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Abstract

We consider the problem of checking whether an implementathich contains parts with
incomplete information is equivalent to a given full speatfion. We study implementations which
are not completely specified, but contain boxes which arecsted with incompletely specified
functions (called Incompletely Specified Boxes or IS-Boxes

After motivating the use of implementations with InconghyeSpecified Boxes we define our
notion of equivalence for this kind of implementations aresent a method to solve the problem.

A series of experimental results demonstrates the effeess and feasibility of the methods
presented.

1 Introduction

Verification, i.e. the check whether a circuit implemergatiulfills its specification, is a crucial task
in VLSI CAD. Growing interest in universities and industrgdlead to new results and significant ad-
vances concerning topics like property checking, stateespraversal and combinational equivalence
checking [7, 10, 24, 19, 8, 26, 18].

For the purpose of this paper combinational equivalencelgchg is of particular interest. Here, the
task is to check whether the Boolean functions correspgnidithe specification and the implemen-
tation are the same. Besides functional validation by tha@ieation of test patterns, mainly two
approaches are used to perform the equivalence check: Gsibjbity is to translate implementation
and specification into one Boolean formula which is satigdiaband only if implementation and
specification do not realize the same Boolean function [2213]. As an alternative, implementation
and specification can be transformed into a canonical forch shat the equivalence check reduces
to a check whether the canonical representations of impleatien and specification are the same.
BDDs [3] and Word-level Decision Diagrams such @&bs [6], HDDS [9] or K*BMDS [12] are pop-
ular choices for such canonical forms. Recent approachegrate the use &#bbs andsAT-Solvers

to combine advantages of both methods [15, 8, 26, 18]. Whedifggation and implementation are
structurally similar, correspondences between interndkes can be used to simplify the verification
problem [17, 27, 23, 19, 8, 26].

Recently, the problem of ‘Black Box Equivalence Checkinghich occurs when the specification
is known, but only parts of the implementation are finished&rmown, has been addressed [16, 14,
29]. Parts of the implementation which are not finished ovkmare combined into ‘Black Boxes'.
An error is found in an implementation with Black Boxes, ietimplementation differs from the
specificationfor all possible substitutions of the Black Boxes. there exists no completion of the
partial implementation that makes it equivalent to the spation. There are several motivations for
considering the Black Box Equivalence Checking probleme @pplication is equivalence checking
in early stages of the design, when a partial implementasiot yet finished, a second application
is the ‘abstraction from difficult parts’ in a (finished) ingphentation, and a third application consists



in error diagnosis, where candidate regions for design&ee combined into Black Boxes resulting
in a Black Box Equivalence Checking problem.

In this paper we look into a related problem, which also hasidinplementations with incomplete
information: Here we assume boxes, which are not completatpown like Black Boxes, but rather
implement anncompletely specified functiol/e call boxes of this kinthcompletely Specified Boxes
or IS-Boxes (For small examples of implementations with IS—-Boxes sgeré 1. The IS—-Box
realizes the functiot + 3 with a don’t care for input vectai0, 0). The corresponding specification
for the whole circuit is the functiori = z; ® z».)

Incompletely Specified Boxes can occur, when a larger daesigartitioned into blocks, where some
blocks are incompletely specified. After a partition of thesigin into (completely or incompletely
specified) blocks has been done in an early stage of the desigass, it should be checked, whether
the partitioning result is still equivalent to the specifioa. (This includes — among other things —
the question whether the don’t cares which were specifietifeBoxes can really be used as don't
cares in this implementation containing IS—-Boxes.) Theenirimplementation is only correct, if it
is equivalent to the specificatidar all possible assignments to the don’t cares of the IS-Boxesg sin
the designer of an IS-Box is allowed to assign the don’t caresrarily and the implementation has
to be correct independently from the actual choice for th&tdmres. An error is found, there isan
assignment to the don’t cares of the IS-Boxes, such thaemmghtation and specification differ for
at least one primary input vector. We believe that incoresstumptions about the behaviour of the
environment of subcircuits are frequent sources of desigire For instance, the well-known bug
in the Pentium floating point divider [30] was probably dughe incorrect assumption that certain
inputs of the PD table to generate the quotient bits weretaames [5].

Another possible application of IS-Boxes could be the useaaimpletely specifielahtellectual Prop-
erty cores (IP cores) in an implementation. Under the assomhat the IP vendor does not publish
the don't care assignment actually used in the design of Bheores (for reasons of Intellectual
Property protection), the IP cores have to be viewed as Iptetely Specified Boxes. The problem
which has to be solved is to check whether specification apdeimentation with incompletely spec-
ified IP cores are equivalent. Again, specification and imgletation with IS—-Boxes can be called
equivalent only if they are equivalent for all possible gasnents to the don't cares of the IS-Boxes
(incompletely specified IP cores).

In this paper we present a method to solve the problem of atgniee checking for implementations
with IS-Boxes. The problem is reduced to a symbakosDD based simulation [4] of the spec-
ification and a modified version of the implementation folemvby a simple check for equality of
ROBDDS.

Although we are using@oBDDs in our implementation of the method, it is straightforwaamv to
apply the method also to equivalence checking based on Boskisfiability.

The paper is structured as follows: In Section 2 we give soraknpinaries. The following section
defines the problem of equivalence checking for implementatvith Incompletely Specified Boxes,
compares the notion of equivalence for implementationk ¥@8tBoxes to the notion of equivalence
for implementations with Black Boxes [16, 14, 29], and figaill points out the relationship between
our problem and the computation of satisfiability and obaleitity don’t cares. In Section 4 we
present our solution to the problem. Our method is evaluayezkperiments in Section 5. The paper
ends with some concluding remarks and directions for funtésearch in Section 6.

2 Preliminaries

Let f: {0,1}" — {0,1} be a completely specified Boolean function witinputs.

Incompletely specified Boolean functions with domairare functionsf : D — {0,1} with D C
{0,1}™. {0,1}\ D is called ‘don’t care set’ of . An incompletely specified function with domain
D can be represented by a péaivver, dc) of (completely specified) Boolean functions, whele
is a characteristic function of the don't care set, i&:.,: {0,1}" — {0,1} with dc(e) = 1 iff

e ¢ D (Ve € {0,1}"), andcover : {0,1}" — {0,1} is an arbitrary function with the property
cover(e) = f(e) foralle € D. A completely specified functiorf’ : {0,1}" — {0,1} is called a
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Figure 1: Two different implementations with an IS—Box. Tpecification of the whole circuit for
both cases ig°"F? = 11 @ z,.

‘(completely specified) extension’ ¢f: D — {0, 1} iff f'(e) = f(¢) forall e € D.

Boolean functions can be representedemps [21, 1, 25]. In the restricted form &foBDDs they
even provide canonical representations for Boolean fanstand they allow efficient manipulations
[3]. ROBDDs can be used to check equivalence of Boolean functions by@alesicheck for equality.
Since we work only witrRoBDDs in the following we briefly call thersDDs.

Given a circuit representation of a Boolean functioapa for this Boolean function can be computed
by symbolic simulatio4]. At the beginning of the symbolic simulation each inpéitize circuit is
associated with a uniquepD variable. Then th&DD representations of the functions computed by
the gates of the circuit are computed in topological ordartisty with the inputs. TheDD for the
function of a gate can be computed usBmwp operations [3, 2], when thebps for the functions of
all its predecessor gates are already computed.

3 Incompletely Specified Boxes

Implementations containintpcompletely Specified Boxésr IS—Boxepare circuits which contain
boxes whose outputs are associated with incompletely fsgedunctions. Leto; be an output of

an 1S-BoxI S; with input variables?, . . ., z{J Theno; is associated with an incompletely specified
functiong;, which may be represented by a pair of completely specifiedtfons(cover;, dc;), where
cover; anddc; depend on variables, . . . ,z’{j anddc; is the characteristic function of the don't care
set ofg;.

Two small examples for implementations containing IS—Boaee shown in Figure 1. The incom-
pletely specified functiory; associated with the IS-BokS; in both examples is represented by
(covery,dey) = (it + 43,41 - 4}), i.e, the don't care set of; is {(0,0)}. There are two possible
completely specified extensions @f namely the functiow; (i}, 1) = i1 + il (where the don't care
(0,0) is set to 1) and the functiog' (i}, i3) = i} @ i (where the don't caré0, 0) is set to 0). The
corresponding specification for the complete circuit isfthestion f57F% = z; @ 5.

3.1 Equivalence of specifications and implementations witt5—Boxes

When an IS-Box is used in a partition of a design into compjleted incompletely specified boxes,
implementation and specification can be called equivalaht ib they represent the same Boolean
functionfor all possible replacements of the incompletely specffiedtions by completely specified
extensionssince the designer of an IS-Box has the freedom to choosddrasy assignment to the
don't cares and the overall circuit has to be correct in asgca

In the example of Figure 1 this means that the implementasionly correct, if it fulfills its specifi-
cation both for the replacement of the IS-Bb%; by functiong; andfor the replacement afS; by
91-

In the next section we present a method to decide, whetheifigpgions and implementations con-
taining IS—-Boxes are equivalent in the sense defined above.



3.2 Comparison to equivalence for implementations with Blak Boxes

Before presenting an algorithm for equivalence checkindom& into the relationship between the
equivalence checking problem for implementations withB8&xes and the equivalence checking
problem for implementations with Black Boxes [16, 14, 29].

At first sight the equivalence checking problem for impletagions with Black Boxes seems to be a
special case of the corresponding problem for IS—-Boxeseditack Boxes are boxes of which we do
not know anything, i.e., they can be modeled by incompletphcified functions where the domain is
empty. However, the two problems are applied in differemiterts which leads to different notions
of equivalence:

¢ As already mentioned, an implementation with IS-Boxemiscorrect if there isa replacement
of the IS—-Boxes by completely specified extensions, sudhhbaesulting implementation does
not fulfill its specification.

¢ In contrast, an implementation with Black Boxesst correct if for all replacements of the
Black Boxes by some completely specified functions the teguimplementation does not
fulfill its specification. A Black Box represents a part of tingplementation which is not yet
finished. Thus, an error can only be reported, if the pari@léementation can not be completed
to a correct overall implementation by any implementatmrifie Black Boxes.

So we have two completely different notions of equivalermeBiack Boxes and IS—Boxes.

3.3 Relation to the computation of satisfiability and obserability don’t cares

The problem of equivalence checking for implementationth ws—Boxes is related to the compu-
tation of satisfiability and observability don’t cares [1ided in logic synthesis: In fact, we have to
check, whether the don’t cares given for the IS—-Boxes arsfisdtility and observability don’'t cares
for the output functions of the boxes (under the assumptiahthe function of the overall circuit is
defined by the specification). Thus, a naive approach to selvproblem — at least for the case that
there is only one 1S—-Box with only one output — would be the patation of the complete set of
all satisfiability and observability don’t cares for the E&x followed by a check, whether the given
don't care set for the 1IS-Box is a subset of the computed setveier, the following facts prohibit
this approach:

e For large circuits, the computation of satisfiability andetvability don’t cares can be expen-
sive. For this reason, the computation of don’t cares fortiscuit usually considers only an
environment of the subcircuit and not the whole circuit iagdo asubsebf the don't care set.
However, we need the complete set of satisfiability and elabdity don't cares to prove that
the given don't care set for an IS—Box is not correct.

e For IS-Boxes with several outputs and for several IS-Baxésd implementation the situation
will be much more complicated: In this case the flexibilitysita be expressed by Boolean
relations or by sets of Boolean relations, since the dedgrée@dom given at one output of an
IS—-Box depends upon the other outputs [33]. Also in this eesevould need theomplete
information on flexibility for the IS-Boxes to decide whetlibe given don’t care sets for the
IS—Boxes are not correct.

Fortunately, we do not need to compute the complete infoomain flexibility for the IS—Boxes to
solve our problem. In the following section we present a msiafipler solution to the equivalence
checking problem for implementations with IS—-Boxes.

4 Solution to equivalence checking for implementations wit IS-

Boxes

In this section we present a method to solve the equivalemeekang problem for implementations
containing 1IS—-Boxes. Our approach is based on the followdleg: We use additional variables



for the outputs of the IS-Boxes, which are used to model thugiction in the presence of don't
care values at the inputs of IS-Boxes. The complete behawioilne implementation can then be
represented by a function depending on the circuit’s pynrgsut variables and the newly introduced
variables. We obtain the following necessary and suffictemtdition for equivalence: Specification
and implementation are equivalent if and only if the resgltimplementation function is exactly
equal to the specification function. In particular, the iexpentation function finally must not depend
on values assigned to the newly introduced variables.

We assume an implementatidid/ PL, which hasn primary inputszy,...,z, andb IS-Boxes
ISy,...,1Sy,. The IS-Boxes havé (I > b) outputso,...,o0." 1S-Box I.S; depends o, input
variables?, . .. ,z’{j. Each outpub; (1 < i <) of an IS-Box/.S; is associated with an incompletely

specified function represented by the gairver;, dc;), wheredc; is the characteristic function of the

don't care set fob;. cover; anddc; depend on the input variablés . . ., z’{j of IS-BoxI5;.

Now we introduce new variables, . . ., z; for the outputs, . . . , o; of the IS-Boxes. For each output
o; of an IS-BoxI/.S; we define a function

isi(4, ..., i?j, 2;) = de; - cover; + de; - z;

depending on input variable .. ., i , .

Let IMPL_z be the circuit which results from the implementation with-B®xes by replacing
the outputs of IS-Boxes by functioris;, i.e., by replacing output; of IS-Box I.S; by function
isi(il, ... ,z’{j,zi), respectively. Moreover, lef/MPL-=(z, ... x,, 2,...,2) be the Boolean func-
tion computed by output of I M PL_z and letfSFEZ be the corresponding output of the specification
SPEZ.

Then the following theorem gives a necessary and sufficemdition for the correctness of the im-
plementation with IS-Boxes:

Theorem 4.1 Using the notations defined above the following two propmsstare equivalent:

1. Outputk of implementatiod M PL is not equivalent to output of specificationSPEZ, i.e.,
there is a replacement of the outputsof IS-Boxed S; by completely specified extensions

csi(i, .. .,z’{j) leading to a circuit/ M PL_cs, such thatfIMPL-cs(xy ... z,) # fEPP%(xy,
ey Tp)-

2. fIMPL= £ ¢SPEZ j e, thereide,. .., €n,01,...,0) € {0, 1} with fIMPL=(¢; . ey, 01,
5 SPEZ
0 # Sk (€1, ., €n).

Proof:
2. = 1"
Let (e, ..., €n,d1,-..,0) € {0,1}"* be an input vector which distinguishes betwggl 77—
andfSPPZ ie., fIMPLZ (e, en, 01, ., 01) 7 [EFEZ (€1, ... €n).
Then we defind M PL_cs as follows: For each output of an IS-Box/.S; we choose
csi(i{, o Z{J) = dc; - cover; + dc; - 0;,
i.e., all don'’t cares of output; of IS-BoxIS; are fixed toj;.
Under the assumption that input vecter, . . ., ¢,) is applied to circuit/ M PL_cs and input
vector(ey, ..., €y, 01,...,0;) is applied to circuif M PL_z, we can prove that all corresponding

signals infM PL_cs andIM PL_z ? have the same value. The proof is done by induction on
the depth of the signals:

Signals with depth 0 are primary inputs. Corresponding anymnputsz; of /M PL_cs and
IMPL_z have valueg;. Now consider corresponding signals with degtis 0:

lEach IS-Box has at least one output.
2Since bothI M PL_cs andIM PL_z result fromIM PL by replacement of IS-Boxes, ‘corresponding signals’ are
signals which result from identical signals iV P L.



Case 1. The signals are computed by a ggi@ot by an IS-Box).
The input signals of; for IMPL_cs andIM PL_z are corresponding signals and have
the same value according to the induction hypothesis. Thrisignals computed hyin
IMPL_csandIM PL_z are the same.

Case 2: The signals are computed by outputf an IS—BoxI S;.
Let the input signals of/.S; be ], ... ,z’{j. 9, z’{j are corresponding signals in
IMPL _cs andIMPL_> and have the same values (according to the induction hypoth-
esis). Let the vector of values fd, . . . ,i{j be(ay,...,q;). INIMPL_z, o; is associated
with a functionis;(#, . . ., z’{j, z) = de; - cover; + de; - z;. In IMPL_cs, o; is associated
with function csi(i{, e zf]) = dc; - cover; + dc; - 6;. If de;(au, .. ., ay;) = 0, then both
is; andcs; computecover;(au, . . ., oy, ); if dei(aq, . .., aq;) = 1, bothis; andes; compute
valued;, sincez; is a primary input of M PL_z and is set t@;.

Since all corresponding signals i/ PL_cs andI M PL_z have the same value, we can con-

clude thatfIMFPL-cs(ey, ... e,) = fIMPL-2(¢; ... €,,61,...,8) and thusfIMPL-cs(¢; .
En) 7é kaPEZ(ela BRI Gn)-

1. =2
Assume that there is a replacement of the outputd IS—BoxesI S; by completely specified
extensionss; (i, .. ., 4,), such thatffMPr=*(e1, ... &,) # f7TF7 (e, ..., ) for (€1, ... )
€ {0,1}.

The outputso; of IS-BoxesIS; are associated with incompletely specified functions repre
sented by(cover;, dc;) (1 < i <1). Sincecs; is a completely specified extension of the incom-
pletely specified function represented (ayver;, dc;), we havecs; = dc; - cover; + dc; - h; for
some Boolean functioh; depending on variables, . . ., z{]

For primary input vectofey, .. ., ¢,) let §; be the values computed by outputf IS-Boxes

IS; in circuit IMPL_cs (1 < i < 1). Now we claim thatfIMPL-=(¢; ... €,,61,...,8) =
LMPLCcs () ep).

As in part ‘2. = 1., we prove by induction on the depth of signals that inpatters
(€1,...,€,) @nd (e, ..., €n,01,...,0;) lead to the same values for corresponding signals in

IMPL csandIMPL_z. Itis easy to see that this is true for signals with depth Ofandignals

which are computed by gates different from outputs of IS-ddoNow consider a signal which

is computed by output; of an IS-BoxIS;. Let (a4, ..., o) be the vector of values for the
input signalsy, ..., of IS;in IMPL_cs andIMPL_z. If de;(eu, ..., a;,) = 0, then both
is; in IMPL_z andcjsi in IMPL_cs computecover;(au, ..., ay). If dej(au,...,a;) = 1,
thenes; computesh;(as, . .., ;) = §; andis; (i, . .. ,i{j, %) = de; - cover; + de; - z; computes
d;, t00, sincez; is set tod; by the assignment made to the primary inputs &f PL _z.

O
Based on Theorem 4.1 we use the following method to checkalgmce of specifications and im-
plementation containing IS—Boxes:

1. Replace each outpuf of an IS-BoxIS;, which is associated with an incompletely specified

function represented biover;, dc;), by the functionis; = dc; - cover; + dc; - z; with a new
variablez;.

2. Compute for each outpitof the resulting circuif M PL_z theBpp for f{MPL-= by symbolic
simulation.

3. Compute for each outpitof the specification thepp for f77#Z by symbolic simulation.



4. Check whether thepps for f{MPL-= and f7F¥% are different for some primary outpit If
this is the case, then specification and implementation arequivalent, otherwise they are
equivalent.

Example 4.1 Consider the implementations in Figure 1. Both implemeéomstcontain one IS—-Box
realizing an incompletely specified function representgddovery, dc;) = (if + il, i - 41). The
corresponding specification is the functi6ft'Z = z; @ z,.

For symbolic simulation, the IS—Box is replacedidy = dc; - cover, +de, - 2, = (i} +14) (i +14L) +

il il 1. For each gate, symbolic simulation computes the funceatized by the gate depending on
primary inputs. Gates are processed in topological order.

For Implementation 1, symbolic simulation computes

o for oy fIMPL= = (21 + 25)(T1 + T2) + T1 T3 21 = €1T3 + T1x2 + T T3 21,

e forl: flIMPL_z =1 ({IMPL_Z =1 Tq,

° for r fTIMPL_Z =Ty - ({IMPL_Z — 37_1 - X9,

e and finally f/MPL-# = fIMPL-z 4 fIMPL = — g, .75 + Ty - g = T1 D 2.

Since fIMPL-z — SPEZ the implementation is equal to the specificatindependently from the
assignment to the don't cares of the IS—Boxl thus implementation and specification are equivalent.
For Implementation 2, symbolic simulation computes

o for oy gIMPL= = (31 + 2,) (1 + ) + 71 T 21 = 2173 + Tiwa + 71 T3 21,
o forl: g/ MPL= =5 - gIMPL= = 4T + 31 15 21,
[ ] fOF r. g,{MPL_Z =1Iy- gngPL_z — I_l T,

e and finallyg'MPL-= — glIMPL‘Z + gIMPL2 = gy - Ty + T T3 21 + T1 * To.

Since g!MPL-= o ¢SPEZ — 4. @ z,, implementation and specification amet equivalent. Note
that in this example there is a don't care assignment for $adbx, such that implementation and
specification will become equal. If the output of the IS-Boxk ihput (0, 0) is chosen to be 0, then
implementation and specification will be equal. Howevethéd output of the 1IS-Box for inpyb, 0)

is 1, then implementation and specification witit be equal and thus, the specification and the im-
plementation containing an IS—Box are calleat equivalentsince the implementation has to fulfill
its specification for all possible assignments to the daares.

5 Experimental results

To evaluate our method for equivalence checking in the peEsef IS-Boxes we implemented the
described procedure usidgy/ DD 2.3.0 [31] as the underlyingDD package. Dynamic reordering
[28] was activated during all experiments. The experimemie performed on a Pentiumlll PC with
550 MHz, 1 GB memory, running Linux 6.3.

Although, for the purpose of this paper, our implementaisorestricted ta®DDs, it should be men-
tioned that it is straightforward to incorporate other aggmhes likesAT based equivalence checking
[32, 22, 13] or approaches combining the strengthsomd based andAT based methods by a tight
integration [15, 8, 26, 18]. Furthermore, for specificai@nd implementations having structural
similarities, methods which identify equivalences betwedernal nodes to simplify the verification
problem [19, 8, 26] are applicable to our problem, too.

To obtain circuits with IS-Boxes we generated implemeatetiwith IS-Boxes from benchmark cir-
cuits: For each benchmark circuit a certain fraction of theeg was randomly selected to form 1S—
Boxes. In a first experiment (Table 1) we included 10% of theegén one IS-Box, in a second



Specification Implementation, 10%, 1 Box
no error error

circuit|| in| out|||#nodeg time||| %dc| #nodegtime| #nodegtime
alu4 14| 8 530| 0.61]|| 25% 378/ 0.24 391/ 0.10
apex7| 49| 37 294 0.14{]10% 295/ 0.06 269| 0.06
comp | 32| 3 137 0.08]||37% 137/ 0.05 117/ 0.04
terml| 34| 10 82| 0.12]|| 35% 81| 0.06 88| 0.06
C432 | 36| 7| 1212 0.27||58%| 1240/0.20] 1699 0.22
C499 | 41| 32||| 30104 11.45)||60%|| 37148 8.77| 3877Q 9.43
C880 | 60| 26| 4814 1.83|||27%| 4662 0.50] 4674 0.54
C1355| 41| 32||| 26901 11.06||| 32%|| 30581] 4.02| 35529 7.56
C1908| 33| 25| 7161] 4.70||| 54%| 7040/1.63| 7165 1.85
C2670233|140||] 2141] 5.21|||22%| 3784]1.62| 4374/ 1.97
C3540| 50| 22||| 36114 20.43||| 19%|| 36855 4.89| 37564 5.82
C5315|178|123|| 1989 3.66|| 5%]| 1932/1.21| 1954/ 1.22
C7552|207|108||| 8545|17.44||| 20%|| 10908 4.67| 8330| 3.99

Table 1: 10% of the gates included in one IS—-Box

experiment (Table 2) 10% of the gates in five IS—Boxes and mrd experiment (Table 3) 40% of
the gates in one IS-Box. The incompletely specified funetion the outputs of the IS-Boxes were
computed based on the original benchmark circuit: For apuiut of an 1IS-Box the incompletely
specified function is represented by a fairver;, dc;). The functioncover; was chosen as the func-
tion originally implemented in the benchmark circuit and thnctiondc; was obtained by computing
satisfiability and observability don’t cares [11] for the-EBx. Bothcover; anddc; were represented
by aBDD and were associated with the IS-Box.

The original benchmark circuit was used as the specification

In a first set of experiments we used the circuit with IS-Bos@siputed as described above as the
implementation. In this case, specification and implentertare equivalent, since the don’t cares
for the outputs of the IS-Boxes are satisfiability or obskeiitg don't cares of the Boxes in the
original benchmark circuit. In a second set of experimemswerted errors into the implementations
with IS-Boxes to check the robustness of our method for ewas implementations. We randomly
selected a gate, which did not belong to an 1S-Box, and iedem error. The error type was also
selected randomly between several choices: We added/ezhav inverter for an input or output
signal of the gate, changed the type of the gatel{ to or, Or or, to andy) or removed an input line
from anand or or gate.

All reported results are an average on 5 different randoectehs of IS-Boxes and in the case of
error insertions also an average on 100 different randoetsehs of error insertions.

Tables 1, 2 and 3 show the results of the experiments. In cdum2, and 3 the names of the bench-
marks, and the numbers of inputs and outputs are given. Gofugives the numbers &BDD nodes
needed to represent the specification; column 5 shows theti@ild in seconds to compute teBD
representation of the specification. Column 6 gives theamesfraction of minterms, which are used
as don’t cares for the different outputs of the IS—Boxes.nlthe results for two sets of experiments
are presented: For the first experiment, where no errors insegted, columns 7 and 8 show the
numbers oBDD nodes and the CPU times needed for symbolic simulation aftpé&ementation and
in columns 9 and 10 the same information is given for the sgexperiment using error insertions.

The observations made based on the experiments are the @ahables 1, 2 and 3 (10% of the gates
included in one 1S—-Box, 10% of the gates included in five ISx¢30and 40% of the gates included
in one IS-Box): The symbolic simulation of implementatiovith IS-Boxes shows no performance
degradation at all compared with the symbolic simulatiothefspecification. This observation is true
for different sizes and numbers of IS-Boxes. In our expenisi¢his property also did not change
when errors were inserted into the implementations wittBiSkes. This clearly demonstrates the
feasibility of our approach.

30f course, the circuit modifications described above do moeasarily lead to errors in the implementation. For our
results we used only those modifications, which really |eagrtors.



Specification]| Implementation, 10%, 5 Boxeg
no error error

circuit|| in| out|||#nodeg time||| %dc| #nodegtime| #nodegtime
alu4 14| 8 530] 0.63||| 99% 447)0.52 489 0.23
apex7| 49| 37 256| 0.15|||42% 273/ 0.07 249/ 0.07
comp | 32| 3 137] 0.08]]| 71% 137/ 0.04 138/ 0.04
terml| 34| 10 91| 0.14|||45% 81| 0.06 92| 0.07
C432 | 36| 7| 1212 0.25||23%| 1296/0.18] 1515 0.15
C499 | 41| 32||| 26408 10.87||| 50%|| 25974 2.70| 33758 5.37
C880 | 60| 26| 4738 1.91)|22%| 4938/0.52| 4750 0.56
C1355| 41| 32||| 26085 10.38||| 91%|| 27425 3.52| 36805 7.71
C1908| 33| 25| 7108 4.77||99%| 7661|3.78] 7391 3.60
C2670233|140||] 2377] 5.77|||91%| 2193/1.38| 4352/ 2.09
C3540| 50| 22||| 36154 30.39||| 85%|| 30160 9.52| 30271 7.57
C5315|178|123|| 2199 3.61)||69%| 2386|1.39] 2224 1.34
C7552|207|108||| 22751 46.38|| 79%|| 15724 7.80| 13720 7.09

Table 2: 10% of the gates included in five IS-Boxes

Specification Implementation, 40%, 1 Box
no error error
circuit|| in| out|||#nodeg time||| %dc| #nodeg time| #nodeg time

alud 14] 8 384 0.21]||16% 361| 0.05 383| 0.06
apex7|| 49| 37 294 0.14{|| 10% 295| 0.06 269| 0.06
comp || 32| 3 137] 0.07|||29% 147] 0.04 125] 0.04
terml1 || 34| 10 82| 0.13[||30% 81| 0.06 82| 0.06
C432 || 36| 7] 1321 0.54|][44%]| 2119 1.66| 2046 0.58
C499 || 41| 32|l 30104 11.34]||60%|| 41640[21.13]| 33979 14.65
C880 || 60| 26| 4814] 1.85|][27%| 4662 0.50] 4674 0.54
C1355| 41| 32][| 26901] 11.07||| 32%|| 28986 16.35|| 35573 17.09
C1908|| 33| 25| 8371]35.32|||60%|| 7872/60.88] 7534|23.24
C2670]| 233 140|]] 2141 5.26|] 2%| 3004 1.40[ 4118 1.93
C3540|| 50| 22} 36114 20.50|| 19%|| 36855 4.91] 37566 5.83
C5315[[178[123]]| 1989 3.63||| 5%|| 1932 1.21]] 1955 1.22
C7552[[207]108|[| 10466/ 24.39||| 9%|| 9738 3.88| 8348 3.73

Table 3: 40% of the gates included in one 1S—-Box

6 Conclusion and future work

In this paper we introduced the concept of equivalence éhgdhr implementations with IS-Boxes.
The relationship of this notion of equivalence to the egleinee for implementations containing Black
Boxes was clarified. We presented a method based on symbulitasion to solve the problem of
equivalence checking for implementations with IS-Boxegydfimental results prove the feasibility
of the approach.

It is straightforward that the method of Section 4 can alsaw$ed in connection with equivalence
checking based on Boolean satisfiability. The transforomadif the problem into a CNF formula can
be done using methods from [20, 22], e.g.. Since after tmstoamation of Section 4 the remaining
task consists in comparing two combinational circuits fexorporation of recently presented methods
combining the strengths @D based andAT based algorithms by a tight integration can be applied
to our approach, too. For the same reason also methods tfydequivalences between internal
nodes to simplify the verification problem for circuits witructural similarities are applicable to our
method.

For the future, we are planning to generalize the approathawerification of sequential circuits
containing IS—Boxes.
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