
Preprint from Proceedings of International Symposium on Circuits and Systems,
Sydney, Australia, May 2001

EXPLOITING DON’T CARES TO MINIMIZE *BMDS

Christoph Scholl, Marc Herbstritt and Bernd Becker

Institute of Computer Science, Albert–Ludwigs–University,
D 79110 Freiburg im Breisgau, Germany

<scholl/herbstri/becker>@informatik.uni-freiburg.de

ABSTRACT

We present for the first time methods to minimize* BMDs exploiting
don’t care conditions. These minimization methods can be used
during the verification of circuits by* BMDs. By changing function
values for input vectors, which are in the don’t care set, smaller
* BMDs can be computed to keep peak memory consumption during
* BMD construction as low as possible. Preliminary experimental
results prove the methods to be very effective in minimizing* BMD
sizes.

1. INTRODUCTION
One of the most important tasks during the design ofIntegrated
Circuits is the verification of an implemented circuit, i.e., the check
whether the implementation fulfills its specification.

In the last few years several methods based onDecision Di-
agrams(DDs) have been proposed [15, 3, 14] to perform verifi-
cation. The idea is to transform both implementation and spec-
ification of a combinational circuit into a DD. Then, due to the
canonicity of the DD representation, the equivalence checkfor
specification and implementation reduces to the check whether the
corresponding DDs are identical.

The most popular data structure in this context wereBinary
Decision Diagrams(BDDs) [2]. They were applied successfully
e.g. to the verification of control logic and integer adders.But
there are functions of high practical relevance (e.g. integer multi-
pliers), which can not be represented efficiently byBDDs. To over-
come the limitations ofBDDs other types of DDs were defined,
e.g. Binary Moment Diagrams(BMDs) andMultiplicative BMDs
(* BMDs) [4], which are able to represent integer–valued pseudo
Boolean functionsf : f0; 1g

n

! Z and which are especially
suited for arithmetic functions.

When a circuit consists of several modules or subcircuits, ex-
isting methods to compute the *BMD representing the overall cir-
cuit compute *BMDs for the modules and combine these *BMDs
to a *BMD for the overall circuit by *BMD operations [6]. Other
methods use backward construction [9, 13] from the circuit out-
puts towards the inputs and compose step by step the *BMD for
a gate of the current cut front into the *BMD for the intermediate
result.

A potential, which has not been used in this process so far, is
the knowledge that certain input combinations can not be applied
to subcircuits/modules. Input combinations, which can notbe ap-
plied to subcircuits, can be given as don’t care informations in the
circuit specification or can be computed as satisfiability don’t cares
by image computations [1]. These don’t cares can be used to mini-
mize *BMDs – either before combining the *BMDs for submodules
by *BMD operations or in the backward construction method when
the processing of a submodule, for which don’t care informations
are at hand, is finished. In this context the minimization of *BMDs
by exploiting don’t care informations aims at reducing the *BMD
sizes to keep peak memory consumption as low as possible.

The problem we have to solve is to minimize a *BMD B for a
functionf

B

under don’t care conditions given by a characteristic
functiond
 (d
(x) = 1, if x is a don’t care vector, i.e.x can not
be applied to the subcircuit realizingf

B

). Sinced
 is a Boolean

function, we assume that it is represented by aBDD. Our task is to
compute a *BMD B

0 realizing a functionf
B

0 , such thatf
B

(x) =

f

B

0

(x) for all x with d
(x) = 0 andB0 has a (nearly) minimum
number of nodes among all *BMDs fulfilling this property.

To the best of our knowledge the heuristics presented in this
paper are the first solution to this problem. For the minimization
of BDDs under don’t care conditions there is a number of methods
in the literature, e.g. [8, 7, 5, 18, 17, 11]. However for *BMDs
the problem seems to be more difficult, since due to the Davio
decomposition in *BMDs a change of the function value for a sin-
gle input vector (exploiting a don’t care for this input vector) has
not only a “local effect” in the Decision Diagram, but can affect
larger parts of the *BMD (see Section 2). A paper which has some
relations to our work in this sense is [20]. In that workFDDs
[12] are minimized (which are also based on Davio decomposi-
tions). In fact our first method1 to minimize *BMDs (which are
representations of integer–valued functions) is somewhatsimilar
to the minimization ofFDDs in [20] (FDDs are representations of
Boolean functions). Another related paper is [19], which mini-
mizes Reed–Muller forms. However the method from [19], which
decides, whether to flip the value for a subset of coefficientsin the
Reed–Muller spectrum from 0 to 1 (1 to 0) or not, with the goal
to maximize the number of zeros in the Reed–Muller spectrum,is
not applicable when the values are integers as for functionsrepre-
sented by *BMDs.

We developed two different methods for the minimization of
* BMDs under don’t care conditions. After Section 2, which gives
some basic definitions and notations, we present these methods
in Section 3 and in Section 4 we give preliminary experimental
results to evaluate the approaches. The minimization results are
very promising. The first method was able to reduce *BMD sizes
by 75% on the average, the second even by 79%. Finally, Section
5 concludes the paper and gives directions for future research.

2. PRELIMINARIES

In this section we give a brief review ofBDDs [2], BMDs and
* BMDs [4]. BDDs are used to represent Boolean functionsf :

f0; 1g

n

! f0; 1g, and bothBMDs and *BMDs represent integer–
valued pseudo Boolean functionsf : f0; 1g

n

! Z.
A BDD is a rooted directed acyclic graphG = (V;E) with

non empty node set V containing two types of nodes,non-terminal
andterminalnodes. A non-terminal nodev has as label a variable
index(v) 2 fx

1

; : : : ; x

n

g and two childrenlow(v); high(v) 2
V . We calllow(v) also0–successor(v) andhigh(v) 1–successor(
v). The edge leading tolow(v) (high(v)) is called low (high)
edge ofv. BDDs are ordered [2]. A terminal nodev is labeled
with a valuevalue(v) 2 f0; 1g and has no outgoing edges. The
Boolean functionf

v

: f0; 1g

n

! f0; 1g defined by aBDD nodev
is defined recursively: Ifv is a terminal node withvalue(v) = 
 2

f0; 1g, thenf
v

(x

1

; : : : ; x

n

) = 
 and if v is a non-terminal node
with index(v) = x

i

, thenf
v

(x

1

; : : : ; x

n

) = x

i

� f

low(v)

(x

1

; : : : ;

x

n

)+x

i

�f

high(v)

(x

1

; : : : ; x

n

). (BDDs use the so-called Shannon

1see Section 3



x1

x2

1 5 4

10

10

(a) reduced

x1

1

x2

10

0

x2

1 5 04

0 1

(b) non-reduced

Figure 1: Example for aBMD.

decomposition.) The function represented by aBDD B is equal to
the function represented by its root nodev

root

.
Like BDDs BMDs are based on a rooted directed acyclic graph.

In contrast toBDDs the terminal nodesv are labeled with values
value(v) 2 Z. The recursive definition of the pseudo Boolean
function f

v

: f0; 1g

n

! Z represented by aBMD nodev dif-
fers fromBDDs: If v is a terminal node withvalue(v) = 
 2 Z,
then f

v

(x

1

; : : : ; x

n

) = 
 and if v is a non-terminal node with
index(v) = x

i

, thenf
v

(x

1

; : : : ; x

n

) = f

low(v)

(x

1

; : : : ; x

n

) +

x

i

� f

high(v)

(x

1

; : : : ; x

n

). BMDs use the so-calledpositive Davio
decomposition. It follows from this recursive definition that the
function represented bylow(v) is equal tof

v

j

x

i

=0

y, but in con-
trast to Shannon decomposition the function represented byhigh(v)

is
f

v

j

x

i

=1

� f

v

j

x

i

=0

: (1)

SinceBMDs use another decomposition type thanBDDs (pos-
itive Davio decomposition instead of Shannon decomposition), the
reduction rules to reduce theBMD sizes and to makeBMDs a canon-
ical data structure have to be changed compared toBDDs: As in
the case ofBDDs, if for terminal nodesv andv0 2 V value(v) =

value(v

0

) or if for non-terminal nodesv and v

0

index(v) =

index(v

0

), low(v) = low(v

0

) and high(v) = high(v

0

) then
v = v

0. However due to the Davio decomposition we have the
reduction rule that in a reducedBMD there is no nodev 2 V with
high(v) = t, t terminal node withvalue(t) = 0.

For simplicity we assume in the following that the variables
occur in the fixed orderx

1

; : : : ; x

n

.
To give a relation between nodes of aBMD B and cofactors of

the functionf
B

represented byB, we define “the node which is
reached by(�

1

; : : : ; �

l

) 2 f0; 1g

l (l � n)”:
To determine the node reached by(�

1

; : : : ; �

l

) we start at the
root node and follow the edges according to(�

1

; : : : ; �

l

). If we
are at a nodev labeled withx

i

and �
i

= 0, then we follow the
edge tolow(v) and if �

i

= 1, we go tohigh(v). Special atten-
tion has to be paid to the case, when�

i

–successor(v) has not label
x

i+1

. If in this case�
i

–successor(v) is a non–terminal, choose
k with x

k

= index(�

i

–successor(v)) and if �
i

–successor(v) is
a terminal choosek = n + 1. Then we have to take into ac-
count, that in an non–reduced version of theBMD the edge leading
to �

i

–successor(v) would be replaced by a path of nodes leading
to �

i

–successor(v) where the labels arex
i+1

; : : : ; x

k�1

and the
high edges lead to the constant 0, respectively. Therefore we go
to �

i

–successor(v) only if �
i+1

= : : : = �

k�1

= 0, otherwise we
say that the terminal 0 is reached by(�

1

; : : : ; �

l

) (since 0 would
be reached in a non–reduced version of theBMD). We call the
node reached by(�

1

; : : : ; �

l

) also(�
1

; : : : ; �

l

)–node and the func-
tion represented by this nodef (�1;:::;�l)

B

.

Example 2.1 Figure 1(a) shows an example of aBMD for function
f with f(0; 0) = 1, f(0; 1) = 6, f(1; 0) = 5 andf(1; 1) = 10.
The(0; 0)–node is the terminal1, the (0; 1)–node is terminal5,

yFor a function,f : f0; 1g

n

! Zf

x

i

=0

(f
x

i

=1

) is the function which
results from a substitution ofx

i

by constant0 (1) and is called negative
(positive) cofactor off with respect tox

i

.

the (1; 0)–node is terminal4, but the(1; 1)–node is terminal0,
since the high edge starting from the root leads to a terminaland
not to a node with labelx

2

and – as shown in Figure 1(b) – in the
non–reducedBMD vector(1; 1) leads to terminal 0.

Using (1) we can conclude the following lemma by induction:

Lemma 2.1 LetB be aBMD representing a functionf
B

: f0; 1g

n

! Zand letv be the(�
1

; : : : ; �

l

)–node (l � n). Then the function
f

(�

1

;:::;�

l

)

B

represented byv is equal to

f

(�

1

;:::;�

l

)

B

=

X

(Æ

1

;:::;Æ

l

)�

(�

1

;:::;�

l

)

(�1)

P

l

i=1

(�

i

�Æ

i

)

f

B

j

x

1

=Æ

1

;:::;x

l

=Æ

l

: (2)

(For Æ; � 2 f0; 1g

l

: Æ � � iff Æ
i

� �

i

81 � i � l.)

Lemma 2.1 shows that the change of the functionf

B

for a
single input vector�, i.e. the change of cofactorf

B

j

x=�

, has not
only a “local effect” in the Decision Diagram, but affects all 
–
nodes with� � 
.

* BMDs were defined in [4] to further reduce the size ofBMDs
by increasing the amount of subgraph sharing. In *BMDs each
edge has an additional multiplicative edge weightm 2 Z, such
that an edge with edge weightm leading to a nodev represents a
functionm �f

v

. Reduction rules guarantee that functions


1

�g and



2

� g (

1

; 


2

2 Zn f0g) are represented by the same node (but by
different edges).

3. DON’T CARE ASSIGNMENT
In the following we present a solution to the problem to minimize
a *BMD by assigning values to don’t cares. We have to solve the
following problemDC*BMD:
Given: A * BMD B representing a functionf : f0; 1g

n

! Zand
a BDD C representing a function
 : f0; 1gn ! f0; 1g.
Find: A * BMD B

0 representing a functionf 0 : f0; 1g

n

! Z,
such thatf � 
 = f

0

� 
 andB0 has the minimum number of nodes
among all *BMDs fulfilling the same property (and respecting the
same variable order).

DC*BMD is a hard problem, more precisely we can prove the
following theorem [16]:

Theorem 3.1 DC*BMD isNP complete.

That is why we are looking for a heuristic solution ofDC*BMD in
the following.

3.1. Methodmin polynomial
Our first methodmin polynomialis motivated by the relationship
betweenBMDs over variablesx

1

; : : : ; x

n

and polynomials over
x

1

; : : : ; x

n

: The rule to evaluateBMDs directly implies a method
to derive the polynomial representing the same function as the
BMD. E.g. the function from Figure 1 is equal to(1 + x

2

� 5) +

x

1

� 4 = 1 + 5x

2

+ 4x

1

. In general the polynomial contains the
term 
 � x

�

1

1

� : : : � x

�

n

n

(x1
i

= x

1

andx0
i

= 1) if and only if the
node reached by(�

1

; : : : ; �

n

) is terminal
 6= 0.
It is easy to see that the size of theBMD B representing func-

tion f
B

is always less or equal to the size of the polynomial3 rep-
resentingf

B

. Since *BMDs can be obtained fromBMDs by reduc-
tion, this is clearly also true for *BMDs.

Our first method consists in a (heuristic) minimization of the
size of this polynomial, which is an upper bound on theBMD and
the *BMD size. For vectors(�

1

; : : : ; �

n

), such that the terminal
reached by(�

1

; : : : ; �

n

) is 
 6= 0, we try to use don’t cares to
change the value of the terminal to zero. If(�

1

; : : : ; �

n

) is a don’t
care vector, i.e.d
(�

1

; : : : ; �

n

) = 1, we change the function value
f

B

(�

1

; : : : ; �

n

) such that the terminal reached by(�
1

; : : : ; �

n

) will

3The size of a polynomial is defined as the number of constants,vari-
able names and operators + and� in the polynomial.



x1

1st dc

2nd dc

1

x2

10

0

x2

1 4 83

0 5 74

0 5 04

0 1

x1

x2

0 5 4

10

10

Figure 2: Example:BMD minimization bymin polynomial.

1 * BMD function min polynomial(* BMD B; BDD DC)

2 if DC = 1 then return 0 fi; if DC = 0 then return B fi
3 if B = 
onstant then return B fi
4 Let v be top variable ofB andDC;

5 B

low

= Bj

v=0

; B

high

= Bj

v=1

�Bj

v=0

;

6 DC

low

= DCj

v=0

;DC

high

= DCj

v=1

7 B

0

low

:= min polynomial(B

low

;DC

low

)

8 B

0

high

:= min polynomial(B

high

+ (B

low

�B

0

low

);DC

high

)

9 B

0

= B

0

low

+ v �B

0

high

10 if size(B0

) < size(B)return B

0 else returnB fi

Figure 3: Pseudo code formin polynomial.

be0. Using the formula of Lemma 2.1 it is clear that we just have
to set for the changed functionf

B

0

f

B

0

(�

1

; : : : ; �

n

) = f

B

(�

1

; : : : ; �

n

)� 


to achieve this goal. After that we must not forget to adjust the val-
ues of other terminals according to this change off

B

(�

1

; : : : ; �

n

),
since the value off

B

(�

1

; : : : ; �

n

) has an impact on all terminals,
which are reached by vectors
 � �.

The main idea of our methodmin polynomialis illustrated in
Figure 2. Figure 2 shows aBMD for the functionf : f0; 1g

2

! Z

with polynomial1 + 4x

2

+ 3x

1

+ 8x

1

x

2

. There are two don’t
care vectors:d
(0; 0) = d
(1; 1) = 1. The don’t care values for
(0; 0) and(1; 1) are represented in theBMD by the shaded boxes
of terminals1 and8. At first, we set terminal 1, which is reached
by (0; 0) to 0. To achieve this we make use of the don’t care vec-
tor (0; 0) and changef(0; 0) by adding�1. Then we have to
propagate the change to all terminals which are reached by vec-
tors> (0; 0). According to the formula of Lemma 2.1 we have to
change terminal4 by adding 1, terminal 3 by adding 1 and terminal
8 by adding�1. The resulting values for the terminals are given in
Figure 2 in the row1st dcbelow the original terminals. Finally we
make use of the don’t care(1; 1) by adding -7 tof(1; 1) resulting
in a 0–terminal reached by(1; 1). Since there is no vector greater
than(1; 1), we do not have to propagate the change in this case and
the resulting terminals are shown in the second row2nd dcbelow
the original terminals. Finally, we obtain a changed function with
polynomial5x

2

+ 4x

1

. The reduced version of the resultingBMD
is shown on the right hand side of Figure 2.

The order of processing the different don’t care values in the
example was not arbitrary: Since we process the terminals from
left to right the propagation of changes due to other don’t care
assignments can not destroy the zeros we have already set. For this
reason our recursive procedure processes the *BMD in a depth–first
manner following low edges before high edges. Pseudo code ofthe
resulting recursive proceduremin polynomialto minimize a *BMD
B using don’t cares specified by aBDD DC is given in Figure 3
(we omit details like computed table etc.). Note that in line8 the
propagation of the changes made toB

low

is performed by adding
B

low

�B

0

low

toB
high

before applyingmin polynomialtoB
high

.

3.2. Method independentdfs
The second method is motivated by the “matching siblings” heuris-
tics from [18]. This heuristics was introduced to minimizeBDDs

x1

1

x2

10

0

x2

1 4 83

4 1 00

0 1 x2

4 1

10

Figure 4: Example:BMD minimization byindependentdfs.

in a recursive procedure. When the procedure processes aBDD
nodev, it tries to assign don’t cares in such a way thatlow(v) and
high(v) become identical. If this is possible, we have to keep this
subgraph only once and additionally – because of theBDD reduc-
tion rules – nodev can be removed, because the subfunction is
now independent from variableindex(v).

SinceBMDs use positive Davio decomposition instead of Shan-
non decomposition, the function represented by a nodev can not
be made independent from variableindex(v) by changinglow(v)
andhigh(v) to make them identical. Here we try to make use of
don’t cares to changehigh(v), such that it becomes0. Then, the
function represented byv is independent fromindex(v) and we
can deletehigh(v) and (according toBMD reduction rules) also
nodev.

Thus, we have to check for a nodev, which is reached by
(�

1

; : : : ; �

l

), whether the node function can be made independent
from variablex

l+1

by exploiting don’t cares fromd
j
x

1

=�

1

;:::;x

l

=�

l

.
Figure 4 illustrates the method using the same example as in Fig-
ure 2. At the beginning we check whether the root nodev can be
made independent fromx

1

by using don’t cares, which is equiv-
alent to the question, if we can sethigh(v) to zero. To do this
we can exploit don’t cares both fromd
j

x

1

=0

and fromd
j

x

1

=1

,
i.e. both the don’t cares at(0; 0) and(1; 1) in this example. The
terminal reached by(1; 0) can not be set to 0 using don’t cares
from d
j

x

1

=1

, but it is possible to use don’t care(0; 0) (adding 3
to f(0; 0)) to set this terminal to 0. Then we use don’t care(1; 1)

to set the terminal reached by(1; 1) to 0 and in fact, it is possible
to make the root node independent fromx

1

. The changed values
for the terminals are given in Figure 4 in the row below the original
terminals. The reducedBMD is given on the right hand side of Fig-
ure 4. It is easy to see that it is not possible to make the remaining
node independent fromx

2

, since there are no don’t cares which
could be exploited. (Note that also the don’t care(0; 0) must not
be used in the minimization of this node, since it was alreadyused
to make the root function independent fromx

1

. Exploitation of
don’t care(0; 0) could make the function depend onx

1

again.)
The check, whether a function of a nodev, which is reached by
(�

1

; : : : ; �

l

), can be made independent from variablex

l+1

using
d
j

x

1

=�

1

;:::;x

l

=�

l

can be formulated as a recursive procedure, which
checks first if the low son can be set to 0 and then if the high son
can be set to 0; details can be found in [16]. This check is used
in a depth–first traversal of the *BMD. Whenever we reach a node
which can be made independent from its top variable, we perform
the modification and the effect of the change is propagated similar
to proceduremin polynomial.

4. EXPERIMENTAL RESULTS
We implemented the two methods for *BMD minimization based
on wld, an experimental Word-Level DD package developed at
University of Freiburg [10] and performed experiments to compare
the different approaches. The experiments were performed using
a SPARC UltraII with a memory limit of 400 MB.

To generate incompletely specified functions from completely
specified functions, we used a method proposed in [5]: We col-
lapse each benchmark circuit to two-level form (sum-of-products
form). Each cube in this two-level form is contained in the on-
set of at least one output function. Now we consider the set of



j�bmd

min

j ratio
j�bmd

min

j

j�bmdj

Time
Circuit #PI #PO jDCj j�bmdj

az mp dfs az mp dfs az mp dfs
5xp1 7 10 15 76 19 12 3 0.250 0.157 0.039 0:00 0:00 0:00

9symml 9 1 97 223 242 183 182 1.085 0.820 0.816 0:09 0:00 0:00
alu2 10 6 91 401 372 139 147 0.927 0.346 0.366 0:30 0:01 0:01

apex7 49 37 120 1390 2305 118 49 1.658 0.084 0.035 0:08 1:28 3:27
c8 28 18 126 346 336 17 13 0.971 0.049 0.037 0:02 1:23 0:02

mux 21 1 5798 60 47 34 34 0.783 0.566 0.566 0:00 0:06 0:18
pcler8 27 17 34 44 61 32 21 1.386 0.727 0.477 0:01 0:00 0:09

rd73 7 3 36 89 87 43 36 0.977 0.483 0.404 0:02 0:00 0:00
rd84 8 4 65 196 200 114 81 1.020 0.581 0.413 0:15 0:00 0:00
sao2 10 4 52 128 96 47 37 0.750 0.367 0.289 0:01 0:00 0:00
z4ml 7 4 30 69 87 30 26 1.260 0.434 0.376 0:00 0:00 0:00

P

3022 3852 769 629 1.247 0.254 0.208

Table 1: Results for don’t care minimization.

all these cubes and randomly select cubes with a probabilityof
40% to be included into the don’t care set. For the resulting don’t
care set aBDD is computed. Then a *BMD for an integer–valued
function representing the benchmark circuit is computed. Here
outputf

i

(0 � i � m� 1) is weighted by2i, such that the func-
tion value of this integer–valued functionf for input vector� is
f(�) =

P

m�1

i=0

2

i

� f

i

(�). As variable order we used the initial
order given in the benchmark specification. The results are sum-
marized in Table 1. In the first column the benchmark circuit is
given, in the second column the number of primary inputs and in
the third column the number of primary outputs. Column 4 shows
the number ofBDD nodes needed to represent the don’t care set
and column 5 the number of nodes needed to represent the ini-
tial * BMD. Columns 6–8 give the *BMD sizes after minimization.
Three different methods are compared: For comparison we give in
columnaz the simple method to set all don’t care input vectors to
function value 0, which can be done by computingf

B

�d
. Column
mp gives the results for our proceduremin polynomialand col-
umn dfs the results for our procedureindependentdfs. Columns
9–11 give the ratios “size of minimized *BMD divided by size of
initial * BMD”, again for the three different methods. Finally the
corresponding CPU times are given in columns 12–14 in format
minutes:seconds, rounded to seconds.

The results show that setting all don’t cares to 0 (columnsaz)
is not a successful method. On the average the sizes even increase
by 24.7%. In contrast, our two methods for don’t care minimiza-
tion are both very effective in minimizing the *BMD sizes: Method
min polynomial (columnsmp) is able to reduce *BMD sizes by
74.6% on the average and methodindependentdfs (columnsdfs)
reduces the sizes even by 79.2%. Columns 13 and 14 show that
these results can be achieved within a small amount of run time.

5. CONCLUSIONS AND FUTURE WORK

We presented two heuristic methods for don’t care minimization
of * BMDs. Experimental results proved them to be very effective
in reducing *BMD sizes within a small amount of CPU time.

At the moment we are working on a modified version of method
independentdfs, which is based on the observation that in contrast
to BDDs [18] for *BMDs the order in which we process the nodes
can influence the quality of the result due to the propagationof the
change. Setting the high son of a nodev to 0 can destroy the pos-
sibility to set the high son of another nodev0 to 0. Since the sub-
graph of the high son of a node at a higher level in the *BMD will
be larger on the average, we expect that the gain of setting the high
son of such a node to 0 is also larger. Therefore nodes at higher
levels should processed first leading to a breadth-first traversal of
the *BMD instead of a depth-first traversal.

Moreover, we are working on an application of our *BMD min-
imization in the verification of Pentium style integer dividers to
keep peak memory consumption small during backward construc-
tion [9]. Don’t cares are computed by an iterative image computa-
tion for the different add&shift stages.

6. REFERENCES
[1] K. Bartlett, R. K. Brayton, G. Hachtel, R. M. Jacoby, C. R.Morrison,

R. Rudell, A. L. Sangiovanni-Vincentelli, and A. R. Wang. Multilevel
logic minimization using implicit don’t cares.IEEE Trans. on CAD,
7(6):723–740, 1988.

[2] R.E. Bryant. Graph - based algorithms for Boolean function manip-
ulation. IEEE Trans. on Comp., 35(8):677–691, 1986.

[3] R.E. Bryant. Binary decision diagrams and beyond: Enabeling tech-
niques for formal verification. InInt’l Conf. on CAD, pages 236–243,
1995.

[4] R.E. Bryant and Y.-A. Chen. Verification of arithmetic functions with
binary moment diagrams. InDesign Automation Conf., pages 535–
541, 1995.

[5] S. Chang, D. Cheng, and M. Marek-Sadowska. Minimizing ROBDD
size of incompletely specified multiple output functions. In European
Design & Test Conf., pages 620–624, 1994.

[6] Y.-A. Chen and R.E. Bryant. ACV: an arithmetic circuit verifier. In
Int’l Conf. on CAD, pages 361–365, 1996.

[7] O. Coudert, C. Berthet, and J.C. Madre. Verification of sequential
machines based on symbolic execution. InAutomatic Verification
Methods for Finite State Systems, LNCS 407, pages 365–373, 1989.

[8] O. Coudert, C. Berthet, and J.C. Madre. Verification of sequential
machines using Boolean functional vectors. InProceedings IFIP In-
ternational Workshop on Applied Formal Methods for CorrectVLSI
Design, pages 111–128, 1989.

[9] K. Hamaguchi, A. Morita, and S. Yajima. Efficient construction of
binary moment diagrams for verifying arithmetic circuits.In Int’l
Conf. on CAD, pages 78–82, 1995.

[10] M. Herbstritt. Erfüllbarkeitsprobleme bei Word-Level Decision Dia-
grams. Master’s thesis, University Freiburg, April 2000.

[11] Y. Hong, P.A. Beerel, J.R. Burch, and K.L. McMillan. Safe BDD
minimization using don’t cares. InDesign Automation Conf., pages
208–213, 1997.

[12] U. Kebschull, E. Schubert, and W. Rosenstiel. Multilevel logic syn-
thesis based on functional decision diagrams. InEuropean Conf. on
Design Automation, pages 43–47, 1992.

[13] M. Keim, M. Martin, B. Becker, R. Drechsler, and P. Molitor. Poly-
nomial formal verification of multipliers. InVLSI Test Symp., pages
150–155, 1997.

[14] A. Kuehlmann and F. Krohm. Equivalence checking using cuts and
heaps. InDesign Automation Conf., pages 263–268, 1997.

[15] S. Malik, A.R. Wang, R.K. Brayton, and A.L. Sangiovanni-
Vincentelli. Logic verification using binary decision diagrams in a
logic synthesis environment. InInt’l Conf. on CAD, pages 6–9, 1988.

[16] C. Scholl, M. Herbstritt, and B. Becker. Exploiting don’t cares
to minimize *BMDs. Technical report, Albert-Ludwigs-University,
Freiburg, September 2000.

[17] C. Scholl, S. Melchior, G. Hotz, and P. Molitor. Minimizing ROBDD
sizes of incompletely specified functions by exploiting strong sym-
metries. InEuropean Design & Test Conf., pages 229–234, 1997.

[18] T.R. Shiple, R. Hojati, A.L. Sangiovanni-Vincentelli, and R.K. Bray-
ton. Heuristic minimization of BDDs using don’t cares. InDesign
Automation Conf., pages 225–231, 1994.

[19] D. Varma and E.A. Trachtenberg. Computation of reed–muller ex-
pansions of incompletely specified boolean functions from reduced
representations.IEE Proceedings, 138(2):85–92, 1991.

[20] Z. Zilic and K. Radecka. Don’t care FDD minimization by interpo-
lation. In Int’l Workshop on Logic Synth., pages 353–356, 1998.


