
Symbolic Model Checking

for Incomplete Designs

Tobias Nopper

Christoph Scholl

Institute of Computer Science

Albert-Ludwigs-University

Georges-Köhler-Allee 51

79110 Freiburg im Breisgau, Germany

Report 201, May 2004

Symbolic Model Checking

for Incomplete Designs

Tobias Nopper Christoph Scholl

Institute of Computer Science
Albert-Ludwigs-University Freiburg

D-79110 Freiburg im Breisgau, Germany
email: <name>@informatik.uni-freiburg.de

We consider the problem of checking whether an incomplete design can still
be extended to a complete design satisfying a given CTL formula and whether
the property is satisfied for all possible extensions.

Motivated by the fact that well-known model checkers like SMV or VIS pro-
duce incorrect results when handling unknowns by using the programs’ non-de-
terministic signals, we present a series of approximate, yet sound algorithms to
process incomplete designs with increasing quality and computational resources.
Furthermore, we present an exact algorithm to process incomplete designs in
which for each unknown area a fixed upper bound on the number of internal
states is assumed and an approximate, yet sound method based on this. Fi-
nally we give a series of experimental results demonstrating the effectiveness and
feasibility of the presented methods.

1 Introduction

Deciding the question whether a circuit implementation fulfills its specification is an essential
problem in computer-aided design of VLSI circuits. Growing interest in universities and
industry has led to new results and significant advances concerning topics like property
checking, state space traversal and combinational equivalence checking.

For proving properties of sequential circuits, Clarke, Emerson, and Sistla presented model
checking for the temporal logic CTL [1]. Burch, Clarke, and McMillan et al. improved the
technique by using symbolic methods based on binary decision diagrams [2] for both state
set representation and state traversal in [3, 4].

In this paper we will consider how to perform model checking of incomplete circuits,
i.e. circuits which contain unknown parts. These unknown parts are combined into so-called
Black Boxes. In doing so, we will address two interesting questions: The question whether
it is still possible to replace the Black Boxes by circuit implementations, so that a given

1

1 Introduction

model checking property is satisfied (‘realizability’) and the question whether the property
is satisfied for any possible replacement (‘validity’).

There are three major benefits symbolic model checking for incomplete circuits can pro-
vide: First, instead of forcing the verification runs to the end of the design process where
the design is completed, it rather allows model checking in early stages of design, where
parts may not yet be finished, so that errors can be detected earlier. Second, complex parts
of a design can be replaced by Black Boxes, simplifying the design, while many properties
of the design still can be proven, yet in shorter time. Third, the location of design errors
in circuits not satisfying a model checking property can be narrowed down by iteratively
masking potentially erroneous parts of the circuit.

Some well-known model checking tools like SMV [4] (resp. NuSMV [5]), and VIS [6]
provide the definition of non-deterministic signals (see [7, 8, 9]). At first sight, signals
coming from unknown areas can be handled as non-deterministic signals, but we will show
that modeling by non-deterministic signals is not capable of answering the questions of
realizability (‘is there a replacement of the Black Boxes so that the overall implementation
satisfies a given property?’) or validity (‘is a given property satisfied for all replacements
of the Black Boxes?’). This approach is even not able to provide approximate solutions for
realizability or validity. Whereas an exact solution to the realizability problem for incomplete
designs with several Black Boxes (potentially containing an unrestricted amount of memory)
is undecidable in general [10], we will present approximate solutions to symbolic model
checking for incomplete designs in the first part of our paper. Our algorithms will not
give a definite answer in every case, but they are guaranteed to be sound in the sense that
they will never give an incorrect answer; they provide proofs of validity and disproofs of
realizability. First experimental results given in Sect. 4.3 prove effectiveness and feasibility
of these approximate methods.

Our methods are based on symbolic representations of incomplete combinational circuits
[11]. Using these representations we provide different methods for approximating the sets of
states satisfying a given property ϕ. During one run of symbolic model checking we compute
both underapproximations and overapproximations of the states satisfying ϕ and we will use
them to provide approximate answers for realizability and validity.

The work of Huth et al. [12], which introduced Kripke Modal Transition Systems (KMTSs),
comes closest to this approach. Whereas our simplest algorithm can be modeled by using
KMTSs, KMTSs are not able to model the fact that the Black Box outputs can not take
different values at the same time, a constraint that will be considered in the most advanced
algorithm of this section.

Black Boxes in incomplete designs may be seen as Uninterpreted Functions (UIFs) in some
sense. UIFs have been used for the verification of pipelined microprocessors [13], where a
validity problem is solved under the assumption that both specification and implementation
contain the same Uninterpreted Functions. Whereas in [13, 14, 15, 16] a dedicated class of
problems for pipelined microprocessors is solved (which is basically reduced to a combina-
tional problem using an inductive argument), we will deal here with arbitrary incomplete
sequential circuits and properties given in the full temporal logic CTL.

In the second part of this paper, we additionally present a concept how to perform exact
symbolic model checking under the bounded memory assumption, i.e. for each of the Black
Boxes a fixed upper bound on the number of internal states is assumed. The algorithm

2

2 Preliminaries

is based on the extraction of the memory out of the Black Boxes and (conceptually) on
considering all possible choices for the Black Box instantiations in parallel by means of
symbolic methods.

Based on this exact symbolic model checking algorithm, we present another approximate
algorithm which is able to prove realizability and to falsify validity by considering simplified
Black Boxes. Experimental results given in Sect. 5.5 provide a first evaluation of this method.

The paper is structured as follows: After giving a brief review of symbolic model check-
ing and of representations for incomplete designs in Sect. 2, we will discuss the results of
the method handling Black Boxes using non-deterministic signal definitions as provided by
SMV and VIS, together with the arising problems in Sect. 3. In Sect. 4, we will introduce
several algorithms capable of performing sound and approximate symbolic model checking
for incomplete circuits and we will give a series of experimental results demonstrating the
effectiveness and feasibility of the presented methods. In Sect. 5, we will introduce an exact
algorithm to process incomplete designs in which a fixed upper bound on the number of
internal states is assumed for each unknown area and we will present another approximate,
yet sound method based on this approach. Again, we evaluate the presented method by a
series of experimental results. Sect. 6 concludes the paper.

2 Preliminaries

2.1 Symbolic Model Checking for Complete Designs

Before we introduce symbolic model checking for incomplete designs we will give a brief
review of the well-known symbolic model checking for complete designs [3].

Symbolic model checking is applied to Kripke structures which may be derived from
sequential circuits on the one hand and to a formula of a temporal logic (in our case CTL
(Computation Tree Logic)) on the other hand.

We assume a (complete) sequential circuit to be given by a Mealy automaton

M := (IB|~q|, IB|~x|, IB|~y|, δ, λ, ~q 0)

with state set IB|~q|, the set of inputs IB|~x|, the set of outputs IB|~y|, transition function
δ : IB|~q|×IB|~x|→IB|~q|, output function λ : IB|~q|× IB|~x|→IB|~y| and initial state ~q 0∈IB|~q|. In the
following we will use ~x = (x0, . . . , xn−1) (n = |~x|) for vectors of input variables, ~y for vectors
of output variables, ~q for current state variables and ~q ′ for next state variables. Figure 1
illustrates such a Mealy automaton.

The states of the corresponding Kripke structure are defined as a combination of states
and inputs of M . The resulting Kripke structure for M is given by struct(M) := (S,R,L)
with:

S :=IB|~q| × IB|~x|

R :=
{(

(~q, ~x), (~q ′, ~x ′)
)

,
∣

∣~q, ~q ′∈IB|~q|, ~x, ~x ′∈IB|~x|, δ(~q, ~x)=~q ′
}

L
(

(~q,~ǫ)
)

:=
{

xi
∣

∣ǫi = 1
}

∪
{

yi
∣

∣λi(~q,~ǫ) = 1
}

.

3

2 Preliminaries

�

-

- -

-

-

-

--

-

�

Æ

~x

~y

~q

~q

0

Figure 1: A Mealy automaton.

As usual we write struct(M), s |= ϕ if ϕ is a CTL formula that is satisfied in state s =
(~q, ~x) ∈ S of struct(M). If it is clear from the context which Kripke structure is used, we
simply write s |= ϕ instead of struct(M), s |= ϕ. |= is defined recursively:

s |= ϕ; ϕ ∈ V ⇐⇒ ϕ ∈ L(s) (V = {xi|0 ≤ i < |~x|} ∪ {yj|0 ≤ j < |~y|},

the set of atomic propositions)

s |= ¬ϕ ⇐⇒ s 6|= ϕ

s |= (ϕ1 ∨ ϕ2) ⇐⇒ s |= ϕ1 or s |= ϕ2

s |= EXϕ ⇐⇒ ∃s′ ∈ S : R(s, s′) and s′ |= ϕ

s |= EGϕ ⇐⇒ s |= ϕ and ∃s′ ∈ S : R(s, s′) and s′ |= EGϕ

s |= Eϕ1Uϕ2 ⇐⇒ s |= ϕ2 or
(

∃s′ ∈ S : R(s, s′) and s |= ϕ1 and s′ |= Eϕ1Uϕ2

)

The remaining CTL operations ∧, EF , AX , AU , AG and AF can be expressed by using ¬,
∨, EX, EU and EG [4].

In symbolic model checking, sets of states are represented by characteristic functions,
which are in turn represented by BDDs. Let Sat(ϕ) be the set of states of struct(M) which
satisfy formula ϕ and let χSat(ϕ) be its characteristic function, then χSat(ϕ) can be computed

recursively based on the characteristic function χR(~q, ~x, ~q ′) :=
∏|~q|−1
i=0

(

δi(~q, ~x) ≡ q′i
)

of the
transition relation R:

χSat(xi)(~q, ~x) := xi

χSat(yi)(~q, ~x) := λi(~q, ~x)

χSat(¬ϕ)(~q, ~x) := χSat(ϕ)(~q, ~x)

χSat((ϕ1∨ϕ2))(~q, ~x) := χSat(ϕ1)(~q, ~x) + χSat(ϕ2)(~q, ~x)

χSat(EXϕ)(~q, ~x) := χEX(χSat(ϕ))(~q, ~x)

χSat(EGϕ)(~q, ~x) := χEG(χSat(ϕ))(~q, ~x)

χSat(Eϕ1Uϕ2)(~q, ~x) := χEU (χSat(ϕ1), χSat(ϕ2))(~q, ~x)

with χEX(χX)(~q, ~x) := ∃~q ′∃~x ′
(

χR(~q, ~x, ~q ′) ·
(

χX | ~q←~q ′

~x←~x ′

)

(~q ′, ~x ′)
)

.

χEG and χEU can be evaluated by the fixed point iteration algorithms shown in Fig. 2.

4

2 Preliminaries

a) Fixed point iteration for EG b) Fixed point iteration for EU

�

EG

(�

X

) f

old := 1;

new := �

X

;

while (old 6= new) f

old := new;

new := �

X

� �

EX

(old);

g

return new;

g

�

EU

(�

X

; �

Y

) f

old := 0;

new := �

Y

;

while (old 6= new) f

old := new;

new := �

Y

+ (�

X

� �

EX

(old));

g

return new;

g

Figure 2: Fixed point iteration algorithms

A Mealy automaton satisfies a formula ϕ iff ϕ is satisfied in all the states of the corre-
sponding Kripke structure which are derived from the initial state ~q 0 of M :

M |= ϕ ⇐⇒ ∀~x ∈ IB|~x| : struct(M), (~q 0, ~x) |= ϕ

⇐⇒ ∀~x
(

χSat(ϕ)|~q=~q 0

)

= 1

2.2 Incomplete Designs

2.2.1 Representing Incomplete Designs

If parts of a circuit are not yet known or cut off, we have to handle incomplete designs. In
this section we briefly review symbolic representations of incomplete designs which we will
need in Sect. 4.

Unknown parts of the design are combined into so-called ‘Black Boxes’ (see Fig. 3a for a
combinational example with one Black Box).

Consider the combinational part of a sequential circuit (Mealy automaton) defining the
transition function δ and the output function λ. For simulating this combinational circuit
wrt. some input vector we can make use of the ternary (0, 1, X)-logic [17, 11]: We assign a
value X to each output of the Black Box (since the Black Box outputs are unknown) and we
perform a conventional (0, 1, X)-simulation [18] (see Fig. 3b). If the value of some primary
output is X , we do not know the value due to the unknown behavior of the Black Boxes.

For a symbolic representation of the incomplete circuit we model the additional value X
by a new variable Z as in [19, 11]. For each output gi of the incomplete design with primary
input variables x1, . . . , xn we obtain a BDD representation of gi by using a slightly modified
version of symbolic simulation with

gi|x1=ǫ1...
xn=ǫn

=

1 , if the (0,1,X)-simulation with input (ǫ1, . . . , ǫn) produces 1
0 , if the (0,1,X)-simulation with input (ǫ1, . . . , ǫn) produces 0
Z, if the (0,1,X)-simulation with input (ǫ1, . . . , ǫn) produces X

This modified version of symbolic simulation is called symbolic (0,1,X)-simulation, see Fig. 3c
for an example.

Since (0, 1, X)-simulation can not distinguish between unknown values at different Black
Box outputs, some information is lost in symbolic (0, 1, X)-simulation. This problem can
be solved at the cost of additional variables: Instead of using the same variable Z for all

5

3 Model Checking for Incomplete Designs using Non-Deterministic Signals

�

�

�

�

�

�

�

�

q

q

h

q

h

q

-

-

-

-

-

-

-

- -

-

�

Blak Box

y

1

y

0

x

0

?

x

1

0

1

X

X

X

0

X

b) (0; 1; X)-Sim. for x

0

= 1, x

1

= 0a) Inomplete design

�

�

�

�

�

�

�

�

q

q

h

q

q

h

-

-

-

-

-

-

-

-

x

1

�Z

�

x

0

Blak Box

x

1

�

x

0

Blak Box

x

1

Z

Z

1

Z

1

Z

2

Z

Z

Z

d) Symboli Z

i

-simulation

x

1

�Z

2

= 0

Z

1

�Z

1

) Symboli (0; 1; X)-simulation

Figure 3: Incomplete design

Black Box outputs, we introduce a new variable Zi for each Black Box output and perform
a (conventional) symbolic simulation. This approach was called symbolic Zi-simulation in
[11]. Fig. 3d shows an example for symbolic Zi-simulation. (Note that the first output can
now be shown to be constant 0.)

In Sect. 4 we will use symbolic (0, 1, X)-simulation and symbolic Zi-simulation to approx-
imate transition functions and output functions of incomplete sequential circuits.

Please note that in contrast to [11], we will consider Black Boxes that can be replaced not
only by combinational, but also by sequential circuits, so that for two states in a computation
path that generate the same Black Box input, the Black Box may answer with different
outputs.

2.2.2 Realizability and Validity

In Sect. 4 and Sect. 5 we will present methods performing (approximate) symbolic model
checking for incomplete designs. We will consider two types of questions:

1. Is there a replacement of the Black Boxes in the incomplete design, so that the resulting
circuit satisfies a given CTL formula ϕ? If this is true, then the property ϕ is called
realizable for the incomplete design. The corresponding decision problem is called
realizability problem.

2. Is a CTL formula ϕ satisfied for all possible replacements of the Black Boxes? If this is
the case, then ϕ is valid for the incomplete design; the corresponding decision problem
is denoted as validity problem.

3 Model Checking for Incomplete Designs using

Non-Deterministic Signals

Well-known CTL model checkers such as SMV and VIS provide so-called ‘non-determin-
istic assignments’ resp. ‘non-deterministic signals’ to model non-determinism [7, 8, 9]. At

6

3 Model Checking for Incomplete Designs using Non-Deterministic Signals

Mux Mux
A

Read Ports

D DA

Register
File

Inst. Reg. (Input)

Register File State
(Output)

Reg Reg

ALU

Reg Write
PortD

A

C
on

tr
ol

Figure 4: Pipelined ALU

first sight it appears to be advisable using non-deterministic signals for handling Black Box
outputs, since the functionality of Black Boxes is not known. In this section we motivate our
approach by the observation that non-deterministic signals lead to incorrect results when
used for model checking of incomplete designs. We will show that they even can not be used
to obtain approximate results by analyzing two small examples.

Before doing so, we will report on a larger and more familiar example showing the same
problems. Interestingly, incorrect results of SMV (resp. VIS) due to non-deterministic signals
can be observed for the well-known pipelined ALU circuit from [3] (see Fig. 4). In [3], Burch
et al. showed by symbolic model checking that (among other CTL formulas) the following
formulas are satisfied for the pipelined ALU (the formulas essentially say that the content
of the register file R two (resp. three) clock cycles in the future is uniquely determined by
the current state of the system):

AG
(

(EX)2R ≡ (AX)2R
)

(1)

AG
(

(EX)3R ≡ (AX)3R
)

(2)

Now we assume that the ALU’s adder has not yet been implemented and it is replaced
by a Black Box. The outputs of the Black Box are modeled by non-deterministic signals.
In this situation SMV provides the result that formula (2) is not satisfied.1 However, it
is clear that there is at least one replacement of the Black Box which satisfies the CTL
formula (a replacement by an adder, of course). Moreover, it is not hard to see, that the
formula is even true for all possible replacements of the Black Box by any (combinational or
sequential) circuit, so one would expect SMV to provide a positive answer both for formula
(1) and formula (2).

Obviously, the usage of non-deterministic signals leads to non-exact results. Yet, one
might consider that although the results are not exact, they might be approximate in some
way. We will disprove this by analyzing two small exemplary circuits with SMV (similar
considerations can be done for VIS as well).

Hypothesis 1: A negative result of SMV means that a property is not valid. Figure 5a
shows a counterexample for this hypothesis: If we substitute the Black Box output by a

1Using VIS, the verification already fails for formula (1) — this is due to a slightly different modeling of
automata by Kripke structures in VIS and SMV.

7

3 Model Checking for Incomplete Designs using Non-Deterministic Signals

�

�

�

�

d

r

r

r

-

-

-

H

H

�

�

-

-

-

-

-

-

--

�

-

y

0

y

1

Blak Box

�

x

2

x

1

x

0

Z

0

q

0

q

0

0

FF

0=1

�

-

-

-

q

0

0

y

0

FF

0

q

0

x

0

�

Blak Box

a

0

Z

0

b) Seond ounterexamplea) First ounterexample

Figure 5: Counterexamples

non-deterministic signal, SMV provides the result that ϕ1 = AG(AXy0 ∨ AX¬y0) is not
satisfied. Now consider two finite primary input sequences which differ only in the last
element. Since the Black Box input does not depend on the primary input, but only on the
state of the flip flop, these two primary input sequences produce the same input sequence
at the Black Box input. Thus, the primary output (which is the same as the Black Box
output) will be the same for both input sequences. This means that the CTL formula ϕ1

is satisfied for all possible Black Box substitutions, thus it is valid. So we observe that a
negative result of SMV does not mean that a property is not valid.

Hypothesis 2: A negative result of SMV means that a property is not realizable. We
consider the circuit shown in Fig. 5b and the CTL formula ϕ2 = EX(EGy0 ∨ AGy1). We
assume that the flip flop is initialized by 0. If we replace the Black Box output by a non-
deterministic signal, SMV provides the result that ϕ2 is not satisfied. However, it is easy to
see that the formula is satisfied if the Black Box is substituted with the constant 1 function;
so the property is realizable. Thus, a negative result of SMV does not mean that a property
is not realizable.

Hypothesis 3: A positive result of SMV means that a property is valid. Again, we
consider the example shown in Fig. 5b and the CTL formula ϕ2 = EX(EGy0 ∨AGy1), yet
this time we assume that the flip flop is initialized by 1. If we substitute the Black Box
output by a non-deterministic signal, SMV provides the result that ϕ2 is satisfied. Though,
it is easy to see that the formula is not satisfied if the Black Box is substituted with the
constant 0 function; so the property not valid. Thus, a positive result of SMV does not
mean that a property is valid.

Hypothesis 4: A positive result of SMV means that a property is realizable. Finally,
we reconsider the circuit shown in Fig. 5a in combination with ϕ3 = ¬ϕ1 = ¬AG(AXy0 ∨
AX¬y0). Again, we assume the Black Box output to be a non-deterministic signal and
we verify the circuit using SMV, which provides the result that ϕ3 is satisfied. However,
since property ϕ3 is the negation of property ϕ1 which has been proven to be valid when
considering the first hypothesis, it is quite obvious that ϕ3 is not realizable. Thus, a positive
result of SMV does not mean that a property is realizable.

8

4 Approximate Symbolic Model Checking for Incomplete Designs

Conclusion

Using non-deterministic signals for Black Box outputs is obviously not capable of performing
correct model checking for incomplete designs — the approach is even not able to provide
an approximate algorithm for realizability or validity.2

This motivates our work presented in the next section: we will define approximate methods
for proving validity and for falsifying realizability of Black Box implementations. The results
are not complete, but they are sound, i.e. depending on the formula and the incomplete
design they may fail to prove validity or falsify realizability, but they will never return
incorrect results.

4 Approximate Symbolic Model Checking for

Incomplete Designs

4.1 Basic Principle

Symbolic model checking computes the set Sat(ϕ) of all states satisfying a CTL formula ϕ
and then checks whether all initial states are included in this set. If so, the circuit satisfies
ϕ.

The situation becomes more complex if we consider incomplete circuits, since for each
replacement of the Black Boxes we may have different state sets satisfying ϕ. In contrast
to conventional model checking we will consider two sets instead of Sat(ϕ): The first set is
called SatexE (ϕ) and it contains all states, for which there is at least one Black Box replace-
ment so that ϕ is satisfied. To obtain SatexE (ϕ) we could conceptually consider all possible
replacements R of the Black Boxes, compute SatR(ϕ) for each such replacement by con-
ventional model checking and determine SatexE (ϕ) as the union of all these sets SatR(ϕ).
The second set is called SatexA (ϕ) and it contains all states, for which ϕ is satisfied for all
Black Box replacements. Conceptually, SatexA (ϕ) could be computed as an intersection of
all sets SatR(ϕ) obtained for all possible replacements R of the Black Boxes.

Given SatexE (ϕ) and SatexA (ϕ), it is easy to prove validity and to falsify realizability for
the incomplete circuit: If all initial states are included in SatexA (ϕ), then all initial states are
included in SatR(ϕ) for each replacement R of the Black Boxes and thus, ϕ is satisfied for
all replacements of the Black Boxes (“ϕ is valid”). If there is at least one initial state not
belonging to SatexE (ϕ), then this initial state is not included in SatR(ϕ) for all replacements
R of the Black Boxes and thus, there is no replacement of the Black Boxes so that ϕ is
satisfied for the resulting complete circuit (“ϕ is not realizable”).

9

4 Approximate Symbolic Model Checking for Incomplete Designs

✛

✲

✲ ✲

β

Black Box

~x ~y

~q ′~q
δ

λ

Figure 6: Mealy automaton with Black Box

4.2 Approximations

For reasons of efficiency we will not compute exact sets SatexE (ϕ) and SatexA (ϕ). Instead
we will compute approximations SatE(ϕ) and SatA(ϕ) of these sets. To be more precise we
will compute overapproximations SatE(ϕ)⊇SatexE (ϕ) of SatexE (ϕ) and underapproximations
SatA(ϕ)⊆SatexA (ϕ) of SatexA (ϕ).

Because of SatE(ϕ)⊇SatexE (ϕ)⊇SatR(ϕ) for arbitrary replacements R of the Black Boxes
we can also guarantee for SatE(ϕ) that ϕ is not realizable if some initial state is not included
in SatE(ϕ). Analogously we can guarantee that ϕ is valid if all initial states are included in
SatA(ϕ) (since SatA(ϕ)⊆SatexA (ϕ)⊆SatR(ϕ)).

Approximations of SatE(ϕ) and SatA(ϕ) will be computed based on an approximate tran-
sition relation and on approximate output functions for the corresponding Mealy automaton
M . In incomplete designs we have Black Boxes in the functional block defining the transi-
tion function δ and the output function λ (see Fig. 6). For this reason there are two types
of transitions for the automaton: We have

• transitions which exist independently from the replacement of the Black Boxes, i.e. for
all possible replacements of the Black Boxes (we will call them ‘fixed transitions’) and

• transitions which may or may not exist in a complete version of the design – depending
on the implementation for the Black Boxes (we will call them ‘possible transitions’).

We will work with two types of approximations of the transition relation χR(~q, ~x, ~q ′): An un-
derapproximation χRA

(~q, ~x, ~q ′) will only contain fixed transitions and an overapproximation
χRE

(~q, ~x, ~q ′) will contain at least all possible transitions (of course, this includes all fixed
transitions).

In the same manner we will approximate the sets of states Sat(yi) in which the output
value yi of λi is true:

• an underapproximation SatA(yi) contains only states in which yi is true independently
from the replacements of the Black Boxes and

• an overapproximation SatE(yi) contains at least all states in which yi may be true for
some replacement of the Black Boxes.

2Yet, there are subclasses of CTL, for which VIS and SMV can provide correct results: Considering
ACTL (type A temporal operators only, negation only allowed for atomic propositions), a positive result
of SMV/VIS means that the property is valid. Considering ECTL (analogously for E operators), a
negative result of VIS means that the property is not realizable; this is not true for SMV due to its
implicit universal abstraction of the primary inputs at the end of the evaluation.

10

4 Approximate Symbolic Model Checking for Incomplete Designs

Based on these approximations χRA
, χRE

, SatA(yi), and SatE(yi) we will compute the un-
derapproximations SatA(ϕ) and overapproximations SatE(ϕ) mentioned above for arbitrary
CTL formulas ϕ.

In the following we will present different approximate methods which will (among other
things) differ from the accuracy of approximating transition relation and output functions.
More exact methods will identify more fixed transitions and less possible transitions. We
will make use of symbolic (0, 1, X)-simulation and symbolic Zi-simulation for computing δ
and λ as described in Section 2.

4.2.1 Symbolic Z-Model Checking

We apply symbolic (0, 1, X)-simulation (see Section 2) for computing δ and λ. Thus, we
introduce a new variable Z, which is assigned to each output of a Black Box and symbolic
(0, 1, X)-simulation provides symbolic representations of functions λi(~q, ~x, Z) and δj(~q, ~x, Z).

Output functions: If λi|~q=~q fix, ~x=~x fix = 1 for some state (~q fix, ~x fix) ∈ IB|~q|×|~x|, then we
know that λi is 1 in this state independently from the replacement of the Black Boxes, so
we include (~q fix, ~xfix) into SatA(yi) and SatE(yi). If λi|~q=~q fix, ~x=~x fix = Z, then the output λi
may or may not be equal to 1 and thus, we include (~q fix, ~x fix) into SatE(yi), but not into
SatA(yi). This leads to the following symbolic representations:

χSatA(yi)(~q, ~x) = ∀Z
(

λi(~q, ~x, Z)
)

, χSatE(yi)(~q, ~x) = ∃Z
(

λi(~q, ~x, Z)
)

.

Transition functions: An analogous argumentation leads to fixed transitions and possible
transitions of χR, since the outputs of the transition functions may be definitely 1 or 0
(independently from the Black Boxes) or they may be unknown: For χRA

, representing only
fixed transitions we obtain

χRA
(~q, ~x, ~q ′) =

(

|~q|−1
∏

i=0

∀Z
(

δi(~q, ~x, Z) ≡ q′i
)

)

and for χRE
representing at least all possible transitions we obtain

χRE
(~q, ~x, ~q ′) =

(

|~q|−1
∏

i=0

∃Z
(

δi(~q, ~x, Z) ≡ q′i
)

)

.

Note that χRA
defined in this way underapproximates the set of all fixed transitions due to

well-known deficiencies of (0, 1, X)-simulation [11] and χRE
overapproximates the set of all

possible transitions (the same is true for χSatA(yi) and χSatE(yi), respectively).
In order to compute SatA(ϕ) and SatE(ϕ) recursively for arbitrary CTL formulas we need

rules to evaluate operators EX, ¬, ∨, EG and EU .

11

4 Approximate Symbolic Model Checking for Incomplete Designs

Æ

��

Æ

��

Æ

��

q

q

�

�

�

X

X

X

X

X

�

�

�

into Sat

A

(EX)

into Sat

E

(EX)

�xed transition

�xed transition

possible transition

(underappr.)

(overappr.)

Sat

A

()

(underappr.)

Sat

E

()

(overappr.)

Figure 7: Evaluation of SatA(EXψ) and SatE(EXψ)

Computing SatA(EXψ) and SatE(EXψ): Given SatA(ψ), the set of states which defi-
nitely satisfy ψ for all Black Box replacements, we include into SatA(EXψ) all states with
a fixed transition to a state in SatA(ψ). It is easy to see that these states definitely satisfy
EXψ, independently from the replacement of the Black Boxes. Likewise, we include all
the states into SatE(EXψ) which have a possible transition to a state in SatE(ψ). Fig. 7
illustrates the sets. Thus, we have

χSatA(EXψ)(~q, ~x) =∃~q ′∃~x ′
(

χRA
(~q, ~x, ~q ′) ·

(

χSatA(ψ)| ~q←~q ′

~x←~x ′

)

(~q ′, ~x ′)
)

and χSatE(EXψ)(~q, ~x) =∃~q ′∃~x ′
(

χRE
(~q, ~x, ~q ′) ·

(

χSatE(ψ)| ~q←~q ′

~x←~x ′

)

(~q ′, ~x ′)
)

.

Computing SatA(¬ψ) and SatE(¬ψ): SatE(ψ) is an overapproximation of all states in
which ψ may be satisfied for some Black Box replacement. Thus, we do know that for an
arbitrary state in IB|~q| × IB|~x| \ SatE(ψ) there is no Black Box replacement so that ψ is
satisfied in this state or, equivalently, ¬ψ is definitely satisfied in this state for all Black Box
replacements. This means that we can use IB|~q| × IB|~x| \ SatE(ψ) as an underapproximation
SatA(¬ψ). Since an analogous argument holds for SatA(ψ) and SatE(¬ψ) we define

χSatA(¬ψ)(~q, ~x) = χSatE(ψ)(~q, ~x) and χSatE(¬ψ)(~q, ~x) = χSatA(ψ)(~q, ~x).

Evaluating ∨, EG and EU : It is easy to see that χSatA(ϕ1∨ϕ2) = χSatA(ϕ1) ∨ χSatA(ϕ2)

and χSatE(ϕ1∨ϕ2) = χSatE(ϕ1) ∨ χSatE(ϕ2). Moreover, ϕ = EGψ and ϕ = Eψ1Uψ2 can be
evaluated by standard fixed point iterations according to Figures 2a and 2b based on the
evaluation of EX defined above (two separate fixed point iterations for SatA and SatE).

Parallel Evaluation: Altogether we obtain an algorithm to compute approximations for
SatA(ϕ) and SatE(ϕ). According to the arguments given at the beginning of this section
we need just SatE(ϕ) to falsify realizability and we need just SatA(ϕ) to prove validity.
However, evaluation of negation shows that it is advisable to compute both SatA(ϕ) and
SatE(ϕ) in parallel, since we need SatA(ψ) to compute SatE(¬ψ) and we need SatE(ψ) to
compute SatA(¬ψ). Note that we do not need to perform two separate model checking runs
to compute SatE(ϕ) and SatA(ϕ). By using an additional encoding variable e and defining
χR = χRA

+ e · χRE
, we can easily combine the two computations of χSatA(ϕ) and χSatE(ϕ)

into one computation for χSat(ϕ) = e · χSatA(ϕ) + e · χSatE(ϕ) (= χSatA(ϕ) + e · χSatE(ϕ) due to
χSatA(ϕ) ≤ χSatE(ϕ)).

12

4 Approximate Symbolic Model Checking for Incomplete Designs

Taken together, with given δ and λ, Symbolic Z-model checking can be performed by
using the following set of rules:

χSat(xi)(~q, ~x, e) := xi

χSat(yi)(~q, ~x, e) := e · χSatA(yi)(~q, ~x) + e · χSatE(yi)(~q, ~x)

= e · ∀Z
(

λi(~q, ~x, Z)
)

+ e · ∃Z
(

λi(~q, ~x, Z)
)

χSat(¬ϕ)(~q, ~x, e) := e · χSatA(¬ϕ)(~q, ~x) + e · χSatE(¬ϕ)(~q, ~x)

= e · χSatE(ϕ)(~q, ~x) + e · χSatA(ϕ)(~q, ~x)

=
(

e · χSatA(ϕ)(~q, ~x) + e · χSatE(ϕ)(~q, ~x)
)

=
(

χSat(ϕ)|e←e
)

(~q, ~x, e)

χSat((ϕ1∨ϕ2))(~q, ~x, e) := e · χSatA(ϕ1∨ϕ2)(~q, ~x) + e · χSatE((ϕ1∨ϕ2))(~q, ~x)

= χSat(ϕ1)(~q, ~x, e) + χSat(ϕ2)(~q, ~x, e)

χSat(EXϕ)(~q, ~x, e) := ∃~q ′∃~x ′
(

χR(~q, ~x, ~q ′, e) ·
(

χSat(ψ)| ~q←~q ′

~x←~x ′

)

(~q ′, ~x ′, e)
)

with

χR(~q, ~x, ~q ′, e) := e · χRA
(~q, ~x, ~q ′) + e · χRE

(~q, ~x, ~q ′)

= e ·
(

|~q|−1
∏

i=0

∀Z
(

δi(~q, ~x, Z) ≡ q′i
)

)

+ e ·
(

|~q|−1
∏

i=0

∃Z
(

δi(~q, ~x, Z) ≡ q′i
)

)

.

Again, for EG and EU , the standard fixed point iterations according to Figures 2a and
2b were used. The result of the recursive calculation can then be evaluated as follows:

∀~x
(

χSat(ϕ)| ~q=~q0

e=0

)

= 1 =⇒ ϕ is valid

∀~x
(

χSat(ϕ)| ~q=~q0

e=1

)

= 0 =⇒ ϕ is not realizable

Example: Again, we consider the incomplete circuit shown in Fig. 5b. It is quite obvi-
ous that in every state at least one of the two primary outputs y0 and y1 has to be 0
independently from the Black Box implementation. This is expressed by the CTL formula
ϕ := AG(¬y0 ∨ ¬y1). By recursively evaluating the subformulas using the approximate
algorithm described above, we obtain χSatA(ϕ) = χSatE(ϕ) = 1 and thus we can prove that
the formula is satisfied for all possible replacements of the Black Box.

Symbolic Z-simulation of λ and δ returns:

λ(~q, ~x, Z) = (q0 · Z, q0 · Z)

δ(~q, ~x, Z) = (q0)

13

4 Approximate Symbolic Model Checking for Incomplete Designs

This leads to the following transition function:

χR(~q, ~x, ~q ′, e) = e ·
(

|~a|−1
∏

i=0

∀Z
(

δi(~q, ~x, Z) ≡ q′i
)

)

+ e ·
(

|~a|−1
∏

i=0

∃Z
(

δi(~q, ~x, Z) ≡ q′i
)

)

= (q0 ≡ q′0)

Recursive calculation of χSat(AG(¬y0∨¬y1)):

χSat(y0)(~q, ~x, e) = e ·
(

∀Zλ0(~q, ~x, Z)
)

+ e ·
(

∃Zλ0(~q, ~x, Z)
)

= e · q0

χSat(¬y0)(~q, ~x, e) =
(

χSat(y0)|e←e
)

(~q, ~x, e) = q0 + e

χSat(y1)(~q, ~x, e) = e ·
(

∀Zλ1(~q, ~x, Z)
)

+ e ·
(

∃Zλ1(~q, ~x, Z)
)

= e · q0

χSat(¬y1)(~q, ~x, e) =
(

χSat(y0)|e←e
)

(~q, ~x, e) = q0 + e

χSat((¬y0∨¬y1))(~q, ~x, e) = χSat(¬y0)(~q, ~x, e) + χSat(¬y1)(~q, ~x, e) = q0 + e+ q0 + e = 1

χSat(AG(¬y0∨¬y1))(~q, ~x, e) = 1

Evaluation:
∀~x

(

χSat(AG(¬y0∨¬y1))| ~q=~q0

e=0

)

= 1 =⇒ ϕ is valid

4.2.2 Symbolic Zi-Model Checking

We obtain a second and more accurate approximation algorithm by replacing symbolic
(0, 1, X)-simulation by symbolic Zi-simulation. In symbolic Zi-simulation we introduce a
new variable Zi for each output of a Black Box. The output functions λi(~q, ~x, ~Z) and tran-
sition functions δj(~q, ~x, ~Z) will now depend on a vector ~Z of additional variables. As in the
previous section, we include a state (~q fix, ~xfix) ∈ IB|~q|×|~x| into SatA(yi) iff λi|~q=~q fix, ~x=~x fix = 1
and we include it into SatE(yi) iff λi|~q=~q fix, ~x=~x fix = 1 or λi|~q=~q fix, ~x=~x fix depends on the
variables ~Z. The transition relation is computed accordingly. The advantage of symbolic
Zi-simulation lies in the fact that the cofactors mentioned above may be 1 or 0 whereas
the corresponding cofactors of (0, 1, X)-simulation are equal to Z. In general this leads to
smaller overapproximations SatE(ϕ) and larger underapproximations SatA(ϕ). The formulas
for a recursive evaluation of a CTL formula are similar to the previous section (just replace
Z by ~Z).

An additional improvement of approximations can be obtained by replacing

χR(~q, ~x, ~q ′, e) = e ·
(

|~q|−1
∏

i=0

∀~Z
(

δi(~q, ~x, ~Z) ≡ q′i
)

)

+ e ·
(

|~q|−1
∏

i=0

∃~Z
(

δi(~q, ~x, ~Z) ≡ q′i
)

)

by

χR(~q, ~x, ~q ′, e) = e · ∀~Z
(

|~q|−1
∏

i=0

(

δi(~q, ~x, ~Z) ≡ q′i
)

)

+ e · ∃~Z
(

|~q|−1
∏

i=0

(

δi(~q, ~x, ~Z) ≡ q′i
)

)

14

4 Approximate Symbolic Model Checking for Incomplete Designs

4.2.3 Symbolic Output Consistent Zi-Model Checking

In this section we will further improve the accuracy of the approximations presented in the
last section. Again, we will use the incomplete circuit in Fig. 5b (with flip flop initialized to
0) to motivate the need for an improvement. Consider the CTL formula EF (y1 ∧¬y1). It is
easy to see that the algorithm given in the last section is neither able to prove validity nor
falsify realizability for the given incomplete design and the given formula, since the output
y1 will be 0 or 1 depending on the output of the Black Box. However, it is clear that there
will be no time during the computation when y1 is both true and false. This problem can
only be solved if we change our state space by including the Black Box outputs into the
states of the Kripke structure, i.e. the state space is extended from (~q, ~x) to (~q, ~x, ~Z). In
this way the Black Box output values ~Z are constant within each single state and therefore
in our example y1 will have a fixed value for each state.

Considering a state (~q, ~x) of the original state space, the state necessarily satisfies ϕ, if
χSatA(ϕ)(~q, ~x, ~Z) is true for every possible value of ~Z and the state does not possibly satisfy
ϕ, if χSatE(ϕ)(~q, ~x, ~Z) is false for any possible value of ~Z.

We will now describe how to perform symbolic model checking on the extended state space;
we will call this method symbolic output consistent Zi-model checking. The evaluation of
χSat(yi) is straight-forward for a extended state (~q, ~x, ~Z), since the Black Box output is part
of the state now and thus it is possible to directly evaluate whether the output yi is true or
false in this state:

χSat(yi)(~q, ~x,
~Z, e) := λi(~q, ~x, ~Z)

Likewise, it is no longer necessary to separate the transition function into a ‘fixed’ and
‘possible’ part; there is a transition from (~q, ~x, ~Z) to all (~q ′, ~x ′, ~Z ′) with δi(~q, ~x, ~Z) = ~q ′:

χR(~q, ~x, ~Z, ~q ′) :=

|~q|−1
∏

i=0

(

δi(~q, ~x, ~Z) ≡ q′i

)

Yet, we have to adjust the calculation of χSat(EXψ) for the new state space. For χSatA(EXψ),
we include all states (~q, ~x, ~Z), for which there exist ~q ′and ~x ′, so that for all Black Box output
values ~Z ′: (~q ′, ~x ′, ~Z ′) is a successor of (~q, ~x, ~Z) and (~q ′, ~x ′, ~Z ′) satisfies χSatA(ψ).

χSatA(EXψ)(~q, ~x, ~Z) = ∃~q ′∃~x ′
(

χR(~q, ~x, ~Z, ~q ′) · ∀~Z ′
(

χSatA(ψ)|~q←~q ′

~x←~x ′
~Z←~Z′

)

(~q ′, ~x ′, ~Z ′)
)

For χSatE(EXψ), we include all states (~q, ~x, ~Z), for which there exist ~q ′ and ~x ′, so that for
at least one Black Box output value ~Z ′: (~q ′, ~x ′, ~Z ′) is a successor of (~q, ~x, ~Z) and (~q ′, ~x ′, ~Z ′)
satisfies χSatE(ψ).

χSatE(EXψ)(~q, ~x, ~Z) = ∃~q ′∃~x ′
(

χR(~q, ~x, ~Z, ~q ′) · ∃~Z ′
(

χSatE(ψ)|~q←~q ′

~x←~x ′
~Z←~Z′

)

(~q ′, ~x ′, ~Z ′)
)

Joined together (with χSat(ψ) = e · χSatA(ψ) + e · χSatE(ψ)) we receive:

χSat(EXψ)(~q, ~x, ~Z, e) = e · ∃~q ′∃~x ′
(

χR(~q, ~x, ~Z, ~q ′) · ∀~Z ′
(

χSat(ψ)|~q←~q ′

~x←~x ′
~Z←~Z′

)

(~q ′, ~x ′, ~Z ′, e)
)

+

e · ∃~q ′∃~x ′
(

χR(~q, ~x, ~Z, ~q ′) · ∃~Z ′
(

χSat(ψ)|~q←~q ′

~x←~x ′
~Z←~Z′

)

(~q ′, ~x ′, ~Z ′, e)
)

15

4 Approximate Symbolic Model Checking for Incomplete Designs

The calculation of all remaining CTL operands can be adopted from symbolic Z- resp.
Zi-model checking. The result of the recursive calculation can be evaluated as follows:

∀~x∀~Z
(

χSat(ϕ)| ~q=~q 0

e=0

)

= 1 =⇒ ϕ is valid

∀~x∃~Z
(

χSat(ϕ)| ~q=~q 0

e=1

)

= 0 =⇒ ϕ is not realizable

Example: Again, we consider the incomplete circuit shown in Fig. 5b. As mentioned above,
the CTL formula ϕ = EF (y1 ∧¬y1) will not be satisfied for any Black Box replacement and
is thus not realizable. Other than symbolic Z- and Zi-model checking, output consistent
Zi-model checking is able to disprove the realizability of the formula.

Symbolic Zi-simulation of λ and δ returns:

λ(~q, ~x, ~Z) = (q0 · Z0, q0 · Z0)

δ(~q, ~x, ~Z) = (q0)

This leads to the following transition function:

χR(~q, ~x, ~q ′, ~Z) =

|~q|−1
∏

i=0

(

δi(~q, ~x, ~Z) ≡ q′i

)

= (q0 ≡ q′0)

Recursive calculation of χSat(EF (y1∧¬y1)):

χSat(y1)(~q, ~x,
~Z, e) = λ1(~q, ~x, ~Z) = q0 · Z0

χSat(¬y1)(~q, ~x,
~Z, e) =

(

χSat(y1)|e←e
)

(~q, ~x, ~Z, e) = q0 + Z0

χSat((y1∧¬y1))(~q, ~x,
~Z, e) = χSat(y1)(~q, ~x,

~Z, e) · χSat(¬y1)(~q, ~x,
~Z, e) = q0 · Z0 · (q0 + Z0) = 0

χSat(EF (y1∧¬y1))(~q, ~x,
~Z, e) = 0

Evaluation:

∀~x∃~Z
(

χSat(EF (y1∧¬y1))| ~q=~q0

e=1

)

= 0 =⇒ ϕ is not realizable

4.3 Experimental Results

To demonstrate the feasibility and effectiveness of the presented methods we implemented
a prototype model checker called MIND (Model Checker for Incomplete Designs) based on
the BDD package CUDD 2.3.1 [20]. MIND uses ‘Lazy Group Sifting’ [21], a reordering
technique particularly suited for model checking, and partitioned transition functions [22].

For a given incomplete circuit and a CTL formula, MIND first tries to gain information
by using symbolic Z-model checking. In the case that no result can yet be obtained, MIND
moves on to symbolic Zi-model checking and later – if necessary – to symbolic output
consistent Zi-model checking.

16

4 Approximate Symbolic Model Checking for Incomplete Designs

No Blak Boxes Adder and multiplier Adder, multiplier and 12 reg-

replaed by Blak Boxes isters replaed by Blak Boxes

word BDD memory BDD RO BDD memory BDD RO BDD memory BDD RO

width vars used nodes time time vars used nodes time time vars used nodes time time

2 115 15648180 144681 16.54 18.95 117 8875028 88166 7.29 8.84 69 7691172 48443 1.68 2.44

4 191 47698020 268028 128.12 199.09 193 43750260 429830 215.66 274.99 97 14688292 105926 22.92 30.45

6 267 52345860 1307470 824.36 973.38 269 14856116 110846 27.92 30.89 125 14946340 66176 12.10 20.65

8 343 63229572 2233159 1804.83 2286.06 345 28912788 118064 54.92 61.97 153 39908148 107613 18.24 48.87

10 421 47499956 305772 243.77 319.97 181 37586452 139006 26.38 68.68

12 497 41327748 120268 56.37 74.45 209 49600356 74954 14.92 80.60

16 649 47498820 169453 96.69 161.03 265 48107812 104683 30.42 110.65

32

more than 12.000 se.

1257 50710356 220204 563.31 763.83 489 51717572 171161 95.52 523.28

48 1865 65334916 242826 692.58 3603.20 713 64384116 169745 159.66 2132.44

64 more than 12.000 se. 937 102258804 296314 308.78 4148.28

Table 1: Faulty pipelined ALU with 16 registers: Falsifying the realizability of ϕ1 =
AG

(

′′
R2 := R0 ⊕ R1

′′ →
(

(AX)2R0 ⊕ (AX)2R1 ≡ (AX)3R2

))

using symbolic Z-
model checking

For our experiments we used a class of simple synchronous pipelined ALUs similar to
the ones presented in [3]. In contrast to [3], our pipelined ALU contains a combinational
multiplier (see Figure 8). Since combinational multipliers show exponential size regarding
to their width if represented by BDDs [2], symbolic model checking for the complete design
can only be performed up to a moderate bit width of the ALU.

In the following we compare a series of complete pipelined ALUs with 16 registers in the
register file and varying word width to two incomplete pendants: For the first, the adder
and the multiplier are substituted by Black Boxes and for the second, 12 of the 16 registers
in the register file are masked out as well.

All experiments were performed on an Intel Pentium4 2.6GHz with 1GB RAM and with
a limited runtime of 12.000 seconds.

In a first experiment we inserted an error to the implementation of the XOR operation3, so
it produced incorrect results. We then checked the CTL formula ϕ1 = AG

(

′′
R2 := R0 ⊕ R1

′′ →
(

(AX)2R0 ⊕ (AX)2R1 ≡ (AX)3R2

))

which corresponds to formula (1) in [3]. It says that
whenever the instruction R2 := R0 ⊕ R1 is given at the inputs, the values in R2 three clock
cycles in the future will be identical to the exclusive-or of R0 and R1 in the state two clock
cycles in the future (R0, R1 and R2 are the respective first, second and third register in
the register file). This property is false for our complete, but faulty design, independently of
how the adder and multiplier function are implemented. Due to that, ϕ1 is not satisfied for
any possible Black Box replacement in the incomplete pipelined ALUs, thus not realizable.
Note that the Black Boxes lie inside the cone of influence for this CTL formula.

In Tab. 1 we give the results for both complete and incomplete pipelined ALUs with
varying word width tested with ϕ1. For each word width and each pipelined ALU, the
table shows the number of BDD variables (‘BDD vars’), the peak memory usage, the peak
number of BDD nodes, the time spent while reordering the BDD variables (‘RO time’) and
the overall time in CPU seconds.

As mentioned above, a multiplier has a large impact on BDD size and thus on computation
time. On account of this, the model checking procedure for complete pipelined ALUs with
multipliers of word width beyond 8 bit exceeds the time limit. In contrast to that, the
incomplete pipelined ALUs without adder and multiplier can still be verified (using symbolic
Z-model checking) and ϕ1 can be proven to be unrealizable up to a word width of 48 bit.

3The lowest bit of the output was the result of an OR instead of an XOR of the two lowest input bits.

17

4 Approximate Symbolic Model Checking for Incomplete Designs

A
N

D
O

R
X

O
R

X
N

O
R

M
U

L
A

D
D

S
U

B

00
0

00
1

01
0

01
1

10
−

11
0

11
1

M
U

X

0w

R
E

G

R
E

G

R
E

G

R
E

G

R
E

G

R
E

G

= = = =

R
E

Gaa

w
w

w

3

1

R
ea

d
P

or
ts

A
dd

r
D

at
a

A
dd

r
D

at
a

2
 x

 R
E

G
a

w

R
eg

is
te

r
F

ile

A
LU

1
0

1
0

0
1

1
0

M
U

X

M
U

X

M
U

X

M
U

X

A
dd

r
/w

rit
e

D
at

a

W
rit

e
P

or
t

Register File State (Outputs)

C
on

tr
ol

CMP CMP CMP CMP

io
p[

2:
0]

ia
a[

a−
1:

0]
ib

a[
a−

1:
0]

ic
a[

a−
1:

0]

In
st

ru
ct

io
n

R
eg

is
te

r
(I

np
ut

s)

a Addr Data Addr Data0MUX Control

iop[2:0] iaa[a−1:0] iba[a−1:0] ica[a−1:0]Instruction Register (Inputs)

Figure 8: Detailed view of the pipelined ALU used in the experiments.

18

4 Approximate Symbolic Model Checking for Incomplete Designs

No Blak Boxes Adder and multiplier Adder, multiplier and 12 reg-

replaed by Blak Boxes isters replaed by Blak Boxes

word BDD memory BDD RO BDD memory BDD RO BDD memory BDD RO

width vars used nodes time time vars used nodes time time vars used nodes time time

2 115 14293796 167732 24.80 27.07 120 18539828 78710 29.68 35.45 96 6289428 40067 3.37 3.99

4 191 44312916 260432 136.43 209.52 200 32040036 280644 141.86 164.02 152 16982804 107882 32.54 42.98

6 267 44974932 677287 354.33 481.75 280 49688116 101814 54.79 115.05 208 48858612 99825 43.09 104.53

8 343 70257572 2062505 1734.78 3149.34 360 48240820 266458 250.10 358.87 264 43916036 184957 87.71 210.44

10 440 50132196 334578 381.38 534.24 320 35504804 125120 90.69 162.18

12 520 55120852 311883 1532.51 10279.64 376 45102100 110498 71.10 212.38

16 680 56091444 403086 770.80 1529.96 488 46152532 138276 88.95 297.70

32

more than 12.000 se.

1320 69133684 641417 2939.57 7539.18 936 51112436 174608 264.92 1224.07

48 1960 79099060 234256 1462.76 9458.99 1384 54541588 212548 422.95 3270.27

64 more than 12.000 se. 1832 50217764 299242 827.25 2599.73

Table 2: Correct pipelined ALU with 16 registers: Proving the validity of ϕ1 =
AG

(

′′
R2 := R0 ⊕ R1

′′ →
(

(AX)2R0⊕(AX)2R1 ≡ (AX)3R2

))

using symbolic output
consistent Zi-model checking

The results for the incomplete pipelined ALU, in which most of the register file has been
replaced by Black Boxes as well, show a further speedup compared to the complete pipelined
ALU, making it possible to prove the unrealizability of ϕ1 up to a word width of 64 bit. This
is mainly due to the decrease of needed BDD variables, caused by the reduction of many
qi and q′i variables to a single Z variable and the simplification of the transition function,
which does no longer depend on the inputs functions of the registers that have been masked
out.

Thus, we are able to mask out the most complex parts of the pipelined ALU – the
multiplier and the adder – and most of the register file without losing any significance of
the result.

In a second experiment we considered the same CTL formula as above, yet this time we
used a correct implementation of the XOR operation. In this case, ϕ1 is satisfied for the
complete and valid for the incomplete pipelined ALUs.

In Tab. 2 we give the results for both complete and incomplete pipelined ALUs tested
with ϕ1. In this example, symbolic Z-model checking and symbolic Zi-model checking were
not able to prove the validity of ϕ1. However, in all cases the formula could be proved by
output consistent Zi-model checking, which extends the state variables by the Zi variables.
So the values given in Tab. 2 are the overall values for Z-model checking, Zi-model checking
and output consistent Zi-model checking, since the implementation considers the methods
one after the other until one is able to provide a definite result.

The number of BDD variables needed for the incomplete pipelined ALU has increased in
comparison to symbolic Z-model checking; this is due to the use of separate Zi variables
for each Black Box output instead of one single Z variable. This can be particularly seen
for the pipelined ALU with partially masked register file. But still, the output consistent
Zi-model checking of the incomplete pipelined ALUs outperforms the conventional model
checking of the complete version – for the same reasons as given above.

We also checked ϕ2 = AG
(

(EX)2R ≡ (AX)2R
)

from [3], which is true for the complete
design and valid for the incomplete designs, as already mentioned in Sect. 3. This can be
proven by using output consistent Zi-model checking, Tab. 3 shows the results for both
complete and incomplete pipelined ALUs tested with ϕ2.

19

5 Symbolic Model Checking for Black Boxes with Bounded Memory

No Blak Boxes Adder and multiplier Adder, multiplier and 12 reg-

replaed by Blak Boxes isters replaed by Blak Boxes

word BDD memory BDD RO BDD memory BDD RO BDD memory BDD RO

width vars used nodes time time vars used nodes time time vars used nodes time time

2 115 6447172 86134 10.02 10.93 120 5801668 42092 9.89 12.43 96 6589076 17850 1.32 1.82

4 191 27642612 72300 11.29 22.83 200 34270980 145272 56.05 103.96 152 8765844 49606 8.07 15.76

6 267 29000724 33508 6.51 22.09 280 44303300 34719 13.61 68.13 208 26273684 23271 3.95 20.74

8 343 36424244 178326 81.55 273.89 360 46581316 224278 163.71 316.17 264 44918692 135295 35.34 326.56

10 419 15198916 170788 78.06 95.88 440 49120884 250366 150.69 419.51 320 28175428 63962 27.46 58.06

12 495 43453252 424736 181.85 277.18 520 52370660 143689 106.83 2426.27 376 30352164 29256 16.69 51.04

16 680 51923348 316126 492.21 2453.67 488 37403732 74058 54.47 130.83

32 1320 55675412 549150 2093.27 6097.25 936 49950532 157746 218.45 608.49

48

more than 12.000 se.

1960 55672692 84856 600.54 1734.20 1384 48234196 133424 360.97 1047.16

64 2600 69985524 509326 1780.71 5158.97 1832 46709604 220710 670.19 1874.36

Table 3: Correct pipelined ALU with 16 registers: Proving the validity of ϕ2 =
AG

(

(EX)2R ≡ (AX)2R
)

using symbolic output consistent Zi-model checking

In a similar manner as for ϕ1, the results for ϕ2 clearly show that our method outperforms
the conventional model checking of the complete version – for the same reasons as given
above.

Taken together, the results show that by masking out expensive parts of the pipelined
ALU we are still able to provide correct (i.e. sound) and useful results, yet at shorter time
and with fewer memory consumption.

5 Symbolic Model Checking for Black Boxes with

Bounded Memory

In the last section, we introduced three methods to approximate both SatexE (ϕ), the set of
states, for which there is at least one Black Box replacement so that ϕ is satisfied, and
SatexA (ϕ), the set of states, for which ϕ is satisfied for all Black Box replacements. Based on
these sets, we were able to provide sound results for falsifying realizability and for proving
validity of incomplete designs. Yet, there are formulas, for which it is not possible to provide
a result. To give an example, it is not possible to make any statement for the pipelined ALU,
in which the adder has been removed, checking formula (2) (see page 7) with the methods
presented in the last section.

Due to this, we will consider a different approach in this section: We consider Black
Boxes with bounded memory, which means that there is a fixed upper bound on the number
of flipflops the possible substitutions are allowed to have. Due to this bounded memory
assumption, the number of different Black Box behaviors is finite and thus, it is conceptually
possible to calculate SatR(ϕ) for each possible replacement R of each Black Box. A CTL
formula ϕ is realizable iff there is a replacement R with all start states lying in SatR(ϕ) and
a CTL formula ϕ is valid iff all start states lie in SatR(ϕ) for all possible replacements R.

Since the explicit approach is obviously not applicable in practice due to the enormous
number of possible Black Box substitutions, we will use symbolic methods to implicitly
consider all possible choices for the Black Box substitutions in parallel.

We will first show how Black Boxes with bounded memory can be transformed into com-
binational Black Boxes, i.e. Black Boxes that may only be substituted by combinational
circuits. We will then take a look at a concept for exact symbolic model checking for circuits
containing one combinational Black Box. Due to the expected complexity of this concept,

20

5 Symbolic Model Checking for Black Boxes with Bounded Memory

q q q q

-

-

�

- - -

Blak Box

�

~q

m

~q

m

0

~a

~

Z

~

Z

Blak Box

~a �

0

)

Figure 9: Extracting flipflops from a Black Box with Bounded Memory

we will then consider an approximate version that is able to provide sound results, yet at
lower costs. Finally, we will show how to extend the methods to circuits containing multiple
Black Boxes with bounded memory.

5.1 Extracting flipflops from a Black Box with Bounded Memory

We consider a Black Box with bounded memory, which means that there is a fixed upper
bound on the number of flipflops the possible substitutions are allowed to have; let m be
this upper bound. Further we assume that these flipflops are driven by the same clock as
the flipflops already included in the circuit.

Given these assumptions, we can separate the flipflops from the Black Box by adding m
additional outputs ~qm

′ leading to the flipflop inputs and m additional inputs ~qm going back
to the Black Box (Fig. 9); the resulting transformed Black Box is combinational, i.e. the
possible substitutions are limited to combinational circuits.

Obviously, for each sequential circuit with a maximum of m flipflops replacing the original
Black Box with bounded memory there is a combinational replacement for the newly formed
combinational Black Box with m external flipflops and vice versa.

Since we can reduce Black Boxes with bounded memory to combinational Black Boxes, it
is now sufficient to solve the model checking problem for combinational Black Boxes.

5.2 A Concept for Exact Symbolic Model Checking of Incomplete

Designs with One Combinational Black Box

For the time being, we restrict our view to incomplete circuits containing exactly one com-
binational Black Box. We showed above that Black Boxes with bounded memory can be
reduced to combinational Black Boxes and we will show later how to extend the methods
presented here to multiple Black Boxes.

Given an incomplete circuit containing exactly one combinational Black Box, we can
divide the combinational part of the Mealy automaton into four parts (see upper part of
Fig. 10):

Since the Black Box considered in this section is limited to have only combinational
substitutions, we can assume the Black Box to calculate an unknown boolean function
β : IB|~a| →IB|

~Z|.
Furthermore, let α : IB|~q|× IB|~x|→IB|~a| be the boolean function of the circuit part calculat-

ing the Black Box inputs ~a and λ : IB|~q|× IB|~x| × IB|
~Z|→IB|~y| resp. δ : IB|~q|× IB|~x| × IB|

~Z|→IB|~q
′|

be the boolean functions of the circuit parts calculating the primary output resp. the next
state. While α just depends on the primary input ~x and the actual state ~q, δ and λ addi-

21

5 Symbolic Model Checking for Black Boxes with Bounded Memory

q

q

q

q

q

-

-

-

-

-

�

-

-

- --

-

-

-

?

P

P

P

P

�

�

�

�

-

-

-

-

-

-

-

-

-

�

-

-

-

-

--

~

Z

~q

~q

0

~y

�

~x

~a

Blak Box

�

�

�

~

Z

Meta-

+

Blak Box

�

�

~a

~

Z

~q

~x

~y

~q

0

�

Æ

Æ

�

tree

plexer

Multi-

Figure 10: Incomplete circuit with one combinational Black Box and the altered circuit in
which the Black Box has been replaced by a Meta Black Box and a readout
function.

tionally depend on the Black Box outputs ~Z. All these functions can be calculated using
symbolic simulation.

Now we describe how to develop a concept for exact solutions to realizability and validity.
To achieve this, we will reduce the question whether there exists a boolean function β so that
ϕ is satisfied (realizability) and the question whether ϕ is satisfied for all boolean functions
β (validity) to existential resp. universal abstraction in propositional logic.

Every function f : IBn → IBm can be described by its corresponding truth table with m·2n

entries; likewise, we can describe the Black Box function β : IB|~a| → |~Z| by a truth table with

|~Z|·2|~a| entries. Since the functionality of the Black Box is constant but unknown, each truth
table entry is constant (due to the combinational nature of the Black Box) but unknown as
well. So we consider each entry to be a boolean variable Zi,j ∈ IB (0 ≤ i < 2|~a|, 0 ≤ j < |~Z|)
with constant, but unknown value. We use ~Z := (Z0,0, . . . , Z0,|~Z|−1, . . . , Z2|~a|−1,|~Z|−1) for
the whole truth table.

A combinational Black Box with function βββ : IB0 → IB|
~Z|·2|~a| (called ‘Meta Black Box’ in

the following) provides such |~Z| · 2|~a| unknown values, which are supposed to be constant,
since the Meta Black Box does not have any inputs. Additionally, we define a readout

function Ω: IB|~a|×IB(|~Z|·2|~a|) → IB|
~Z| that ‘reads’ the entries in the Meta Black Box depending

on the value of ~a. Formally, Ωi(~a, ~Z) := Za,i, whereas a is the integer value described by the
binary number a|~a|−1 . . . a1a0. This readout function can be intuitively realized by using a
multiplexer tree.

22

5 Symbolic Model Checking for Black Boxes with Bounded Memory

For each f : IB|~a| → IB|
~Z| there is exactly one according truth table and vice versa, thus

there is exactly one f : IB0 → IB|
~Z|·2|~a| with f(~a) = Ω(~a, f) for all ~a. So we can replace the

Black Box β by its corresponding Meta Black Box βββ and the readout function Ω (see lower
part of Fig. 10). Obviously, there is a substitution of β so that a property is satisfied iff
there is a substitution of βββ as well. Likewise, a property is satisfied for all substitutions of
β iff it is satisfied for all substitutions of βββ.

Let M = (IB|~q|, IB|~x|, IB|~y|, δ,λ, ~q 0) be the incomplete Mealy automaton developed from
M by the rules given above. λ and δ can be computed from λ, δ, α and Ω as follows:

λ(~q, ~x, ~Z) = λ
(

~q, ~x,Ω
(

α(~q, ~x), ~Z
)

)

δ(~q, ~x, ~Z) = δ
(

~q, ~x,Ω
(

α(~q, ~x), ~Z
)

)

Since the combinational Meta Black Box βββ does not have any inputs, its outputs are to
carry constant values. Thus the Black Box output values do not change throughout an
entire computation run and have a fixed value for each run of the system starting at a
certain initial state (which includes the output values ~Z of the Meta Black Box).

For our exact symbolic model checking, we extend the state space by ~Z. We adjust the
recursive calculation of χSat(ϕ) from the original model checking algorithm to match the new
state space:

χSat(xi)(~q, ~x,
~Z) = xi

χSat(yi)(~q, ~x,
~Z) = λi(~q, ~x, ~Z)

χSat(¬ϕ)(~q, ~x, ~Z) = χSat(ϕ)(~q, ~x, ~Z)

χSat((ϕ1∨ϕ2))(~q, ~x,
~Z) = χSat(ϕ1)(~q, ~x,

~Z) + χSat(ϕ2)(~q, ~x,
~Z)

χSat(EXϕ)(~q, ~x, ~Z) = χEX(χSat(ϕ))(~q, ~x, ~Z)

χSat(EGϕ)(~q, ~x, ~Z) = χEG(χSat(ϕ))(~q, ~x, ~Z)

χSat(Eϕ1Uϕ2)(~q, ~x, ~Z) = χEU (χSat(ϕ1), χSat(ϕ2))(~q, ~x,
~Z)

with χEX(χX)(~q, ~x, ~Z) = ∃~q ′∃~x ′
(

χR(~q, ~x, ~Z, ~q ′) ·
(

χX | ~q←~q ′

~x←~x ′

)

(~q ′, ~x ′, ~Z)
)

and χR(~q, ~x, ~Z, ~q ′) =

|~q|−1
∏

i=0

(

δi(~q, ~x, ~Z) ≡ q′i
)

Both χEG and χEU can be calculated using the original fixed point algorithms shown in
Fig. 2.

Since the outputs of the Meta Black Box ~Z represent the complete truth table of the origi-
nal Black Box β, thus its whole functionality, we can reduce universal/existential abstraction

of the unknown function β to an universal/existential abstraction of ~Z:

∀~Z∀~x
(

χSat(ϕ)|~q=~q 0

)

= 1 ⇐⇒ ϕ is valid

∃~Z∀~x
(

χSat(ϕ)|~q=~q 0

)

= 1 ⇐⇒ ϕ is realizable

Example We check the circuit shown in Fig. 11a with the CTL formula ϕ = AFy0. First, we
replace the combinational Black Box β by its corresponding Meta Black Boxβββ representing a

23

5 Symbolic Model Checking for Black Boxes with Bounded Memory

�

�

�

�

�

�

�

�

h

r

r

h

r

h

r

h

r

r

�

-

?

- -

-

-

�

-

-

-

- -

-

-

-

q

0

0

MUX

1

0

y

0

a

0

q

0

q

0

0

FF

0

x

0

y

0

�a

0

Blak Box

Z

0

a) Inomplete design

FF

0

q

0

Z

0

Z

1

�

�

�

Blak Box

Meta

=)

b) Altered design with Meta-Blak Box

x

0

Figure 11: Example for exact symbolic model checking of incomplete designs with one com-
binational Black Box.

function table with 21=2 entries and the readout function Ω – in this case, just a multiplexer.
The altered circuit is shown in Fig. 11b. We can now calculate λ and δ:

λ(~q, ~x, ~Z) =
(

x0 ⊕ q0 ⊕ (x0 · Z0 + x0 · Z1)
)

δ(~q, ~x, ~Z) =
(

q0 ⊕ (x0 · Z0 + x0 · Z1)
)

This leads to the following transition relation:

χR(~q, ~x, ~Z, ~q ′) =
(

q′0 ⊕ q0 ⊕ (x0 · Z0 + x0 · Z1)
)

Calculation of χSat(AFy0):

χSat(y0)(~q, ~x,
~Z) =

(

x0 ⊕ q0 ⊕ (x0 · Z0 + x0 · Z1)
)

Application of the fixed point algorithm leads to:

χSat(AFy0)(~q, ~x,
~Z) =

(

Z0 ≡ (x0 ≡ q0)
)

+ x0 · (Z0 ⊕ Z1)

Validity and realizability checking:

∀~Z∀~x
(

χSat(AFy0)|~q=~q 0

)

= 0 ⇐⇒ ϕ is not valid

∃~Z∀~x
(

χSat(AFy0)|~q=~q 0

)

= 1 ⇐⇒ ϕ is realizable

So, ϕ = AFy0 is satisfied for at least one, but not all Black Box substitutions (more
precisely, a substituting inverter causes ϕ to be satisfied, while all other possible substitutions
– constant 0 function, constant 1 function, wire – do not).

5.3 Approximate Version of Exact Model Checking for Incomplete

Designs with One Combinational Black Box

The Black Box transformation into its corresponding Meta Black Box has a large impact
on the number of variables needed, since the number of Meta Black Box outputs grows
exponentially with the number of inputs of the original Black Box. Due to the expected
complexity of this, the exact algorithm can be used only for instances with a little number
of Black Box inputs.

24

5 Symbolic Model Checking for Black Boxes with Bounded Memory

We recall the reasoning we have done in Sect. 3 for the automaton shown in Fig. 5b (see
Hypothesis 2 and 3): By giving two simple exemplary Black Box substitutions, we showed
that there is a Black Box substitution so that ϕ2 = EX(EGy0 ∨ AGy1) is satisfied as well
as ϕ2 is not satisfied for all Black Box substitutions. These two examples were the constant
0 function and the constant 1 function – functions without any inputs.

For the general case, we consider a Black Box and a ‘simplified’ Black Box for which some
of the Black Box inputs have been removed. If there is a substitution of the simplified Black
Box so that a certain property is satisfied, then there is a substitution of the original Black
Box satisfying this property as well.

Applied to model checking, this means that if the exact symbolic model checking procedure
for a circuit with a simplified Black Box returns that there is a substitution so that a CTL
property ϕ is satisfied, there is a substitution for the non-simplified Black Box as well. In
this way, we can prove realizability. Analogously, we can conclude from a non-valid result
that there is a substitution of the Black Box not satisfying ϕ and thus falsify validity. So, by
removing some of the Black Box inputs and performing exact symbolic model checking on
the emerging incomplete circuit, we can retrieve sound results without the need to handle the
complete Black Box truth table, as it would have been necessary when using exact symbolic
model checking to verify the original incomplete circuit. We call this method approximate
version of exact symbolic model checking.

Considering a Black Box input coming from a flipflop that has been previously extracted
from a Black Box with bounded memory in order to create a combinational Black Box, it
is easy to see that in case this Black Box input is removed, both the extracted flipflop and
the according Black Box output can be removed too, since they are no longer connected to
any logic and thus do not have any influence on the circuit behavior.

Our prototype implementation MIND starts with considering no Black Box inputs and
adds them again until it is able to prove realizability, to falsify validity, or to make an exact
statement by considering all Black Box inputs, which is equivalent to exact symbolic model
checking.

The reasoning showed above can be applied to exact symbolic model checking, too: If the
assumption of bounded memory reflects restrictions which really exist in a system, exact
symbolic model checking will provide an exact proof of realizability or validity; otherwise,
a Black Box with bounded memory can again be seen as a simplification of a Black Box
with unbounded memory, making it possible to prove realizability and falsify validity for
incomplete circuits containing one Black Box with unbounded memory.

5.4 Symbolic Model Checking for Multiple Black Boxes

Now, we consider a circuit containing more than one, say m Black Boxes. We assume that
all flipflops are already extracted from the sequential Black Boxes as seen in Sect. 5.1, so
that all Black Boxes are combinational. Let βi (1 ≤ i ≤ m) be the unknown function of the
respective Black Box i. Each of these Black Boxes has an input function α1, . . . , αm and an
output vector ~Z1, . . . , ~Zm (see Fig. 12). Furthermore we assume that the Black Boxes are

25

5 Symbolic Model Checking for Black Boxes with Bounded Memory

r

r

r

r

r

r

r

rr

r

r

r

r

r

r

r

r

r r

r

-

-

-

-

-

-

-

-

-

-

-

-

-

-

�

-

-

-

-

-

-

-

-

-

-

-

-

-

�

~a

2

~a

1

~

Z

1

~

Z

2

�

2

�

1

�

1

�

2

~x

~y

Æ

~q

0

~q

�

m

~a

m

�

m

~

Z

m

Figure 12: Mealy Automaton containing multiple Black Boxes

in topological order, meaning that each αi only depends on ~x, ~q and ~Z0, . . . , ~Zi−1, but not
~Zi, . . . , ~Zm.4

Each of these Black Boxes βi can be transformed into a Meta Black Box βββi with readout
function, which leads to a circuit with m combinational (Meta) Black Boxes without any
inputs. It is easy to see that two Black Boxes without any input can be joined into one
Black Box with no inputs and the sum of the two Black Boxes’ outputs. Due to that, we
can join all Meta Black Boxes βββi to one single Meta Black Box. Intuitively, this single Meta
Black Box represents the aggregation of the truth tables of all original Black Boxes.

In the result of doing this, we receive an incomplete circuit with one single Meta Black
Box, which can be handled by using exact symbolic model checking. Furthermore, we can
again achieve an approximate version of this exact symbolic model checking procedure by
simplifying some of the Black Boxes before they are converted to Meta Black Boxes.

5.5 Experimental Results

Our prototype implementation MIND, which has already been introduced in Sect. 4.3, is
also able to perform exact symbolic model checking and its approximate version. For a
given incomplete circuit and a CTL formula, MIND first checks whether it is possible to
prove validity or to falsify realizability by using symbolic Z-model checking, symbolic Zi-
model checking and output consistent Zi-model checking. In case this is not possible, MIND
extracts the flipflops from the Black Boxes5 and then performs the approximative version of
the exact symbolic model checking procedure, starting with no Black Box inputs and adding
them again until it is able to prove realizability or to falsify validity. If at the end all Black
Box inputs had to be included again, then the method corresponds to exact symbolic model
checking.

For our experiments, we used the same class of simple synchronous pipelined ALUs as in
Sect. 4.3. Again, we compare a series of complete pipelined ALUs with 16 registers in the

4If there is no such order, there are replacements of the Black Boxes leading to non-combinational circuits.
5The number of flipflops in the Black Boxes result from upper bounds given by the user.

26

5 Symbolic Model Checking for Black Boxes with Bounded Memory

register file and varying word width to two incomplete pendants: For the first, the adder and
the multiplier are substituted by Black Boxes and for the second, 12 of the 16 registers in
the register file are masked out as well. Each Black Box’s memory was bound to the number
of flipflops the substituted circuit parts had, thus 0 for the adder and the multiplier (since
they were combinational circuits) and the word width w for the registers in the register file.

All experiments were performed on an Intel Pentium4 2.6GHz with 1GB RAM and with
a limited runtime of 12.000 seconds.

In a first experiment we checked the CTL formula ϕ3 = AG
(

(EX)3R ≡ (AX)3R
)

from
[3], which is true for the complete design. If some parts implementing ALU operations are
masked out by Black Boxes, ϕ3 remains valid for all possible replacements of the Black
Boxes as already mentioned in Sect. 3 (for the incomplete pipelined ALU, in which a part
of the register file has been removed, we only considered the remaining registers).

At first, we confined ourselves to proving realizability. We observed that our tool MIND
was able to prove the realizability of ϕ3 for the incomplete pipelined ALU, in which the
adder and the multiplier have been masked out, up to a word width of 10 bit by using the
approximative version of exact symbolic model checking considering no Black Box inputs.
For the incomplete pipelined ALU, in which most of the register file has been replaced by
Black Boxes as well, the realizability of ϕ3 was proven up to a word width of 48 bit with
the same method.

However, note that for proving also validity we have to consider all inputs of the Black
Boxes, finally leading to an application of the exact symbolic model checking procedure.
Thus, proving validity was only possible for small word width (up to 2 bits) with given
resources.

In Tab. 4 we give the results for formula ϕ3 and – with varying word width – both for
the complete pipelined ALU and for proving realizability for the incomplete pipelined ALU.
For each word width and each pipelined ALU, the table shows the number of BDD variables
(‘BDD vars’), the peak memory usage (‘memory used’), the time spent while reordering the
BDD variables (‘RO time’), the peak number of BDD nodes and the overall time in CPU
seconds.

Since a multiplier has a large impact on BDD size and thus on computation time, the model
checking procedure for complete pipelined ALUs with multipliers of word width beyond 6
bit exceeds the time limit. In contrast to that, ϕ3 can be proven to be realizable up to a
word width of 10 bit for the incomplete pipelined ALUs without adder and multiplier.

The results for the incomplete pipelined ALU, in which most of the register file has been
replaced by Black Boxes as well, show a further speedup compared to the complete pipelined
ALU, making it possible to check ϕ3 even up to a word width of 48 bit.

In a second experiment we considered a series of pipelined ALUs, in which adder, multiplier
and register file were completely defined, but in which the control logic has been replaced by a
Black Box. We checked ϕ1 = AG

(

′′
R2 := R0 ⊕ R1

′′ →
(

(AX)2R0 ⊕ (AX)2R1 ≡ (AX)3R2

))

,
which corresponds to formula (1) in [3] and which has already been used in Sect. 4.3.
Obviously, ϕ1 is realizable for the incomplete design, since ϕ1 is satisfied if the Black Box
is replaced by the original control logic, but it is not valid, since it is possible to replace
the Black Box by a control logic that always executes another ALU function (e.g. an OR
function), regardless of the command given at the inputs.

27

6 Conclusions and Future Work

No Blak Boxes Adder and multiplier Adder, multiplier and 12 reg-

replaed by Blak Boxes isters replaed by Blak Boxes

word BDD memory BDD RO BDD memory BDD RO BDD memory BDD RO

width vars used nodes time time vars used nodes time time vars used nodes time time

2 115 9169636 86134 10.95 28.07 120 8760404 45958 16.35 63.63 96 8061332 30254 3.62 6.42

4 191 46662580 189340 59.92 201.41 200 35523796 186430 89.01 350.40 152 37550388 237256 85.27 146.03

6 267 51533348 247909 103.21 820.40 280 51468644 89242 38.14 498.32 208 27289972 44810 12.79 83.86

8 360 54921796 266924 282.69 1286.33 264 51045412 220006 160.58 862.32

10 440 54531636 328496 359.05 2920.53 320 47202708 97833 85.23 347.20

12 376 46820564 62226 31.47 268.34

16 more than 12.000 se. 488 44999300 109491 113.48 540.74

32 more than 12.000 se. 936 51248692 157856 329.93 3218.43

48 1384 52539412 142496 534.30 8809.51

64 more than 12.000 se.

Table 4: Pipelined ALU with 16 registers: Proving the realizability of ϕ3 = AG
(

(EX)3R ≡

(AX)3R
)

using the approximate version of exact symbolic model checking

word BDD memory BDD RO

width vars used nodes time time

1 74 14897060 25332 1.29 5.11

2 112 10275588 70720 9.53 11.47

3 150 20327956 139241 34.06 43.80

4 188 83659412 470578 200.98 512.54

5 226 103940084 2537356 2108.86 40877.23

6 more than 60.000 se.

Table 5: Pipelined ALU with 16 registers, in which the control logic has been replaced
by a Black Box: Proving the realizability and disproving the validity of ϕ1 =
AG

(

′′
R2 := R0 ⊕ R1

′′ →
(

(AX)2R0 ⊕ (AX)2R1 ≡ (AX)3R2

))

by using the approx-
imate version of exact symbolic model checking

In Tab. 5 we give the results for the incomplete pipelined ALUs tested with ϕ1. MIND
was able to prove the realizability and disprove the validity up to a word width of 5 bits
before exceeding an extended time limit of 60.000 seconds. Note that the pipelined ALUs
considered in this series of experiments contained a combinational multiplier, which has a
large impact on the number of BDD nodes and thus on computation time.

6 Conclusions and Future Work

In the first part of this paper, we introduced three approximate methods to realize symbolic
model checking for incomplete designs. Our methods are able to provide sound results for
falsifying realizability and for proving validity of incomplete designs (even if the Black Boxes
lie inside the cone of influence for the considered CTL formula).

Additionally, we introduced a concept for exact symbolic model checking of incomplete de-
signs containing several Black Boxes with bounded memory and developed an approximate
version of this method trading off accuracy and computational resources. This approximate
version is still able to provide sound results for proving realizability and for falsifying va-
lidity of incomplete designs including Black Boxes with bounded memory (potentially even
including Black Boxes with unbounded memory).

Experimental results using our prototype implementation MIND proved that the need for
computational resources (memory and time) could be substantially decreased by masking

28

6 Conclusions and Future Work

complex parts of a design and by using model checking for the resulting incomplete design.
The increase in efficiency was obtained while still providing sound and useful results. Fur-
ther, we were able to handle circuits with masked control logic, proving the realizability and
disproving the validity of the given property.

At the moment we are working on further improvements concerning the accuracy of our
approximate symbolic model checking methods.

29

References

References

[1] E.M. Clarke, E.A. Emerson, and A.P. Sistla. Automatic verification of finite–state
concurrent systems using temporal logic specifications. ACM Trans. on Programming
Languages and Systems, 8(2):244–263, 1986.

[2] R.E. Bryant. Graph - based algorithms for Boolean function manipulation. IEEE Trans.
on Comp., 35(8):677–691, 1986.

[3] J.R. Burch, E.M. Clarke, K.L. McMillan, D.L. Dill, and L.J. Hwang. Symbolic model
checking: 1020 states and beyond. Information and Computation, 98(2):142–170, 1992.

[4] K.L. McMillan. Symbolic Model Checking. Kluwer Academic Publisher, 1993.

[5] A. Cimatti, E.M. Clarke, F. Giunchiglia, and M. Roveri. NuSMV: a new Symbolic
Model Verifier. In N. Halbwachs and D. Peled, editors, Proceedings Eleventh Conference
on Computer-Aided Verification (CAV’99), number 1633 in Lecture Notes in Computer
Science, pages 495–499, Trento, Italy, July 1999. Springer.

[6] The VIS Group. VIS: A system for verification and synthesis. In Computer Aided
Verification, volume 1102 of LNCS, pages 428–432. Springer Verlag, 1996.

[7] K.L. McMillan. The SMV system - for SMV version 2.5.4. Carnegie Mellon University,
Nov. 2000.

[8] K. L. McMillan. The SMV language. Cadence Berkeley Labs.

[9] T. Villa, G. Swamy, and T. Shiple. VIS User’s Manual. Electronics Research Labora-
tory, University of Colorado at Boulder.

[10] A. Pnueli and R. Rosner. Distributed systems are hard to synthesize. In 31th IEEE
Symp. Found. of Comp. Science, pages 746–757, 1990.

[11] C. Scholl and B. Becker. Checking equivalence for partial implementations. In Design
Automation Conf., pages 238–243, 2001.

[12] Michael Huth, Radha Jagadeesan, and David Schmidt. Modal transition systems: A
foundation for three-valued program analysis. In Sands D., editor, Proceedings of Euro-
pean Symposium on Programming, number 2028 in Lecture Notes in Computer Science,
pages 155+. Springer, April 2001.

[13] J.R. Burch and D.L. Dill. Automatic verification of microprocessor control. In Computer
Aided Verification, volume 818 of LNCS, pages 68–80. Springer Verlag, 1994.

[14] K. Sajid, A. Goel, H. Zhou, A. Aziz, and V. Singhal. BDD-based procedures for a theory
of equality with uninterpreted functions. In Computer Aided Verification, volume 1447
of LNCS, pages 244–255. Springer Verlag, 1998.

[15] S. Berezin, A. Biere, E.M. Clarke, and Y. Zhu. Combining symbolic model checking
with uninterpreted functions for out-of-order processor verification. In Int’l Conf. on
Formal Methods in CAD, pages 369–386, 1998.

30

References

[16] R.E. Bryant, S. German, and M.N. Velev. Processor verification using efficient reduc-
tions of the logic of uninterpreted functions to propositional logic. ACM Transactions
on Computational Logic, 2(1):1–41, 2001.

[17] A. Jain, V. Boppana, R. Mukherjee, J. Jain, M. Fujita, and M. Hsiao. Testing, verifica-
tion, and diagnosis in the presence of unknowns. In VLSI Test Symp., pages 263–269,
2000.

[18] M. Abramovici, M.A. Breuer, and A.D. Friedman. Digital Systems Testing and Testable
Design. Computer Science Press, 1990.

[19] C. Scholl and B. Becker. Checking equivalence for partial implementations. Technical
Report 145, Albert-Ludwigs-University, Freiburg, October 2000.

[20] F. Somenzi. CUDD: CU Decision Diagram Package Release 2.3.1. University of Col-
orado at Boulder, 2001.

[21] H. Higuchi and F. Somenzi. Lazy group sifting for efficient symbolic state traversal of
FSMs. In Int’l Conf. on CAD, pages 45–49, 1999.

[22] R. Hojati, S.C. Krishnan, and R.K. Brayton. Early quantification and partitioned
transition relations. In Int’l Conf. on Comp. Design, pages 12–19, 1996.

31

