candidate regions.

So approximate algorithms can give two different answebh&re has to be an error outside the Black
Box’ and ‘all errorsmaybe inside the Black Box’. Exact algorithms give either the agrsthere has

to be an error outside the Black Box’ all errors arelefinitelyinside the Black Box'.

For checking whether design errors are included in someidataregion we use the following series
of algorithms for Black Box Equivalence Checking:

3.2.1 Non-symbolic simulation using a ternanp, 1, X-logic

The first check is based on non-symbolic simulation. Firsalpfa set of ‘erroneous input vectors’
from {0, 1} is identified for which the results at the outputs of impleta¢ion and specification are
different. For each candidate region a Black Box is introducEde outputs of the Black Box are
assigned to the valu¥ (for any unknown value) and erroneous input vectors arelsited using the
ternary0, 1, X-logic [2]. Whenever we observe a 0 at some output of the impteation and a 1 at
the corresponding output of the specification (or vice Jgema can conclude that this difference will
exist for all Black Box implementations, since it does not depen theX -values at the Black Box
outputs. Thus, this region is no longer a candidate regiothierror correction.

3.2.2 Symbolic simulation based oM, 1, X-logic

Since non-symbolic simulation usually considers only asstibf the erroneous input vectors, a more
exact algorithm can be obtained using symbolic simulatlar{13] a modified symbolic simulation
is defined which computes for each outguif the implementatio®! a BDD representation of the

Boolean functionf/ (z1, ..., z,, Z) with

_ 1, if non-symbolic(0, 1, X)-simulation with input(ey, . .., ¢,) produces
f;’|$17€1 _____ et 0, if non-symbolic(0, 1, X')-simulation with input(ey, . . ., ¢,) produces)
Z, if non-symbolic(0, 1, X')-simulation with input(ey, . . ., ¢,) produces X

An error outside the Black Boxes is detected if there is an dutpuj < m withVZ (ff @ ff) # 0.

3.2.3 SymbolicZ;-simulation, local check

Again, a more exact (but computationally more expensivelltas obtained, if unknown values at
the Black Box outputs are not modelled by a single varidghléut by different variableg’; for each
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Black Box output. In [13] for each primary outpyibf the implementation a functiof}[ is computed
which depends on the primary input variables. . ., z,, andl variablesZ, . .., Z, (supposed there
arel outputs of the Black Boxes). A similar check for errors is perfed for each output as in the
case of symbolic simulation based @n 1, X)-logic: An error outside the Black Boxes is detected if

there is an output < j < mwithVZ7,...VZ, (fjf ® ff) £ 0.
3.2.4 SymbolicZ;-simulation, output exact check

The next check is based on the same symbolic representeiﬂionm)ionsﬁ as the previous one, but
it takes correlations of correctness conditions for défdgroutputs into account. It detects an error
already when the correctness conditions for different aistgan not be fulfilled by all outputs <

Jj < m atthe same timeFrom Section 3.2.3 a local correctness conditionl; = fjf = ff is derived
for each output and an error outside the Black Boxes is detdtted; ...V~ (\/;”Z1 condj> £ 0.

3.2.5 SymbolicZ;-simulation, input exact check

The last check takes into account that in the general casecl B implementation cannot compute
its output functions simply based on the primary inputs. Bleek Box output functions are computed
based on the input functions provided to the Black Box inputhbymplementatio'?. So the Black
Box outputs cannot compute arbitrary functions in terms whary inputs and this fact is exploited to
tighten the previous check once more. Assume that therdysooe Black Box with input variables

Y1,..., Y, and output variable&, . . ., Z; and assume that the relationship between the values at the
primary inputszy, ..., z,, of Cf and the input variables of the Black Bd%, . .., Y} is given by the
Boolean functionH (z1, ..., x,,Y1,...,Y:).2 Then the so-called input exact check reports an error

outside the Black Box iff

VZi... V2, 3z, ... 3z, H(:L‘l...mn,Yl,...,Yk)-(\/condj(xl,...,xn,Zl,...,Zl)) #0.

J=1

Note that [13] proves this check to be exact, i.e., if it doesraport an error outside the Black Box,
thenitis possible to find an implementation of the Black Boxakhnakes the overall implementation
correct. In [13] also the case of multiple Black Boxes is coassd.

4 Exploiting Structure Based Arguments

The algorithms described in Section 3.2 provide a seriesawérand more exact checks for the Black
Box Equivalence Checking problem. In this section we presewtto improve this series by simple
arguments on the structure of circdit. Structure based arguments are used for a simple check
excluding candidate regions for error location and, moegeawey are used to make the checks from
Section 3.2 more efficient.

4.1 A simple structure based check for the Black Box Equivalence Clo&ing
problem
First of all, we make use of error cones as defined in Sectioh . straightforward that in some
candidate region for the error location not all errors cannotuded, if its intersection with some
error cone is empty. Of course, this candidate region cacmoéct the error for the primary output
corresponding to this error cone. So we can restrict ougsaty candidate regions whose intersection
with all error cones is not empty. This simple check is appl#eady before non-symbolic 1, X -
simulation.
If we restrict ourselves to a single error model, i.e., if v8sw@me that there is only one erroneous gate
in the circuitC’, then this check can be tightened: Under this assumptienaitniecessary condition
for some candidate region to contain the error that ther¢ lisagt one gate in this region which is
in the intersection of all error cones. (Due to the singlerassumption the replacement of the
erroneous gate has to correct all erroneous outputs.) Mergio this case candidate regions can be
made smaller by a restriction to the gates in the intersectiall error cones.

SH(xq,...,2,,Y1,...,Y;) = Lifand only if the simulation of the implementati@® with input vector(xz1, ..., z,,)
produces the valu@, . ..,Y,,) at the Black Box inputs.



4.2 Simplifying checks using structure based arguments

Structure based arguments can be used to make the checkSéaiimn 3.2 more efficient (especially
the output and the input exact check). These checks can Ipéfeaah, if the correct cones are removed
from C! (and from the specification). Experimental results (se&i@e) have shown that the sizes
of the BDDs, the number of variables and the complexity of apens (in particular quantifications
with respect to a smaller number of variables) are reducedgteat extend by this simple measure.

5 Diagnosis for Region-Based Model

In this section we describe how we use the checks from Sectiaand 3.2 in connection with the
region-based error model introduced by Boppana et al. [2fhigerror model Boppana et al. make
the assumption of locality of errors. Typically a region s@ts of a gate in the circuit and all its
surrounding gates. The radius of a region specifies the lagizea of the region. E.g. a region of
radius O around a gate consists only of the gate itself. Aoregf radius 1 consists of the gate and
all its immediate successors and predecessors in thetci&nce each gate can be used as the center
gate of a region, there will be as many regions of a fixed raasuhe number of gates in the circuit.
However, the regions will be overlapping with each other mwkigeir radii are greater than 0. The
region-based error model allows multiple errors in theargj but all errors will be restricted to a
region of a given radius.

According to the region-based error model we start with almemof regions of fixed radius which is
equal to the number of gates in the circtit. To cut down the number of candidate regions we do
not use a single algorithm, but we use the series of algositjiren in Sections 4 and 3.2.

Thus, we begin with simple structure based arguments anly &pgm to all candidate regions to
reduce their number. Then we perform a non-symbolic evenel (0, 1, X')-simulation. Note that
during the non-symbolic event-drivéf, 1, X )-simulation we pass through all candidate regions for
the simulation of one erroneous input vector before we mdde the next erroneous input vector. In
this way, the event-driven simulation can reuse parts osimeilation results for the same erroneous
vector when simulation is applied for different locatiorigtee candidate region. After non-symbolic
(0,1, X )-simulation we apply the symboli®, 1, X')-based simulation to the remaining candidates,
and so on.

Using this filter-based approach we avoid shortcomings oft®sis based methods for error diag-
nosis: We do not spend a lot of run time for instances whichnatereally hard. Instances which
can be solved using weaker methods are not presented to tleepowerful and more expensive
checks. Moreover, the number of instances presented to ¢ihe powerful checks becomes smaller
and smaller. And furthermore, we are able to profit from oation techniques like early quantifi-
cation [17], since our checks just produce a Boolean outtg@d of providing the set of all possible
rectifications.

6 Recursive Partitioning Approach

In this section we present a concept for error diagnosis énctise that no error model exists. In
particular, we do not make any assumption about localityradre as in the previous section. The
concept is based on recursive partitioning and the serie®oé and more exact algorithms given in
Sections 4 and 3.2.

A sketch of the algorithm is given in Figure 2. The algoritheminvoked with a parameter
regions_to_partition which is a partition of a subset of all gates {i¥’. At the beginning
regions_to_partition = {C1}. (Here C! means the set of gates in the erroneous implementation
CT). The result of the procedure is a set of gate§'inwhich can be replaced to correct the imple-
mentation.

We always maintain two invariants (lines 2—4): Invarianliig2) says that the errors can be corrected
by reimplementing the region which consists of the unionlbgets inregions_to_partition. At

the beginning, whemegions_to_partition = {C'} this is certainly tru¢. Moreover, we maintain
Invariant 2 (lines 3, 4) which says that we cannot omit anynelet of regions_to_partition as a
whole without destroying this property. Of cause, this propemydk at the beginning, too, since
omitting C in regions_to_partition = {C'} removes all gates of the erroneous implementation.
During the execution of the algorithm we reduce the sizg)of region step by

gion€regions_to_partition

4We assume that the implementatiot has the same number of inputs and outputs as the specification



setof_gatesfunction recursivepartitioning(setof_setsof_gatesregions_to_partition)

1/ Invar!ant 1: Errors can be corrected INSIBR., ;e egions._to_partition TEIION o

/I Invariant 2: There is necgion’ € regions_to_partition such that the error can be corrected inside
1 UregionEregions_to_partition\{Tegion’} region

curr_region_to_partition := largestelementof(regions_to_partition)

if number_of _gates(curr_region_to_partition) = 1 then return UmgwnGregions_m_pamtion
regions_to_partition := regions_to_partition \ curr_region_to_partition;

(partg, party) := partition(curr_region_to_partition);

black_boxy := parto U |J region;

bla‘Ck—bOl‘l = pa’rtl U UregioneTegions_to_partition T@g?:OTI,;

(resultq, resulty) := check(black_boxg, black_box1);

if result; = error_definitely_inside_bb

region fi;

© 0 N O 0 A WN P

region€regions_to_partition

R =
N O

13 then

14 return recursivepartitioning(regions_to_partition U {part;});

15 fi

16 if resulty = result; = error_outside_bb

17 then

18 Retry partitioning and checking, i.e. goto line 8 until uppmit for retries is reached
19 if upper limit of retries is reached

20 then

21 return recursivepartitioning(regions_to_partition U {party, part});
22 fi

23 fi

Figure 2: Pseudo code foecursivepartitioning.

step until no further reduction can be accomplished andlyitlaé computed set of erroneous gates
is equal taJ, . ioneregions._to_partition T€gE0N O the resultingregions_to_partition. At the end of the
algorithmregions_to_partition consists only of singletons. In order to achieve this goa,use
the idea of dividing single elementsgion of regions_to_partition into two parts such that we can
remove one of these two partsiafgion in regions_to_partition.

We give a sketch the algorithm by describing the executiartiay with regions_to_partition =
{CT}. Then in line 8 the set of gates ofirr_region_to_partition = C! is divided into two (about
equal sized) setsart, andpart,.> After that, we try two candidate sets for error location: ek
the hypothesis that the errors are completely containedsity (black _boxy = partg, line 9) and the
hypothesis that the errors arepiart; (black_boxr, = party, line 10). These checks are performed by
the functioncheck which implements exactly the series of checks describegati& 5, now applied
to exactly two candidate regioh&ick_boxy andblack_box;.

Remember that approximate checks can provide exactly tweeass ‘there has to be an error outside
the Black Box’ (result; = error_outside_bb) and ‘the errorsnaybe inside the Black Boxresult; =
error_maybe_inside_bb). Exact algorithms can provide either the answer ‘theretbdse an error
outside the Black Box'iesult; = error_outside_bb) or ‘all errors aredefinitelyinside the Black
Box’' (result; = error_de finitely_inside_bb).

If the series of checks provides the restdtult; = error_definitely_inside_bb for at least one

i € {0,1} (lines 12-15), then we know that the error can be correctghit: of the circuit only
and thus we apply recursive partitioning to this part of tineust to obtain even more information on
the error location (byecursivepartitioning({part;}) (line 14) in this case). If we obtain the result
‘error_outside_bb’ for both parts of the circuit (line 16), then we know that our partiifay in line

8 did not succeed in separating the error locations from ¢neamder of the circuit. So we retry
partitioning and checking for a number of attempts (line.fL&) an upper limit for retries has been
reached (line 19), we give up the attempt of separating tte &ycations by partitioning in line 8
and we have to use recursive partitioning to solve this tdskdo so, we invoke the procedure by
recursivepartitioning({parto, part; }) (line 21). During this recursive call, the larger part, gayt,,
e.g., is partitioned into two parsirt, o andpart,; and we check whether the error locations are

5In a prototype implementation of the algorithm we use METIBp perform this partitioning.
5\We compute another partition by invoking METIS with diffatgparameters.



Circuit || #erroneous|| #regions| struct. non-symb. | struct. symb. Z;-sim., [ Z;-sim., | Z;-sim.,

vectors check 1| 0,1, X-sim. | check2| 0,1, X-sim. | local out. ex. | inp. ex.
C432 90.90 216 ] 130.60 11.60 11.60 11.60 5.90 5.30 1.70
C499 134.30 246 | 177.70 15.10 15.10 15.10 11.80 10.60 4.30
C880 91.20 409 93.10 7.10 7.10 7.00 6.80 6.80 2.50
C1355 119.60 558 | 398.00 23.20| 23.20 23.00 17.60 17.60 3.90
C1908 298.20 1056 | 581.30 34.10| 34.10 34.10 19.90 18.20 10.10
C2670 120.0 1460 | 124.90 24.80| 24.50 22.30 16.70 16.40 4.40
C3540 265.90 1981 | 662.60 24.00| 23.90 23.10 16.60 15.90 4.30
C5315 254.30 2963 | 242.60 25.90| 25.90 20.10 18.20 17.30 3.50
C6288 60.0 2416 | 1156.60 246.40 - - - - -
C7552 369.50 4040| 752.20 95.90| 95.90 94.60 67.80 66.80 6.30

Table 1: Number of candidate regions after application fiécknt filters.

restricted taarto o U part; or toparty ;1 U party, i.e., the gates ipart, are fixed in the Black Box.

In the general case, the procedure is calleddnursivepartitioning(regions_to_partition) where
regions_to_partition is a set of sets of gates. As mentioned above we always maiimizriants

1 and 2. The sets inegions_to_partition are candidates for further partitioning and we select the
largest set for further partitioning (line 5). The otherssate fixed in the Black Box in both variants
black_boxy andblack _boxr, of Black Boxes (lines 9, 10). Partitioning finishes exactlyllfsets in
regions_to_partition contain only one gate (lines 5, 6). In this case we have aelieur goal, since
Invariant 2 says that we cannot omit any gate without destgae property that the errors can be cor-
rected by reimplementing the region defined by the union @@\, . ;e cgions_to_partition TEIIOT-

In particular for large circuits, the check of line 11 need$é discussed in more detail. Accord-
ing to Section 5 and the description of procedrgeursivepartitioning given above we apply the
series of more and more exact checks until we obtain thetresulor_outside_bb’ for both can-
didates (probably by an approximate algorithm) or until &xact algorithm produces the result
error_de finitely_inside_bb for at least one of the two candidates. For instances wheegauot solu-
tion is too expensive it seems to be advisable to changegbetiim such that we can also getinto line
14 in casetesult; = error_maybe_inside_bb’ instead of result; = error_definitely_inside_bb’,
when we assume that the probability for error correctiomdmsélack_bozx; is high enough. (This
may especially be the case when we obtained the resul?_outside_bb’ for the other Black Box.)
However, we then have to provide a backtracking mechanisnh# case that we realize later on
during the algorithm that this assumption was incorrect.

The situation becomes much easier when we can assume girgie ¢ only one gate is erroneous,
then the resultr'esult; = error_outside_bb’ for one of the Black Boxes (possibly obtained by some
‘weak’, approximate algorithm) definitely impliesésult,_; = error_de finitely_inside_bb’ for the
other Black Box. However, as already mentioned in Sectionelsithgle error model does not seem
to be realistic, since we do not expect to observe many instathat contain exactly one erroneous
gate. But note that — in contrast to other approaches such9gs- [dur algorithms do not imply a
restriction of the notion of ‘single gates’ to pu@d gates,or gates or inverters. If we consider the
single error model not for single gates in the classical sdns for larger functional blocks, then it
can make sense all the same. Applying the search procedsiratfihe level of functional blocks with
a single error model will restrict the error location to sofuectional block. Later on, the candidate
region for error location may be further narrowed down byrdssing the single error model.

7 Experimental Results

We performed experiments to locate errors both under thengstson of the region-based error model
and using the recursive partitioning approach. First tedal the recursive partitioning approach are
promising, but due to lack of space we only present resuttshi® region based error model here.
All experiments were performed undeebian Linux 4.0on an AMD XP 1600+ machine with 1 GB

main memory. We applied the method to all benchmarks frontSRAS85 benchmark set. To inject

errors we selected a random gate, considered a region ofsradiurrounding this gate and changed
gates of this region with a probability of 70%. The error typas also selected randomly between
several choices: We added/removed an inverter for an inpotitput signal of the gate, changed the



Circuit || struct. | non-symb. BDD struct. symb. Z;-sim., Z;-sim., Z;-sim.,
check 1| 0,1, X-sim. | spec.| impl. | check 2| 0,1, X-sim. | local check| output exact input exact
C432 <0.01 0.01] 0.18] 0.09] <O0.01 0.01 0.63 0.70 0.41
C499 <0.01 0.02] 7.37] 7.88] <0.01 2.01 3.91 37.98 22.75
C880 <0.01 <0.01| 0.62] 0.15| <0.01 0.05 0.30 16.74 12.03
C1355] <0.01 0.34] 5.21] 6.76] <0.01 0.58 24.29 30.27 35.76
C1908| <0.01 5.33] 1.93] 0.52] <0.01 1.02 2.63 3.48 2.02
C2670( <0.01 1.75] 3.19| 1.03] <0.01 1.06 2.07 1.47 1.20
C3540( <0.01 451]13.09| 5.89|] <0.01 13.03 155.14 34.56 24.09
C5315( <0.01 9.27] 1.74] 053] <0.01 0.01 0.14 0.65 0.84
C6288| < 0.01 49.56 - - - - - - -
C7552] <0.01 27.64| 8.05| 1.50] <0.01 0.04 10.20 477 2.69

Table 2: CPU times in CPU seconds.

type of the gatednd, to ory Or ors t0 and,) or removed an input line from a@nd or or gate. All
experiments are an average of 10 random error insertionsuséé a limit of 3 CPU hours for each
experiment.

Tables 1 and 2 show the results of the method presented imB&dctunder the assumption of a
region-based error of radius 1. Column 1 of table gives theenafithe circuit, column 2 the av-
erage number of erroneous input vectors used for non-syenfdll, X )-simulation of the various
circuits. Erroneous input vectors were obtained by randomlation. The remaining columns show
the successive decrease of the number of candidate regioesrérs. Column 3 gives the number
of different regions of radius 1, respectively. This numizereduced by a sequence of more and
more exact checks which also increase with respect to tleeid for computational resources. Col-
umn 4 shows that a large number of candidate regions cardgllearemoved based on very simple
structural arguments (see Section 4). Again, many caraliggions can be removed by a simulation
based method, see Column 5. After simulating the designsesitineous input vectors the number
of candidate regions is further reduced using symbolic odgh Since simulation can not always
identify all erroneous outputs, the structure based checokpeated after computing BDDs for spec-
ification and implementation, i.e. after obtaining exacbwfedge on the erroneous outputs. Since
we potentially identify new outputs as erroneous, the tesaflthe structural check of Section 4 may
improve (see column 6). Column 7 shows the results after sjimbionulation based o0, 1, X )-
logic. Columns 8, 9, and 10 show the results of the checks base-simulation combined with
local check, output exact check and input exact check, otisply. It can be observed that for this
set of experiments — apart from an initial decrease of thebmurof candidate regions by structural
arguments and by non-symbolic simulation — the most obvitacsease of the number of candidate
regions occurs during the local check@fsimulation and during the final input exact check. Note
that the final input exact check is exact. Thus the errorsadead be corrected by changes in several
candidate regions (on the average between 1.7 and 10.hsefgiothis set of experiments). C6288
was the only circuit where the experiment had to be abortedalthe limit on CPU timé.

Table 2 gives some more information on CPU times. The lalgetiihcolumns is similar to Table
1. Columns 4 and 5 show CPU times in seconds for BDD construcfiepexification and imple-
mentation, respectively. All other columns give CPU timastiie different checks already described
for Table 1. The table shows the surprising result that abjfams except for the multiplier could
be solved within a few seconds. The longest run time occdme@3540 and amounts to about 250
seconds altogether — during this time the number of canglidafions could be reduced to tbeact
minimum. Even for the more complex checks for solving the BRRox Equivalence Checking prob-
lem (columns 9, 10) the requirements for run times were naideand did not substantially exceed
the run times for simpler checks . Most surprisingly, alssldst and exact check (input exact check,
see column 10) could be completed within a few seconds foretmaining candidates.

The first reason for this observation lies in the fact thatrttoee powerful checks are used for fewer
candidate regions: They are used only for candidate regimsh were not already excluded by
weaker checks. We do not use powerful checks for simple pnal

’After structural checks and non-symbolic simulation thelB&nstruction for the multiplier could not be performed
with available resources.



The second reason lies in the fact that these checks haveop@enized: Since we restrict ourselves
to errorlocation, we do not need to represent the set of all possible rectdicaiof the error. Our
checks only produce a Boolean information. This makes itiptesso use techniques like early
guantification [17] to optimize the checks. Moreover, thealts could be simplified to a great extend
by using simple structure based arguments as describediinsd.2.

8 Conclusions and future work

We have presented a filter based approach to error diagnblsis.approach uses a series of more
and more exact filters in order to exclude candidate regites I3y step. In this way we do not
waste run time by processing simple instances with powerkthods. Moreover, a concept for error
location without any error model using a recursive panitig approach was presented. Experimental
results under the assumption of the region-based errorlna@ate given to prove the efficiency of our
approach.

For the future we plan to make use also of SAT based checksruraiagnosis. To do so, we intend
to improve existing approaches [6] and to develop more etastks based on SAT-engines. Another
interesting question is how the methods can be extendedrforpeerror diagnosis for sequential
circuits.
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