
Preprint from Proceedings of IWLS2004, Temecula, USA, June 2004

Approximate Symbolic Model Checking
for Incomplete Designs

Tobias Nopper
Institute of Computer Science

Albert-Ludwigs-University Freiburg
D-79110 Freiburg im Breisgau, Germany

nopper@informatik.uni-freiburg.de

Christoph Scholl
Institute of Computer Science

Albert-Ludwigs-University Freiburg
D-79110 Freiburg im Breisgau, Germany

scholl@informatik.uni-freiburg.de

ABSTRACT
We consider the problem of checking whether an incom-
plete design can still be extended to a complete design
satisfying a given CTL formula and whether the prop-
erty is satisfied for all possible extensions.

Motivated by the fact that well-known model check-
ers like SMV or VIS produce incorrect results when
handling unknowns by using the programs’ non-deter-
ministic signals, we present a series of approximate, yet
sound algorithms to process incomplete designs with in-
creasing quality and computational resources. Finally
we give a series of experimental results demonstrating
the effectiveness and feasibility of the presented meth-
ods.

1. INTRODUCTION
Deciding the question whether a circuit implementa-

tion fulfills its specification is an essential problem in
computer-aided design of VLSI circuits. Growing inter-
est in universities and industry has lead to new results
and significant advances concerning topics like property
checking, state space traversal and combinational equiv-
alence checking.

For proving properties of sequential circuits, Clarke,
Emerson, and Sistla presented model checking for the
temporal logic CTL [1]. Burch, Clarke, and McMillan et
al. improved the technique by using symbolic methods
based on binary decision diagrams [2] for both state set
representation and state traversal in [3, 4].

In this paper we will consider how to perform model
checking of incomplete circuits, i.e. circuits which con-
tain unknown parts. These unknown parts are com-
bined into so-called Black Boxes. In doing so, we will
approach two potentially interesting questions, whether
it is still possible to replace the Black Boxes by circuit
implementations, so that a given model checking prop-
erty is satisfied (‘realizability’) and whether the prop-
erty is satisfied for any possible replacement (‘validity’).

There are three major benefits symbolic model check-
ing for incomplete circuits can provide: First, instead
of forcing the verification runs to the end of the design
process where the design is completed, it rather allows
model checking in early stages of design, where parts
may not yet be finished, so that errors can be detected
earlier. Second, complex parts of a design can be re-

placed by Black Boxes, simplifying the design, while
many properties of the design still can be proven, yet
in shorter time. Third, the location of design errors in
circuits not satisfying a model checking property can be
narrowed down by iteratively masking potentially erro-
neous parts of the circuit.

Some well-known model checking tools like SMV [4]
(resp. NuSMV [5]), and VIS [6] provide the definition
of non-deterministic signals (see [7, 8, 9]). At first
sight, signals coming from unknown areas can be han-
dled as non-deterministic signals, but we will show that
modelling by non-deterministic signals is not capable
of answering the questions of realizability (‘is there a
replacement of the Black Boxes so that the overall im-
plementation fulfills a given property?’) or validity (‘is a
given property fulfilled for all replacements of the Black
Boxes’). This approach is even not able to provide ap-
proximate solutions for realizability or validity.

Whereas an exact solution to the realizability problem
for incomplete designs with several Black Boxes (poten-
tially containing an unrestricted amount of memory) is
undecidable in general [10], we will present approximate
solutions to symbolic model checking for incomplete de-
signs. Our algorithms will not give a definite answer
in every case, but they are guaranteed to be sound in
the sense that they will never give an incorrect answer.
First experimental results given in Section 5 prove ef-
fectiveness and feasibility of the approximate methods.

Our methods are based on symbolic representations of
incomplete combinational circuits [11]. Using these rep-
resentations we provide different methods for approxi-
mating the sets of states satisfying a given property ϕ.
During one run of symbolic model checking we compute
both underapproximations and overapproximations of
the states satisfying ϕ and we will use them to provide
approximate answers for realizability and validity.

Black Boxes in incomplete designs may be seen as
Uninterpreted Functions (UIFs) in some sense. UIFs
have been used for the verification of pipelined micro-
processors [12], where a validity problem is solved un-
der the assumption that both specification and imple-
mentation contain the same Uninterpreted Functions.
Whereas in [12, 13, 14, 15] a dedicated class of prob-
lems for pipelined microprocessors is solved (which is
basically reduced to a combinational problem using an
inductive argument), we will deal here with arbitrary

a) Fixed point iteration for EG b) Fixed point iteration for EU

�

EG

(�

X

) f

old := 1;

new := �

X

;

while (old 6= new) f

old := new;

new := �

X

� �

EX

(old);

g

return new;

g

�

EU

(�

X

; �

Y

) f

old := 0;

new := �

Y

;

while (old 6= new) f

old := new;

new := �

Y

+ (�

X

� �

EX

(old));

g

return new;

g

Figure 1: Fixed point iteration algorithms

incomplete sequential circuits and properties given in
the full temporal logic CTL.

The paper is structured as follows: After giving a
brief review of symbolic model checking and of repre-
sentations for incomplete designs in Section 2, we will
discuss the results of the method handling Black Boxes
using non-deterministic signal definitions as provided
by SMV and VIS, together with the arising problems
in Section 3. In Section 4, we will introduce several
algorithms capable of performing sound and approxi-
mate symbolic model checking for incomplete circuits.
Finally we give a series of experimental results demon-
strating the effectiveness and feasibility of the presented
methods in Section 5 and we conclude the paper in Sec-
tion 6.

2. PRELIMINARIES

2.1 Symbolic Model Checking for
Complete Designs

Before we introduce symbolic model checking for in-
complete designs we will give a brief review of the well-
known symbolic model checking for complete designs
[3].

Symbolic model checking is applied to Kripke struc-
tures which may be derived from sequential circuits on
the one hand and to a formula of a temporal logic (in
our case CTL (Computation Tree Logic)) on the other
hand.

We assume a (complete) sequential circuit to be given

by a Mealy automaton M := (IB|~q|, IB|~x|, IB|~y|, δ, λ, ~q 0)

with state set IB|~q|, the set of inputs IB|~x|, the set of

outputs IB|~y|, transition function δ : IB|~q|×IB|~x| → IB|~q|,

output function λ : IB|~q|× IB|~x| → IB|~y| and initial state

~q 0∈IB|~q|. In the following we will use ~x = (x0, . . . , xn−1)
(n = |~x|) for vectors of input variables, ~y for vectors of
output variables, ~q for current state variables and ~q ′ for
next state variables.

The states of the corresponding Kripke structure are
defined as a combination of states and inputs of M .
The resulting Kripke structure for M is given by
struct(M) := (S,R,L) with

S := IB|~q| × IB|~x|

R :=
{(

(~q, ~x), (~q ′, ~x ′)
)∣

∣~q, ~q ′∈IB|~q|, ~x, ~x ′∈IB|~x|, δ(~q, ~x)=~q ′
}

L
(

(~q,~ǫ)
)

:=
{

xi
∣

∣ǫi = 1
}

∪
{

yi
∣

∣λi(~q,~ǫ) = 1
}

.

As usual we write struct(M), s |= ϕ if ϕ is a CTL
formula that is satisfied in state s = (~q, ~x) ∈ S of
struct(M). If it is clear from the context which Kripke
structure is used, we simply write s |= ϕ instead of
struct(M), s |= ϕ. |= is defined recursively:

s |= ϕ; ϕ ∈ V ⇐⇒ ϕ ∈ L(s) (V=set of atomic prop.)

s |= ¬ϕ ⇐⇒ s 6|= ϕ

s |= (ϕ1 ∨ ϕ2) ⇐⇒ s |= ϕ1 or s |= ϕ2

s |= EXϕ ⇐⇒ ∃s′ ∈ S : R(s, s′) and s′ |= ϕ

s |= EGϕ ⇐⇒ s |= ϕ and ∃s′ ∈ S : R(s, s′)

and s′ |= EGϕ

s |= Eϕ1Uϕ2 ⇐⇒ s |= ϕ2 or
(

∃s′ ∈ S : R(s, s′)

and s |= ϕ1 and s′ |= Eϕ1Uϕ2

)

The remaining CTL operations ∧, EF , AX , AU , AG
and AF can be expressed by using ¬, ∨, EX, EU and
EG [4].

In symbolic model checking, sets of states are rep-
resented by characteristic functions, which are in turn
represented by BDDs. Let Sat(ϕ) be the set of states
of struct(M) which satisfy formula ϕ and let χSat(ϕ)

be its characteristic function, then χSat(ϕ) can be com-
puted recursively based on the characteristic function

χR(~q, ~x, ~q ′) :=
∏|~q|−1
i=0

(

δi(~q, ~x) ≡ q′i
)

of the transition
relation R:

χSat(xi)(~q, ~x) := xi

χSat(yi)(~q, ~x) := λi(~q, ~x)

χSat(¬ϕ)(~q, ~x) := χSat(ϕ)(~q, ~x)

χSat((ϕ1∨ϕ2))(~q, ~x) := χSat(ϕ1)(~q, ~x) + χSat(ϕ2)(~q, ~x)

χSat(EXϕ)(~q, ~x) := χEX(χSat(ϕ))(~q, ~x)

χSat(EGϕ)(~q, ~x) := χEG(χSat(ϕ))(~q, ~x)

χSat(Eϕ1Uϕ2)(~q, ~x) := χEU (χSat(ϕ1), χSat(ϕ2))(~q, ~x)

with

χEX(χX)(~q, ~x) :=

∃~q ′∃~x ′
(

χR(~q, ~x, ~q ′) ·
(

χX | ~q←~q ′

~x←~x ′

)

(~q ′, ~x ′)
)

χEG and χEU can be evaluated by the fixed point iter-
ation algorithms shown in Fig. 1.

A Mealy automaton satisfies a formula ϕ iff ϕ is satis-
fied in all the states of the corresponding Kripke struc-
ture which are derived from the initial state ~q 0 of M :

M |= ϕ ⇐⇒ ∀~x ∈ IB|~x| : struct(M), (~q 0, ~x) |= ϕ

⇐⇒ ∀~x
(

χSat(ϕ)|~q=~q 0

)

= 1

2.2 Incomplete Designs

2.2.1 Representing Incomplete Designs
If parts of a circuit are not yet known or cut off, we

have to handle incomplete designs. In this section we
briefly review symbolic representations of incomplete
designs which we will need in Section 4.

Unknown parts of the design are combined into so-
called ‘Black Boxes’ (see Fig. 2a for a combinational
example with one Black Box).

�

�

�

�

�

�

�

�

q

q

h

q

h

q

-

-

-

-

-

-

-

- -

-

�

Blak Box

y

1

y

0

x

0

?

x

1

0

1

X

X

X

0

X

b) (0; 1; X)-Sim. for x

0

= 1, x

1

= 0a) Inomplete design

�

�

�

�

�

�

�

�

q

q

h

q

q

h

-

-

-

-

-

-

-

-

x

1

�Z

�

x

0

Blak Box

x

1

�

x

0

Blak Box

x

1

Z

Z

1

Z

1

Z

2

Z

Z

Z

d) Symboli Z

i

-simulation

x

1

�Z

2

= 0

Z

1

�Z

1

) Symboli (0; 1; X)-simulation

Figure 2: Incomplete design

For simulating the circuit wrt. some input vector we
can make use of the ternary (0, 1, X)-logic [16, 11]: We
assign a value X to each output of the Black Box (since
the Black Box outputs are unknown) and we perform
a conventional (0, 1, X)-simulation [17] (see Figure 2b).
If the value of some primary output is X , we do not
know the value due to the unknown behaviour of the
Black Boxes.

For a symbolic representation of the incomplete cir-
cuit we model the additional value X by a new variable
Z as in [18, 11]. For each output gi of the incomplete de-
sign with primary input variables x1, . . . , xn we obtain
a BDD representation of gi by using a slightly modified
version of symbolic simulation with

gi|x1=ǫ1...
xn=ǫn

=

1 , if the (0,1,X)-simulation with input
(ǫ1, . . . , ǫn) produces 1

0 , if the (0,1,X)-simulation with input
(ǫ1, . . . , ǫn) produces 0

Z, if the (0,1,X)-simulation with input
(ǫ1, . . . , ǫn) produces X

This modified version of symbolic simulation is called
symbolic (0,1,X)-simulation, see Fig. 2c for an example.

Since (0, 1, X)-simulation can not distinguish between
unknown values at different Black Box outputs, some in-
formation is lost in symbolic (0, 1, X)-simulation. This
problem can be solved at the cost of additional vari-
ables: Instead of using the same variable Z for all Black
Box outputs, we introduce a new variable Zi for each
Black Box output and perform a (conventional) sym-
bolic simulation. This approach was called symbolic
Zi-simulation in [11]. Figure 2d shows an example for
symbolic Zi-simulation. (Note that the first output can
now be shown to be constant 0.)

In Section 4 we will use symbolic (0, 1, X)-simulation
and symbolic Zi-simulation to approximate transition
functions and output functions of incomplete sequential
circuits.

Please note that in contrast to [11], we will consider
Black Boxes that can be replaced not only by combina-
tional, but also by sequential circuits, so that for two
states in a computation path that generate the same
Black Box input, the Black Box may answer with dif-
ferent outputs.

2.2.2 Realizability and Validity
In Section 4 we will present methods realizing approx-

imate symbolic model checking for incomplete designs.
We will consider two types of questions:

Reg

Mux Mux

Reg

ALU

A

Read Ports

D DA

D
A Write

Port

Register
File

Reg

C
on

tr
ol

Inst. Reg. (Input)

Register File State
(Output)

Figure 3: Pipelined ALU

1. Is there a replacement of the Black Boxes in the
incomplete design, so that the resulting circuit sat-
isfies a given CTL formula ϕ? If this is true, then
the property ϕ is called realizable for the incom-
plete design. The corresponding decision problem
is called realizability problem.

2. Is a CTL formula ϕ satisfied for all possible re-
placements of the Black Boxes? If this is the case,
then ϕ is valid for the incomplete design; the cor-
responding decision problem is denoted as validity
problem.

3. MODEL CHECKING FOR
INCOMPLETE DESIGNS USING
NON-DETERMINISTIC SIGNALS

Well-known CTL model checkers such as SMV and
VIS provide so-called ‘non-deterministic assignments’
resp. ‘non-deterministic signals’ to model non-determin-
ism [7, 8, 9]. At first sight it appears to be advisable
using non-deterministic signals for handling Black Box
outputs, since the functionality of Black Boxes is not
known. In this section we motivate our approach by
the observation that non-deterministic signals lead to
incorrect results when used for model checking of in-
complete designs. We will show that they even can not
be used to obtain approximate results by analyzing two
small examples.

Before doing so, we will report on a larger and more
familiar example showing the same problems. Inter-
estingly, incorrect results of SMV (resp. VIS) due to
non-deterministic signals can be observed for the well-
known pipelined ALU circuit from [3] (see Fig. 3). In
[3], Burch et al. showed by symbolic model checking
that (among other CTL formulas) the following formu-
las are satisfied for the pipelined ALU:1

AG
(

(EX)2R ≡ (AX)2R
)

(1)

AG
(

(EX)3R ≡ (AX)3R
)

(2)

Now we assume that the ALU’s adder has not yet been
implemented and it is replaced by a Black Box. The
outputs of the Black Box are modelled by non-determin-
istic signals. In this situation SMV provides the result
that formula (2) is not satisfied.2 However, it is clear

1The formulas essentially say that the content of the register
file R two (resp. three) clock cycles in the future is uniquely
determined by the current state of the system.
2Using VIS, the verification already fails for formula (1) —
this is due to a slightly different modelling of automata by
Kripke structures in VIS and SMV.

�

�

�

�

d

r

r

r

-

-

-

H

H

�

�

-

-

-

-

-

-

--

�

-

y

0

y

1

Blak Box

�

x

2

x

1

x

0

Z

0

q

0

q

0

0

FF

0=1

�

-

-

-

q

0

0

y

0

FF

0

q

0

x

0

�

Blak Box

a

0

a) First ounterexample b) Seond ounterexample

Z

0

Figure 4: Counterexamples

that there is at least one replacement of the Black Box
which satisfies the CTL formula (a replacement by an
adder, of course). Moreover, it is not hard to see, that
the formula is even true for all possible replacements
of the Black Box by any (combinational or sequential)
circuit, so one would expect SMV to provide a positive
answer both for formula (1) and formula (2).

Obviously, the usage of non-deterministic signals leads
to non-exact results. Yet, one might consider that al-
though the results are not exact, they might be approx-
imate in some way. We will disprove this by analyzing
two small exemplary circuits with SMV (similar consid-
erations can be done for VIS as well).

Hypothesis 1: A negative result of SMV means that a
property is not valid
Fig. 4b shows a counterexample for this hypothesis: If
we substitute the Black Box output by a non-deter-
ministic signal, SMV provides the result that ϕ1 =
AG(AXy0 ∨AX¬y0) is not satisfied. Now consider two
finite primary input sequences which differ only in the
last element. Since the Black Box input does not de-
pend on the primary input, but only on the state of the
flip flop, these two primary input sequences produce
the same input sequence at the Black Box input. Thus,
the primary output (which is the same as the Black
Box output) will be the same for both input sequences.
This means that the CTL formula ϕ1 is satisfied for all
possible Black Box substitutions, thus it is valid.

So we observe that a negative result of SMV does not
mean that a property is not valid.

Hypothesis 2: A negative result of SMV means that a
property is not realizable
We consider the circuit shown in Fig. 4a and the CTL
formula ϕ2 = EX(EGy0 ∨AGy1). We assume that the
flip flop is initialized by 0. If we replace the Black Box
output by a non-deterministic signal, SMV provides the
result that ϕ2 is not satisfied. However, it is easy to see
that the formula is satisfied if the Black Box is substi-
tuted with the constant 1 function; so the property is
realizable.

Thus, a negative result of SMV does not mean that a
property is not realizable.

Hypothesis 3: A positive result of SMV means that a
property is valid
Again, we consider the example shown in Fig. 4a and
the CTL formula ϕ2 = EX(EGy0∨AGy1), yet this time
we assume that the flip flop is initialized by 1. If we
substitute the Black Box output by a non-deterministic
signal, SMV provides the result that ϕ2 is satisfied.

Though, it is easy to see that the formula is not sat-
isfied if the Black Box is substituted with the constant
0 function; so the property not valid. Thus, a positive
result of SMV does not mean that a property is valid.

Hypothesis 4: A positive result of SMV means that a
property is realizable
Finally, we reconsider the circuit shown in Fig. 4b in
combination with ϕ3 = ¬ϕ1 = ¬AG(AXy0 ∨ AX¬y0).
Again, we assume the Black Box output to be a non-
deterministic signal and we verify the circuit using SMV,
which provides the result that ϕ3 is satisfied. However,
since property ϕ3 is the negation of property ϕ1 which
has been proven to be valid when considering the first
hypothesis, it is quite obvious that ϕ3 is not realizable.
Thus, a positive result of SMV does not mean that a
property is realizable.

Conclusion
Using non-deterministic signals for Black Box outputs
is obviously not capable of performing correct Model
Checking for incomplete designs — the approach is even
not able to provide an approximate algorithm for real-
izability or validity. This motivates our work presented
in the next section: we will define approximate meth-
ods for proving validity and for falsifying realizability of
Black Box implementations. The results are not com-
plete, but they are sound, i.e. depending on the formula
and the incomplete design they may fail to prove valid-
ity or falsify realizability, but they will never return
incorrect results.

4. SYMBOLIC MODEL CHECKING FOR
INCOMPLETE DESIGNS

4.1 Basic Principle
Symbolic model checking computes the set Sat(ϕ) of

all states satisfying a CTL formula ϕ and then checks
whether all initial states are included in this set. If so,
the circuit satisfies ϕ.

The situation becomes more complex if we consider
incomplete circuits, since for each replacement of the
Black Boxes we may have different state sets satisfy-
ing ϕ. In contrast to conventional model checking we
will consider two sets instead of Sat(ϕ): The first set
is called SatexE (ϕ) and it contains all states, for which
there is at least one Black Box replacement so that
ϕ is satisfied. To obtain SatexE (ϕ) we could conceptu-
ally consider all possible replacements R of the Black
Boxes, compute SatR(ϕ) for each such replacement by
conventional model checking and determine SatexE (ϕ) as
the union of all these sets SatR(ϕ). The second set is
called SatexA (ϕ) and it contains all states, for which ϕ
is satisfied for all Black Box replacements. Conceptu-
ally, SatexA (ϕ) could be computed as an intersection of
all sets SatR(ϕ) obtained for all possible replacements
R of the Black Boxes.

Given SatexE (ϕ) and SatexA (ϕ), it is easy to prove valid-
ity and to falsify realizability for the incomplete circuit:
If all initial states are included in SatexA (ϕ), then all ini-
tial states are included in SatR(ϕ) for each replacement

�

-

- -

�

Blak Box

~x ~y

~q

0

~q

Figure 5: Mealy automaton with Black Box

R of the Black Boxes and thus, ϕ is satisfied for all re-
placements of the Black Boxes (“ϕ is valid”). If there
is at least one initial state not belonging to SatexE (ϕ),
then this initial state is not included in SatR(ϕ) for all
replacements R of the Black Boxes and thus, there is no
replacement of the Black Boxes so that ϕ is satisfied for
the resulting complete circuit (“ϕ is not realizable”).

4.2 Approximations
For reasons of efficiency we will not compute exact

sets SatexE (ϕ) and SatexA (ϕ). Instead we will compute
approximations SatE(ϕ) and SatA(ϕ) of these sets. To
be more precise we will compute overapproximations
SatE(ϕ) ⊇ SatexE (ϕ) of SatexE (ϕ) and underapproxima-
tions SatA(ϕ)⊆SatexA (ϕ) of SatexA (ϕ).

Because of SatE(ϕ)⊇SatexE (ϕ)⊇SatR(ϕ) for arbitrary
replacements R of the Black Boxes we can also guaran-
tee for SatE(ϕ) that ϕ is not realizable if some initial
state is not included in SatE(ϕ). Analogously we can
guarantee that ϕ is valid if all initial states are included
in SatA(ϕ) (since SatA(ϕ)⊆SatexA (ϕ)⊆SatR(ϕ)).

Approximations of SatE(ϕ) and SatA(ϕ) will be com-
puted based on an approximate transition relation and
on approximate output functions for the corresponding
Mealy automaton M . In incomplete designs we have
Black Boxes in the functional block defining the transi-
tion function δ and the output function λ (see Figure 5).
For this reason there are two types of transitions for the
automaton: We have

• transitions which exist independently from the re-
placement of the Black Boxes, i.e. for all possible
replacements of the Black Boxes (we will call them
‘fixed transitions’) and

• transitions which may or may not exist in a com-
plete version of the design – depending on the
implementation for the Black Boxes (we will call
them ‘possible transitions’).

We will work with two types of approximations of the
transition relation χR(~q, ~x, ~q ′): An underapproximation
χRA

(~q, ~x, ~q ′) will only contain fixed transitions and an
overapproximation χRE

(~q, ~x, ~q ′) will contain at least all
possible transitions (of course, this includes all fixed
transitions).

In the same manner we will approximate the sets of
states Sat(yi) in which the output value yi of λi is true:

• an underapproximation SatA(yi) contains only
states in which yi is true independently from the
replacements of the Black Boxes and

• an overapproximation SatE(yi) contains at least all
states in which yi may be true for some replace-
ment of the Black Boxes.

Based on these approximations χRA
, χRE

, SatA(yi),
and SatE(yi) we will compute the underapproxima-
tions SatA(ϕ) and overapproximations SatE(ϕ) men-
tioned above for arbitrary CTL formulas ϕ.

In the following we will present different approximate
methods which will (among other things) differ from the
accuracy of approximating transition relation and out-
put functions. More exact methods will identify more
fixed transitions and less possible transitions. We will
make use of symbolic (0, 1, X)-simulation and symbolic
Zi-simulation for computing δ and λ as described in
Section 2.

4.2.1 SymbolicZ-Model Checking
We apply symbolic (0, 1, X)-simulation (see Section 2)

for computing δ and λ. Thus, we introduce a new vari-
able Z, which is assigned to each output of a Black Box
and symbolic (0, 1, X)-simulation provides symbolic rep-
resentations of functions λi(~q, ~x, Z) and δj(~q, ~x, Z).

Output functions

If λi|~q=~q fix, ~x=~x fix = 1 for some state (~q fix, ~xfix) ∈ IB|~q|×|~x|,
then we know that λi is 1 in this state independently
from the replacement of the Black Boxes, so we in-
clude (~q fix, ~x fix) into both SatA(yi) and SatE(yi). If
λi|~q=~q fix, ~x=~x fix = Z, then the output λi may or may
not be equal to 1 and thus, we include (~q fix, ~xfix) into
SatE(yi), but not into SatA(yi). This leads to the fol-
lowing symbolic representations:

χSatA(yi)(~q, ~x) = ∀Z
(

λi(~q, ~x, Z)
)

,

χSatE(yi)(~q, ~x) = ∃Z
(

λi(~q, ~x, Z)
)

.

Transition functions
An analogous argumentation leads to fixed transitions
and possible transitions of χR, since the outputs of the
transition functions may be definitely 1 or 0 (indepen-
dently from the Black Boxes) or they may be unknown:
For χRA

, representing only fixed transitions we obtain

χRA
(~q, ~x, ~q ′) =

(

|~q|−1
∏

i=0

∀Z
(

δi(~q, ~x, Z) ≡ q′i
)

)

(3)

and for χRE
representing at least all possible transitions

we obtain

χRE
(~q, ~x, ~q ′) =

(

|~q|−1
∏

i=0

∃Z
(

δi(~q, ~x, Z) ≡ q′i
)

)

. (4)

Note that χRA
defined in this way underapproximates

the set of all fixed transitions due to well-known de-
ficiencies of (0, 1, X)-simulation [11] and χRE

overap-
proximates the set of all possible transitions (the same
is true for χSatA(yi) and χSatE(yi), respectively).

In order to compute SatA(ϕ) and SatE(ϕ) recursively
for arbitrary CTL formulas we need rules to evaluate
operators EX, ¬, ∨, EG and EU .

Æ

��

Æ

��

Æ

��

q

q

�

�

�

X

X

X

X

X

�

�

�

into Sat

A

(EX)

into Sat

E

(EX)

�xed transition

�xed transition

possible transition

(underappr.)

(overappr.)

Sat

A

()

(underappr.)

Sat

E

()

(overappr.)

Figure 6: Evaluation of SatA(EXψ) and SatE(EXψ)

ComputingSatA(EXψ) andSatE(EXψ)

Given SatA(ψ), the set of states which definitely sat-
isfy ψ for all Black Box replacements, we include into
SatA(EXψ) all states with a fixed transition to a state
in SatA(ψ). It is easy to see that these states definitely
satisfy EXψ, independently from the replacement of
the Black Boxes. Likewise, we include all the states
into SatE(EXψ) which have a possible transition to a
state in SatE(ψ). Fig. 6 illustrates the sets. Thus, we
have

χSatA(EXψ)(~q, ~x) =

∃~q ′∃~x ′
(

χRA
(~q, ~x, ~q ′) ·

(

χSatA(ψ)| ~q←~q ′

~x←~x ′

)

(~q ′, ~x ′)
)

and

χSatE(EXψ)(~q, ~x) =

∃~q ′∃~x ′
(

χRE
(~q, ~x, ~q ′) ·

(

χSatE(ψ)| ~q←~q ′

~x←~x ′

)

(~q ′, ~x ′)
)

.

ComputingSatA(¬ψ) andSatE(¬ψ)

SatE(ψ) is an overapproximation of all states in which ψ
may be satisfied for some Black Box replacement. Thus,
we do know that for an arbitrary state in IB|~q| × IB|~x|\
SatE(ψ) there is no Black Box replacement so that ψ is
satisfied in this state or, equivalently, ¬ψ is definitely
satisfied in this state for all Black Box replacements.
This means that we can use IB|~q| × IB|~x| \ SatE(ψ) as
an underapproximation SatA(¬ψ). Since an analogous
argument holds for SatA(ψ) and SatE(¬ψ) we define

χSatA(¬ψ)(~q, ~x) = χSatE(ψ)(~q, ~x) and

χSatE(¬ψ)(~q, ~x) = χSatA(ψ)(~q, ~x).

Evaluating∨, EG andEU
It is easy to see that χSatA(ϕ1∨ϕ2)(~q, ~x) = χSatA(ϕ1)(~q, ~x)∨
χSatA(ϕ2)(~q, ~x) and χSatE(ϕ1∨ϕ2)(~q, ~x) = χSatE(ϕ1)(~q, ~x)∨
χSatE(ϕ2)(~q, ~x). Moreover, ϕ = EGψ and ϕ = Eψ1Uψ2

can be evaluated by standard fixed point iterations ac-
cording to Figures 1a and 1b based on the evaluation of
EX defined above (two separate fixed point iterations
for SatA and SatE).

Altogether we obtain an algorithm to compute ap-
proximations for SatA(ϕ) and SatE(ϕ). According to
the arguments given at the beginning of this section we
need just SatE(ϕ) to falsify realizability and we need
just SatA(ϕ) to prove validity. However, evaluation of
negation shows that it is advisable to compute both
SatA(ϕ) and SatE(ϕ) in parallel, since we need SatA(ψ)
to compute SatE(¬ψ) and we need SatE(ψ) to compute
SatA(¬ψ). Note that we do not need to perform two
separate model checking runs to compute SatE(ϕ) and
SatA(ϕ). By using an additional encoding variable e

and defining χR = χRA
+ e ·χRE

, we can easily combine
the two computations of χSatA(ϕ) and χSatE(ϕ) into one
computation for χSat(ϕ) = χSatA(ϕ) + e · χSatE(ϕ). More
details can be found in [19].

Example
Again, we consider the incomplete circuit shown in Fig-
ure 4a. It is quite obvious that in every state at least
one of the two primary outputs y0 and y1 has to be
0 independently from the Black Box implementation.
This is expressed by the CTL formula ϕ := AG(¬y0 ∨
¬y1). By recursively evaluating the subformulas using
the approximate algorithm described above, we obtain
χSatA(ϕ) = χSatE(ϕ) = 1 and thus we can prove that the
formula is satisfied for all possible replacements of the
Black Box.

4.2.2 SymbolicZi-Model Checking
We obtain a second and more accurate approximation

algorithm by replacing symbolic (0, 1, X)-simulation by
symbolic Zi-simulation. In symbolic Zi-simulation we
introduce a new variable Zi for each output of a Black
Box. The output functions λi(~q, ~x, ~Z) and transition
functions δj(~q, ~x, ~Z) will now depend on a vector ~Z of
additional variables. As in the previous section, we
include a state (~q fix, ~xfix) ∈ IB|~q|×|~x| into SatA(yi) iff
λi|~q=~q fix, ~x=~x fix = 1 and we include it into SatE(yi) iff
λi|~q=~q fix, ~x=~x fix = 1 or λi|~q=~q fix, ~x=~x fix depends on the var-

iables ~Z. The transition relation is computed accord-
ingly. The advantage of symbolic Zi-simulation lies in
the fact that the cofactors mentioned above may be 1
or 0 whereas the corresponding cofactors of (0, 1, X)-
simulation are equal to Z. In general this leads to
smaller overapproximations SatE(ϕ) and larger under-
approximations SatA(ϕ). The formulas for a recursive
evaluation of a CTL formula are similar to the previous
section (just replace Z by ~Z).

An additional improvement of approximations can be
obtained by replacing

χRE
(~q, ~x, ~q ′) =

(

|~q|−1
∏

i=0

∃~Z
(

δi(~q, ~x, ~Z) ≡ q′i
)

)

(equation (4)) by

χRE
(~q, ~x, ~q ′) = ∃~Z

(

|~q|−1
∏

i=0

(

δi(~q, ~x, ~Z) ≡ q′i
)

)

.

4.2.3 Symbolic Output ConsistentZi-Model Checking
In this section we will further improve the accuracy of

the approximations presented in the last section. Again,
we will use the incomplete circuit in Fig. 4a (with flip
flop initialized to 0) to motivate the need for an im-
provement. Consider the CTL formula EF (y1 ∧ ¬y1).
It is easy to see that the algorithm given in the last
section is neither able to prove validity nor falsify real-
izability for the given incomplete design and the given
formula, since the output y1 will be 0 or 1 depending on
the output of the Black Box. However, it is clear that
there will be no time during the computation when y1
is both true and false. This problem can only be solved
if we change our state space by including the Black Box

outputs into the states of the Kripke structure, i.e. the
state space is extended from (~q, ~x) to (~q, ~x, ~Z). In this
way the Black Box output values ~Z are constant within
each single state and therefore in our example y1 will
have a fixed value for each state.

Detailed information on modifications which have to
be made for this version of the model checking proce-
dure is omitted due to lack of space. It can be found in
[19].

5. EXPERIMENTAL RESULTS
To demonstrate the feasibility and effectiveness of the

presented methods we implemented a prototype model
checker called MIND (Model Checker for Incomplete
Designs) based on the BDD package CUDD 2.3.1 [20].
MIND uses ‘Lazy Group Sifting’ [21], a reordering tech-
nique particularly suited for model checking, and parti-
tioned transition functions [22].

For a given incomplete circuit and a CTL formula,
MIND first tries to gain information by using symbolic
Z-model checking. In the case that no result can yet be
obtained, MIND moves on to symbolic Zi-model check-
ing and later – if neccessary – to symbolic output con-
sistent Zi-model checking.

For our experiments we used a class of simple syn-
chronous pipelined ALUs similar to the ones presented
in [3] (see also section 3, Fig. 3). In contrast to [3],
our pipelined ALU contains a combinational multiplier.
Since combinational multipliers show exponential size
regarding to their width if represented by BDDs [2],
symbolic model checking for the complete design can
only be performed up to a moderate bit width of the
ALU.

In the following we compare a series of complete pipe-
lined ALUs with 16 registers in the register file and
varying word width to two incomplete pendants: For
the first, the adder and the multiplier are substituted
by Black Boxes and for the second, 12 of the 16 registers
in the register file are masked out as well.

All experiments were performed on an Athlon Thun-
derbird 800MHz with 512MB RAM and with a limited
runtime of 12.000 seconds.

In a first experiment we checked the CTL formula
ϕ1 = AG

(

′′
R2 :=R0⊕R1

′′ →
(

(R0 ⊕ R1) ≡ (AX)3R2

))

which corresponds to formula (1) in [3]. It says that
whenever the instruction R2 :=R0⊕R1 is given at the in-
puts, the values in R2 three clock cycles in the future
will be identical to the exclusive-or of R0 and R1 in the
present state (R0, R1 and R2 are the respective first,
second and third register in the register file). This prop-
erty is true for the complete design, independently of
how the adder and multiplier function are implemented.
Due to that, ϕ1 is also satisfied for all possible Black
Box replacements in the incomplete pipelined ALUs.

In Tab. 1 we give the results for both complete and
incomplete pipelined ALUs with varying word width
tested with ϕ1. For each word width and each pipelined
ALU, the table shows the number of BDD variables
(‘BDD vars’), the peak memory usage (‘memory used’),
the peak number of BDD nodes, the time spent while
reordering the BDD variables (‘RO time’) and the over-
all time in CPU seconds.

As mentioned above, a multiplier has a large impact
on BDD size and thus on computation time. On ac-
count of this, the model checking procedure for com-
plete pipelined ALUs with multipliers of word width
beyond 8 bit exceeds the time limit. In contrast to
that, the incomplete pipelined ALUs without adder and
multiplier can still be verified (using Symbolic Z-Model
Checking) and ϕ1 can be proven to be valid up to a
word width of 32 bit.

The results for the incomplete pipelined ALU, in which
most of the register file has been replaced by Black
Boxes as well, show a further speedup compared to the
complete pipelined ALU, making it possible to prove
the validity of ϕ1 up to a word width of 64 bit. This
is mainly due to the decrease of needed BDD variables,
caused by the reduction of many qi and q′i variables to
a single Z variable.

Thus, we are able to mask out the most complex parts
of the pipelined ALU – the multiplier and the adder –
and most of the register file without losing any signifi-
cance of the result.

In a second experiment we checked the CTL formula
ϕ2 = AG

(

(EX)2R ≡ (AX)2R
)

from [3], which is true
for the complete design. If some parts implementing
ALU operations are masked out by Black Boxes, ϕ2 re-
mains valid for all possible replacements of the Black
Boxes as already mentioned in Section 3 (for the in-
complete pipelined ALU, in which a part of the register
file has been removed, we only checked the remaining
registers). Note that in this example, the Black Boxes
lie inside the cone of influence for the CTL formula.

In Tab. 2 we give the results for both complete and in-
complete pipelined ALUs tested with ϕ2. In this exam-
ple, symbolic Z-model checking and symbolic Zi-model
checking were not able to prove the validity of ϕ2. How-
ever, in all cases the formula could be proved by output
consistent Zi-model checking, which extends the state
variables by the Zi variables. So the values given in
Tab. 2 are the overall values for Z-model checking, Zi-
model checking and output consistent Zi-model check-
ing, since the implementation considers the methods
one after the other until one is able to provide a defi-
nite result.

The number of BDD variables needed for the incom-
plete pipelined ALU has increased in comparison to
symbolic Z-model checking; this is due to the use of
separate Zi variables for each Black Box output instead
of one single Z variable. This can be particulary seen for
the pipelined ALU with partially masked register file.
But still, the output exact Zi-model checking of the in-
complete pipelined ALUs outperforms the conventional
model checking of the complete version – for the same
reasons as given above.

Taken together, the results show that by masking out
expensive parts of the pipelined ALU we are still able
to provide correct (i.e. sound) and useful results, yet at
shorter time and with fewer memory consumption.

6. CONCLUSIONS AND FUTURE WORK
We introduced three approximate methods to realize

symbolic model checking for incomplete designs. Our
methods are able to provide sound results for falsify-

No Blak Boxes Adder and multiplier Adder, multiplier and 12 reg-

replaed by Blak Boxes isters replaed by Blak Boxes

word BDD memory BDD RO BDD memory BDD RO BDD memory BDD RO

width vars used nodes time time vars used nodes time time vars used nodes time time

2 117 5630804 13134 2.15 3.43 119 7873380 21331 2.95 5.58 71 4928468 1738 0.42 0.48

4 193 14475812 89447 18.52 31.40 195 7629844 22144 8.49 10.32 99 5179380 5542 1.33 1.56

8 345 50171476 1462503 1412.35 1932.42 347 14358756 101130 76.02 82.20 155 5539284 10453 3.28 3.72

12 499 28557588 239538 243.13 259.77 211 7308900 112408 34.03 35.52

16 651 38317620 737519 1429.94 1452.77 267 7494228 28188 12.61 14.59

32

more than 12.000 se

1259 71885604 2591674 10584.69 10983.57 491 25946756 117920 116.23 124.47

64 more than 12.000 se. 939 41330788 336080 774.05 799.94

Table 1: Pipelined ALU with 16 registers: Proving the validity of ϕ1 = AG
(

′′
R2 :=R0 ⊕ R1

′′ →
(

(R0⊕R1) ≡

(AX)3R2

))

using Symbolic Z-Model Checking

No Blak Boxes Adder and multiplier Adder, multiplier and 12 reg-

replaed by Blak Boxes isters replaed by Blak Boxes

word BDD memory BDD RO BDD memory BDD RO BDD memory BDD RO

width vars used nodes time time vars used nodes time time vars used nodes time time

2 117 4939252 1372 0.52 0.64 122 5704084 1477 1.31 1.99 98 4966596 1140 0.70 0.78

4 193 5567460 13246 3.30 4.33 202 6742516 6480 5.53 11.32 154 5342868 8642 3.06 3.66

8 345 6631972 14748 10.93 13.21 362 17647956 5946 14.93 27.56 266 6758692 4136 5.20 6.30

12 497 37710484 197370 226.45 387.51 522 29638164 15642 50.33 88.70 378 12991844 7818 12.41 15.84

16 682 32162244 16100 85.75 130.38 490 15205844 12197 18.82 24.53

32 more than 12.000 se. 1322 47493460 22383 586.19 775.10 938 41489060 15042 74.19 103.07

64 2602 45098852 61768 382.95 1823.86 1834 44027028 44606 278.53 391.74

Table 2: Pipelined ALU with 16 registers: Proving the validity of ϕ2 = AG
(

(EX)2R ≡ (AX)2R
)

using
Output Consistent Zi-Model Checking

ing realizability and for proving validity of incomplete
designs (even if the Black Boxes lie inside the cone of
influence for the considered CTL formula). Experimen-
tal results using our prototype implementation MIND
proved that the need for computational resources (mem-
ory and time) could be substantially decreased by mask-
ing complex parts of a design and by using model check-
ing for the resulting incomplete design. The increase in
efficiency was obtained while still providing sound and
useful results.

At the moment we are working on further improve-
ments concerning the accuracy of our approximate sym-
bolic model checking. Starting from a concept for exact
symbolic model checking of incomplete designs (con-
taining several Black Boxes with bounded memory) we
develop appropriate approximations trading off accu-
racy and computational resources.

7. REFERENCES
[1] E.M. Clarke, E.A. Emerson, and A.P. Sistla. Automatic

verification of finite–state concurrent systems using
temporal logic specifications. ACM Trans. on Programming
Languages and Systems, 8(2):244–263, 1986.

[2] R.E. Bryant. Graph - based algorithms for Boolean function
manipulation. IEEE Trans. on Comp., 35(8):677–691, 1986.

[3] J.R. Burch, E.M. Clarke, K.L. McMillan, D.L. Dill, and
L.J. Hwang. Symbolic model checking: 1020 states and
beyond. Information and Computation, 98(2):142–170,
1992.

[4] K.L. McMillan. Symbolic Model Checking. Kluwer
Academic Publisher, 1993.

[5] A. Cimatti, E.M. Clarke, F. Giunchiglia, and M. Roveri.
NuSMV: a new Symbolic Model Verifier. In N. Halbwachs
and D. Peled, editors, Proceedings Eleventh Conference on
Computer-Aided Verification (CAV’99), number 1633 in
Lecture Notes in Computer Science, pages 495–499, Trento,
Italy, July 1999. Springer.

[6] The VIS Group. VIS: A system for verification and
synthesis. In Computer Aided Verification, volume 1102 of
LNCS, pages 428–432. Springer Verlag, 1996.

[7] K.L. McMillan. The SMV system - for SMV version 2.5.4.
Carnegie Mellon University, Nov. 2000.

[8] K. L. McMillan. The SMV language. Cadence Berkeley
Labs, Cadence Berkeley Labs.

[9] T. Villa, G. Swamy, and T. Shiple. VIS User’s Manual.
Electronics Research Laboratory, University of Colorado at
Boulder.

[10] A. Pnueli and R. Rosner. Distributed systems are hard to
synthesize. In 31th IEEE Symp. Found. of Comp. Science,
pages 746–757, 1990.

[11] C. Scholl and B. Becker. Checking equivalence for partial
implementations. In Design Automation Conf., pages
238–243, 2001.

[12] J.R. Burch and D.L. Dill. Automatic verification of
microprocessor control. In Computer Aided Verification,
volume 818 of LNCS, pages 68–80. Springer Verlag, 1994.

[13] K. Sajid, A. Goel, H. Zhou, A. Aziz, and V. Singhal.
BDD-based procedures for a theory of equality with
uninterpreted functions. In Computer Aided Verification,
volume 1447 of LNCS, pages 244–255. Springer Verlag,
1998.

[14] S. Berezin, A. Biere, E.M. Clarke, and Y. Zhu. Combining
symbolic model checking with uninterpreted functions for
out-of-order processor verification. In Int’l Conf. on Formal
Methods in CAD, pages 369–386, 1998.

[15] R.E. Bryant, S. German, and M.N. Velev. Processor
verification using efficient reductions of the logic of
uninterpreted functions to propositional logic. ACM
Transactions on Computational Logic, 2(1):1–41, 2001.

[16] A. Jain, V. Boppana, R. Mukherjee, J. Jain, M. Fujita, and
M. Hsiao. Testing, verification, and diagnosis in the
presence of unknowns. In VLSI Test Symp., pages 263–269,
2000.

[17] M. Abramovici, M.A. Breuer, and A.D. Friedman. Digital
Systems Testing and Testable Design. Computer Science
Press, 1990.

[18] C. Scholl and B. Becker. Checking equivalence for partial
implementations. Technical Report 145,
Albert-Ludwigs-University, Freiburg, October 2000.

[19] T. Nopper and C. Scholl. Symbolic model checking for
incomplete designs. Technical report,
Albert-Ludwigs-University, Freiburg, May 2004.

[20] F. Somenzi. CUDD: CU Decision Diagram Package
Release 2.3.1. University of Colorado at Boulder, 2001.

[21] H. Higuchi and F. Somenzi. Lazy group sifting for efficient
symbolic state traversal of FSMs. In Int’l Conf. on CAD,
pages 45–49, 1999.

[22] R. Hojati, S.C. Krishnan, and R.K. Brayton. Early
quantification and partitioned transition relations. In Int’l
Conf. on Comp. Design, pages 12–19, 1996.

