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Abstract

We consider the problem of checking whether an implementation which contains parts with
incomplete information is equivalent to a given full specification. We study implementations which
are not completely specified, but contain boxes which are associated with incompletely specified
functions (called Incompletely Specified Boxes or IS–Boxes).

After motivating the use of implementations with Incompletely Specified Boxes we define our
notion of equivalence for this kind of implementations and present a method to solve the problem.

A series of experimental results demonstrates the effectiveness and feasibility of the methods
presented.

1 Introduction
Verification, i.e. the check whether a circuit implementation fulfills its specification, is a crucial task
in VLSI CAD. Growing interest in universities and industry has lead to new results and significant ad-
vances concerning topics like property checking, state space traversal and combinational equivalence
checking [7, 10, 24, 19, 8, 26, 18].
For the purpose of this paper combinational equivalence checking is of particular interest. Here, the
task is to check whether the Boolean functions corresponding to the specification and the implemen-
tation are the same. Besides functional validation by the application of test patterns, mainly two
approaches are used to perform the equivalence check: One possibility is to translate implementation
and specification into one Boolean formula which is satisfiable if and only if implementation and
specification do not realize the same Boolean function [32, 22, 13]. As an alternative, implementation
and specification can be transformed into a canonical form such that the equivalence check reduces
to a check whether the canonical representations of implementation and specification are the same.
BDDs [3] and Word-level Decision Diagrams such as *BMDs [6], HDDs [9] or K* BMDs [12] are pop-
ular choices for such canonical forms. Recent approaches integrate the use ofBDDs andSAT–Solvers
to combine advantages of both methods [15, 8, 26, 18]. When specification and implementation are
structurally similar, correspondences between internal nodes can be used to simplify the verification
problem [17, 27, 23, 19, 8, 26].
Recently, the problem of ‘Black Box Equivalence Checking’,which occurs when the specification
is known, but only parts of the implementation are finished orknown, has been addressed [16, 14,
29]. Parts of the implementation which are not finished or known are combined into ‘Black Boxes’.
An error is found in an implementation with Black Boxes, if the implementation differs from the
specificationfor all possible substitutions of the Black Boxes, i.e. there exists no completion of the
partial implementation that makes it equivalent to the specification. There are several motivations for
considering the Black Box Equivalence Checking problem: One application is equivalence checking
in early stages of the design, when a partial implementationis not yet finished, a second application
is the ‘abstraction from difficult parts’ in a (finished) implementation, and a third application consists



in error diagnosis, where candidate regions for design errors are combined into Black Boxes resulting
in a Black Box Equivalence Checking problem.
In this paper we look into a related problem, which also handles implementations with incomplete
information: Here we assume boxes, which are not completelyunknown like Black Boxes, but rather
implement anincompletely specified function. We call boxes of this kindIncompletely Specified Boxes
or IS–Boxes. (For small examples of implementations with IS–Boxes see Figure 1. The IS–Box
realizes the functioni1

1

+ i

1

2

with a don’t care for input vector(0; 0). The corresponding specification
for the whole circuit is the functionf = x

1

� x

2

.)
Incompletely Specified Boxes can occur, when a larger designis partitioned into blocks, where some
blocks are incompletely specified. After a partition of the design into (completely or incompletely
specified) blocks has been done in an early stage of the designprocess, it should be checked, whether
the partitioning result is still equivalent to the specification. (This includes — among other things —
the question whether the don’t cares which were specified forIS–Boxes can really be used as don’t
cares in this implementation containing IS–Boxes.) The current implementation is only correct, if it
is equivalent to the specificationfor all possible assignments to the don’t cares of the IS–Boxes, since
the designer of an IS–Box is allowed to assign the don’t caresarbitrarily and the implementation has
to be correct independently from the actual choice for the don’t cares. An error is found, ifthere isan
assignment to the don’t cares of the IS–Boxes, such that implementation and specification differ for
at least one primary input vector. We believe that incorrectassumptions about the behaviour of the
environment of subcircuits are frequent sources of design errors. For instance, the well–known bug
in the Pentium floating point divider [30] was probably due tothe incorrect assumption that certain
inputs of the PD table to generate the quotient bits were don’t cares [5].
Another possible application of IS–Boxes could be the use ofincompletely specifiedIntellectual Prop-
erty cores (IP cores) in an implementation. Under the assumption that the IP vendor does not publish
the don’t care assignment actually used in the design of the IP cores (for reasons of Intellectual
Property protection), the IP cores have to be viewed as Incompletely Specified Boxes. The problem
which has to be solved is to check whether specification and implementation with incompletely spec-
ified IP cores are equivalent. Again, specification and implementation with IS–Boxes can be called
equivalent only if they are equivalent for all possible assignments to the don’t cares of the IS–Boxes
(incompletely specified IP cores).
In this paper we present a method to solve the problem of equivalence checking for implementations
with IS–Boxes. The problem is reduced to a symbolic,ROBDD based simulation [4] of the spec-
ification and a modified version of the implementation followed by a simple check for equality of
ROBDDs.
Although we are usingROBDDs in our implementation of the method, it is straightforwardhow to
apply the method also to equivalence checking based on Boolean satisfiability.
The paper is structured as follows: In Section 2 we give some preliminaries. The following section
defines the problem of equivalence checking for implementations with Incompletely Specified Boxes,
compares the notion of equivalence for implementations with IS–Boxes to the notion of equivalence
for implementations with Black Boxes [16, 14, 29], and finally, it points out the relationship between
our problem and the computation of satisfiability and observability don’t cares. In Section 4 we
present our solution to the problem. Our method is evaluatedby experiments in Section 5. The paper
ends with some concluding remarks and directions for further research in Section 6.

2 Preliminaries
Let f : f0; 1g

n

! f0; 1g be a completely specified Boolean function withn inputs.
Incompletely specified Boolean functions with domainD are functionsf : D ! f0; 1g with D �
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‘(completely specified) extension’ off : D ! f0; 1g iff f 0

(�) = f(�) for all � 2 D.
Boolean functions can be represented byBDDs [21, 1, 25]. In the restricted form ofROBDDs they
even provide canonical representations for Boolean functions and they allow efficient manipulations
[3]. ROBDDs can be used to check equivalence of Boolean functions by a simple check for equality.
Since we work only withROBDDs in the following we briefly call themBDDs.
Given a circuit representation of a Boolean function, aBDD for this Boolean function can be computed
by symbolic simulation[4]. At the beginning of the symbolic simulation each input of the circuit is
associated with a uniqueBDD variable. Then theBDD representations of the functions computed by
the gates of the circuit are computed in topological order starting with the inputs. TheBDD for the
function of a gate can be computed usingBDD operations [3, 2], when theBDDs for the functions of
all its predecessor gates are already computed.

3 Incompletely Specified Boxes
Implementations containingIncompletely Specified Boxes(or IS–Boxes) are circuits which contain
boxes whose outputs are associated with incompletely specified functions. Leto

i

be an output of
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Two small examples for implementations containing IS–Boxes are shown in Figure 1. The incom-
pletely specified functiong
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associated with the IS–BoxIS
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in both examples is represented by
(
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corresponding specification for the complete circuit is thefunctionfSPEZ = x
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3.1 Equivalence of specifications and implementations withIS–Boxes
When an IS–Box is used in a partition of a design into completely and incompletely specified boxes,
implementation and specification can be called equivalent only if they represent the same Boolean
function for all possible replacements of the incompletely specifiedfunctions by completely specified
extensions, since the designer of an IS–Box has the freedom to choose an arbitrary assignment to the
don’t cares and the overall circuit has to be correct in any case.
In the example of Figure 1 this means that the implementationis only correct, if it fulfills its specifi-
cation both for the replacement of the IS–BoxIS

1

by functiong0

1

and for the replacement ofIS
1

by
g

00

1

.
In the next section we present a method to decide, whether specifications and implementations con-
taining IS–Boxes are equivalent in the sense defined above.



3.2 Comparison to equivalence for implementations with Black Boxes
Before presenting an algorithm for equivalence checking welook into the relationship between the
equivalence checking problem for implementations with IS–Boxes and the equivalence checking
problem for implementations with Black Boxes [16, 14, 29].
At first sight the equivalence checking problem for implementations with Black Boxes seems to be a
special case of the corresponding problem for IS–Boxes, since Black Boxes are boxes of which we do
not know anything, i.e., they can be modeled by incompletelyspecified functions where the domain is
empty. However, the two problems are applied in different contexts which leads to different notions
of equivalence:

� As already mentioned, an implementation with IS–Boxes isnot correct, if there isa replacement
of the IS–Boxes by completely specified extensions, such that the resulting implementation does
not fulfill its specification.

� In contrast, an implementation with Black Boxes isnot correct, if for all replacements of the
Black Boxes by some completely specified functions the resulting implementation does not
fulfill its specification. A Black Box represents a part of theimplementation which is not yet
finished. Thus, an error can only be reported, if the partial implementation can not be completed
to a correct overall implementation by any implementation for the Black Boxes.

So we have two completely different notions of equivalence for Black Boxes and IS–Boxes.

3.3 Relation to the computation of satisfiability and observability don’t cares
The problem of equivalence checking for implementations with IS–Boxes is related to the compu-
tation of satisfiability and observability don’t cares [11]used in logic synthesis: In fact, we have to
check, whether the don’t cares given for the IS–Boxes are satisfiability and observability don’t cares
for the output functions of the boxes (under the assumption that the function of the overall circuit is
defined by the specification). Thus, a naive approach to solveour problem — at least for the case that
there is only one IS–Box with only one output — would be the computation of the complete set of
all satisfiability and observability don’t cares for the IS–Box followed by a check, whether the given
don’t care set for the IS–Box is a subset of the computed set. However, the following facts prohibit
this approach:

� For large circuits, the computation of satisfiability and observability don’t cares can be expen-
sive. For this reason, the computation of don’t cares for a subcircuit usually considers only an
environment of the subcircuit and not the whole circuit leading to asubsetof the don’t care set.
However, we need the complete set of satisfiability and observability don’t cares to prove that
the given don’t care set for an IS–Box is not correct.

� For IS–Boxes with several outputs and for several IS–Boxes in the implementation the situation
will be much more complicated: In this case the flexibility has to be expressed by Boolean
relations or by sets of Boolean relations, since the degree of freedom given at one output of an
IS–Box depends upon the other outputs [33]. Also in this casewe would need thecomplete
information on flexibility for the IS–Boxes to decide whether the given don’t care sets for the
IS–Boxes are not correct.

Fortunately, we do not need to compute the complete information on flexibility for the IS–Boxes to
solve our problem. In the following section we present a muchsimpler solution to the equivalence
checking problem for implementations with IS–Boxes.

4 Solution to equivalence checking for implementations with IS-
Boxes

In this section we present a method to solve the equivalence checking problem for implementations
containing IS–Boxes. Our approach is based on the followingidea: We use additional variables



for the outputs of the IS–Boxes, which are used to model theirfunction in the presence of don’t
care values at the inputs of IS–Boxes. The complete behaviour of the implementation can then be
represented by a function depending on the circuit’s primary input variables and the newly introduced
variables. We obtain the following necessary and sufficientcondition for equivalence: Specification
and implementation are equivalent if and only if the resulting implementation function is exactly
equal to the specification function. In particular, the implementation function finally must not depend
on values assigned to the newly introduced variables.
We assume an implementationIMPL, which hasn primary inputsx
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Let IMPL z be the circuit which results from the implementation with IS–Boxes by replacing
the outputs of IS–Boxes by functionsis
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Then the following theorem gives a necessary and sufficient condition for the correctness of the im-
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Case 1: The signals are computed by a gateg (not by an IS–Box).
The input signals ofg for IMPL 
s andIMPL z are corresponding signals and have
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Based on Theorem 4.1 we use the following method to check equivalence of specifications and im-
plementation containing IS–Boxes:
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2. Compute for each outputk of the resulting circuitIMPL z theBDD for f IMPL z
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by symbolic
simulation.

3. Compute for each outputk of the specification theBDD for fSPEZ
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by symbolic simulation.
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SPEZ, the implementation is equal to the specificationindependently from the
assignment to the don’t cares of the IS–Boxand thus implementation and specification are equivalent.
For Implementation 2, symbolic simulation computes
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, implementation and specification arenot equivalent. Note
that in this example there is a don’t care assignment for the IS–Box, such that implementation and
specification will become equal. If the output of the IS–Box for input (0; 0) is chosen to be 0, then
implementation and specification will be equal. However, ifthe output of the IS–Box for input(0; 0)
is 1, then implementation and specification willnot be equal and thus, the specification and the im-
plementation containing an IS–Box are callednot equivalent, since the implementation has to fulfill
its specification for all possible assignments to the don’t cares.

5 Experimental results
To evaluate our method for equivalence checking in the presence of IS–Boxes we implemented the
described procedure usingCUDD 2.3.0 [31] as the underlyingBDD package. Dynamic reordering
[28] was activated during all experiments. The experimentswere performed on a PentiumIII PC with
550 MHz, 1 GB memory, running Linux 6.3.
Although, for the purpose of this paper, our implementationis restricted toBDDs, it should be men-
tioned that it is straightforward to incorporate other approaches likeSAT based equivalence checking
[32, 22, 13] or approaches combining the strengths ofBDD based andSAT based methods by a tight
integration [15, 8, 26, 18]. Furthermore, for specifications and implementations having structural
similarities, methods which identify equivalences between internal nodes to simplify the verification
problem [19, 8, 26] are applicable to our problem, too.
To obtain circuits with IS–Boxes we generated implementations with IS–Boxes from benchmark cir-
cuits: For each benchmark circuit a certain fraction of the gates was randomly selected to form IS–
Boxes. In a first experiment (Table 1) we included 10% of the gates in one IS–Box, in a second



Specification Implementation, 10%, 1 Box
no error error

circuit in out #nodes time %dc #nodes time #nodes time
alu4 14 8 530 0.61 25% 378 0.24 391 0.10
apex7 49 37 294 0.14 10% 295 0.06 269 0.06
comp 32 3 137 0.08 37% 137 0.05 117 0.04
term1 34 10 82 0.12 35% 81 0.06 88 0.06
C432 36 7 1212 0.27 58% 1240 0.20 1699 0.22
C499 41 32 30104 11.45 60% 37148 8.77 38770 9.43
C880 60 26 4814 1.83 27% 4662 0.50 4674 0.54
C1355 41 32 26901 11.06 32% 30581 4.02 35529 7.56
C1908 33 25 7161 4.70 54% 7040 1.63 7165 1.85
C2670 233 140 2141 5.21 22% 3784 1.62 4374 1.97
C3540 50 22 36114 20.43 19% 36855 4.89 37566 5.82
C5315 178 123 1989 3.66 5% 1932 1.21 1954 1.22
C7552 207 108 8545 17.44 20% 10908 4.67 8330 3.99

Table 1: 10% of the gates included in one IS–Box

experiment (Table 2) 10% of the gates in five IS–Boxes and in a third experiment (Table 3) 40% of
the gates in one IS–Box. The incompletely specified functions for the outputs of the IS–Boxes were
computed based on the original benchmark circuit: For an output o

i

of an IS–Box the incompletely
specified function is represented by a pair(
over

i

; d


i

). The function
over
i

was chosen as the func-
tion originally implemented in the benchmark circuit and the functiond


i

was obtained by computing
satisfiability and observability don’t cares [11] for the IS–Box. Both
over

i

andd

i

were represented
by aBDD and were associated with the IS–Box.
The original benchmark circuit was used as the specification.
In a first set of experiments we used the circuit with IS–Boxescomputed as described above as the
implementation. In this case, specification and implementation are equivalent, since the don’t cares
for the outputs of the IS–Boxes are satisfiability or observability don’t cares of the Boxes in the
original benchmark circuit. In a second set of experiments we inserted errors into the implementations
with IS–Boxes to check the robustness of our method for erroneous implementations. We randomly
selected a gate, which did not belong to an IS–Box, and inserted an error. The error type was also
selected randomly between several choices: We added/removed an inverter for an input or output
signal of the gate, changed the type of the gate (and

2

to or

2

or or
2

to and

2

) or removed an input line
from anand or or gate.
All reported results are an average on 5 different random selections of IS–Boxes and in the case of
error insertions also an average on 100 different random selections of error insertions.3

Tables 1, 2 and 3 show the results of the experiments. In columns 1, 2, and 3 the names of the bench-
marks, and the numbers of inputs and outputs are given. Column 4 gives the numbers ofROBDD nodes
needed to represent the specification; column 5 shows the CPUtimes in seconds to compute theBDD
representation of the specification. Column 6 gives the average fraction of minterms, which are used
as don’t cares for the different outputs of the IS–Boxes. Then the results for two sets of experiments
are presented: For the first experiment, where no errors wereinserted, columns 7 and 8 show the
numbers ofBDD nodes and the CPU times needed for symbolic simulation of theimplementation and
in columns 9 and 10 the same information is given for the second experiment using error insertions.

The observations made based on the experiments are the same for Tables 1, 2 and 3 (10% of the gates
included in one IS–Box, 10% of the gates included in five IS–Boxes and 40% of the gates included
in one IS–Box): The symbolic simulation of implementationswith IS–Boxes shows no performance
degradation at all compared with the symbolic simulation ofthe specification. This observation is true
for different sizes and numbers of IS–Boxes. In our experiments this property also did not change
when errors were inserted into the implementations with IS–Boxes. This clearly demonstrates the
feasibility of our approach.

3Of course, the circuit modifications described above do not necessarily lead to errors in the implementation. For our
results we used only those modifications, which really lead to errors.



Specification Implementation, 10%, 5 Boxes
no error error

circuit in out #nodes time %dc #nodes time #nodes time
alu4 14 8 530 0.63 99% 447 0.52 489 0.23
apex7 49 37 256 0.15 42% 273 0.07 249 0.07
comp 32 3 137 0.08 71% 137 0.04 138 0.04
term1 34 10 91 0.14 45% 81 0.06 92 0.07
C432 36 7 1212 0.25 23% 1296 0.18 1515 0.15
C499 41 32 26408 10.87 50% 25974 2.70 33758 5.37
C880 60 26 4738 1.91 22% 4938 0.52 4750 0.56
C1355 41 32 26085 10.38 91% 27425 3.52 36805 7.71
C1908 33 25 7108 4.77 99% 7661 3.78 7391 3.60
C2670 233 140 2377 5.77 91% 2193 1.38 4352 2.09
C3540 50 22 36154 30.39 85% 30160 9.52 30271 7.57
C5315 178 123 2199 3.61 69% 2386 1.39 2224 1.34
C7552 207 108 22751 46.38 79% 15724 7.80 13720 7.09

Table 2: 10% of the gates included in five IS–Boxes

Specification Implementation, 40%, 1 Box
no error error

circuit in out #nodes time %dc #nodes time #nodes time
alu4 14 8 384 0.21 16% 361 0.05 383 0.06
apex7 49 37 294 0.14 10% 295 0.06 269 0.06
comp 32 3 137 0.07 29% 147 0.04 125 0.04
term1 34 10 82 0.13 30% 81 0.06 82 0.06
C432 36 7 1321 0.54 44% 2119 1.66 2046 0.58
C499 41 32 30104 11.34 60% 41640 21.13 33979 14.65
C880 60 26 4814 1.85 27% 4662 0.50 4674 0.54
C1355 41 32 26901 11.07 32% 28986 16.35 35573 17.09
C1908 33 25 8371 35.32 60% 7872 60.88 7534 23.24
C2670 233 140 2141 5.26 2% 3004 1.40 4118 1.93
C3540 50 22 36114 20.50 19% 36855 4.91 37566 5.83
C5315 178 123 1989 3.63 5% 1932 1.21 1955 1.22
C7552 207 108 10466 24.39 9% 9738 3.88 8348 3.73

Table 3: 40% of the gates included in one IS–Box

6 Conclusion and future work
In this paper we introduced the concept of equivalence checking for implementations with IS–Boxes.
The relationship of this notion of equivalence to the equivalence for implementations containing Black
Boxes was clarified. We presented a method based on symbolic simulation to solve the problem of
equivalence checking for implementations with IS–Boxes. Experimental results prove the feasibility
of the approach.
It is straightforward that the method of Section 4 can also beused in connection with equivalence
checking based on Boolean satisfiability. The transformation of the problem into a CNF formula can
be done using methods from [20, 22], e.g.. Since after the transformation of Section 4 the remaining
task consists in comparing two combinational circuits, an incorporation of recently presented methods
combining the strengths ofBDD based andSAT based algorithms by a tight integration can be applied
to our approach, too. For the same reason also methods to identify equivalences between internal
nodes to simplify the verification problem for circuits withstructural similarities are applicable to our
method.
For the future, we are planning to generalize the approach tothe verification of sequential circuits
containing IS–Boxes.
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