Preprint from Proceedings of International Symposium on Circuits and Systems,

Sydney, Australia, May 2001

EXPLOITING DON'T CARES TO MINIMIZE *BMDS

Christoph Scholl, Marc Herbstritt and Bernd Becker

Institute of Computer Science, Albert—Ludwigs—Universit
D 79110 Freiburg im Breisgau, Germany
<scholl/herbstri/becker@informatik.uni-freiburg.de

ABSTRACT

We present for the first time methods to mininiig®Ds exploiting
don’t care conditions. These minimization methods can leel us
during the verification of circuits bysmDs. By changing function
values for input vectors, which are in the don't care set, ltgna

*BMDS can be computed to keep peak memory consumption duringP®

*BMD construction as low as possible. Preliminary experimental
results prove the methods to be very effective in minimizingd
sizes.

1. INTRODUCTION

One of the most important tasks during the desigineégrated
Circuitsis the verification of an implemented circuit, i.e., the dhec
whether the implementation fulfills its specification.

In the last few years several methods basedenision Di-
agrams(DDs) have been proposed [15, 3, 14] to perform verifi-
cation. The idea is to transform both implementation ana¢-spe
ification of a combinational circuit into a DD. Then, due te&th
canonicity of the DD representation, the equivalence cHeck
specification and implementation reduces to the check enétie
corresponding DDs are identical.

The most popular data structure in this context weieary
Decision DiagramgBDDS) [2]. They were applied successfully
e.g. to the verification of control logic and integer addeBut
there are functions of high practical relevance (e.g. iettegulti-
pliers), which can not be represented efficiently8mps. To over-
come the limitations oBDDs other types of DDs were defined,
e.g. Binary Moment Diagramg¢BmDs) andMultiplicative BMDs

function, we assume that it is represented lBp®. Our task is to
compute a 8BMD B’ realizing a functionfg:, such thatfg (z) =
fa () for all z with de(z) = 0 and B’ has a (nearly) minimum
number of nodes among alB#Ds fulfilling this property.

To the best of our knowledge the heuristics presented in this
aper are the first solution to this problem. For the minirtiira
of BDDs under don'’t care conditions there is a number of methods
in the literature, e.g. [8, 7, 5, 18, 17, 11]. However f®@MDs
the problem seems to be more difficult, since due to the Davio
decomposition in BMDs a change of the function value for a sin-
gle input vector (exploiting a don't care for this input veQthas
not only a “local effect” in the Decision Diagram, but caneaff
larger parts of the BMD (see Section 2). A paper which has some
relations to our work in this sense is [20]. In that warkDs
[12] are minimized (which are also based on Davio decomposi-
tions). In fact our first methddto minimize *8mbs (which are
representations of integer—valued functions) is somewimailar
to the minimization ofFDDs in [20] (FDDs are representations of
Boolean functions). Another related paper is [19], whichimi
mizes Reed—Muller forms. However the method from [19], Wwhic
decides, whether to flip the value for a subset of coefficiemtise
Reed-Muller spectrum from 0 to 1 (1 to 0) or not, with the goal
to maximize the number of zeros in the Reed—Muller spectisim,
not applicable when the values are integers as for functiems-
sented by BMDs.

We developed two different methods for the minimization of

*BMDS under don't care conditions. After Section 2, which gives
some basic definitions and notations, we present these dwetho

(*BMDS) [4], which are able to represent integer—valued pseudo in Section 3 and in Section 4 we give preliminary experimienta

Boolean functionsf : {0,1}" — Z and which are especially
suited for arithmetic functions.

When a circuit consists of several modules or subcircuits, e
isting methods to compute theabD representing the overall cir-
cuit compute BMDS for the modules and combine thesemMbs
to a *BmD for the overall circuit by BMD operations [6]. Other
methods use backward construction [9, 13] from the circutt o
puts towards the inputs and compose step by step ghep*for
a gate of the current cut front into th&fD for the intermediate
result.

A potential, which has not been used in this process so far, is

the knowledge that certain input combinations can not béiegpp
to subcircuits/modules. Input combinations, which canb®ap-
plied to subcircuits, can be given as don't care informatiiornthe
circuit specification or can be computed as satisfiability doares
by image computations [1]. These don't cares can be usedtie mi
mize *BMDS — either before combining tha&®Ds for submodules

by *BMD operations or in the backward construction method when €dge ofv. BDDs

the processing of a submodule, for which don’t care inforomat
are at hand, is finished. In this context the minimization®fibs
by exploiting don’t care informations aims at reducing thevb
sizes to keep peak memory consumption as low as possible.
The problem we have to solve is to minimize aMD B for a

function fz under don't care conditions given by a characteristic ©n)+ i * fhigh(v) (€1, - -,

functionde (de(z) = 1, if z is a don't care vector, i.ex can not
be applied to the subcircuit realizinfi). Sincedc is a Boolean

results to evaluate the approaches. The minimization teand
very promising. The first method was able to redueab sizes

by 75% on the average, the second even by 79%. Finally, $ectio
5 concludes the paper and gives directions for future rebear

2. PRELIMINARIES

In this section we give a brief review &bbps [2], BMDS and
*BMDS [4]. BDDS are used to represent Boolean functigns
{0,1}" — {0, 1}, and bothemDs and *BMDs represent integer—
valued pseudo Boolean functiofis {0,1}" — Z.

A BDD is a rooted directed acyclic gragh = (V, E) with
non empty node set V containing two types of noaes)-terminal
andterminalnodes. A non-terminal nodehas as label a variable
index(v) € {z1,...,z,} and two childreNow(v), high(v) €
V. We calllow(v) also0-successdw) andhigh(v) 1-successdr
v). The edge leading tbow(v) (high(v)) is called low (high)
are ordered [2]. A terminal nodeis labeled
with a valuevalue(v) € {0,1} and has no outgoing edges. The
Boolean functionf, : {0,1}" — {0, 1} defined by aDD nodev
is defined recursively: If is a terminal node withalue(v) = c €
{0,1}, then f, (z1,...,2n) = c and ifv is a non-terminal node
with index(v) = z;, thenfy(z1,...,2n) = Ti floww) (21, -,
T,). (BDDS use the so-called Shannon

Isee Section 3

(a)reduced
Figure 1: Example for amp.

(b) non-reduced

decomposition.) The function represented B B is equal to
the function represented by its root nagg,:.

Like BDDSBMDS are based on a rooted directed acyclic graph.
In contrast toBDDs the terminal nodes are labeled with values
value(v) € Z. The recursive definition of the pseudo Boolean
function f, : {0,1}" — Z represented by amp nodewv dif-
fers fromsDDs: If v is a terminal node withalue(v) = ¢ € Z,
then f,(z1,...,z,) = c and if v is a non-terminal node with
index(v) = z;, thenf,(z1,...,2n) = floww)(T1,...,Zn) +
;i * frighv) (21, ..., Tn). BMDS USe the so-callegositive Davio
decomposition It follows from this recursive definition that the
function represented byow(v) is equal tofy ., =o', butin con-
trast to Shannon decomposition the function representéddiy(v)

is
fv|ﬂvi:1 _fv|ﬂvi:0- (1)

SinceBMDS use another decomposition type theyDs (pos-
itive Davio decomposition instead of Shannon decompasititne
reduction rules to reduce tis@1D sizes and to makemDs a canon-
ical data structure have to be changed comparegbis: As in
the case oBDDs, if for terminal nodew andv’ € V value(v) =
value(v') or if for non-terminal nodes and v’ indez(v)
index(v'), low(v) = low(v') and high(v) = high(v') then
v = v'. However due to the Davio decomposition we have the
reduction rule that in a reducevb there is no node € V with
high(v) = t, ¢t terminal node withvalue(t) = 0.

For simplicity we assume in the following that the variables
occur in the fixed ordet, ..., zy.

To give a relation between nodes oD B and cofactors of
the functionfs represented byB, we define “the node which is
reached byey, ..., e) € {0,1} (I < n)™:

To determine the node reached @y, . . ., ;) we start at the
root node and follow the edges according(ta, . ..,¢). If we
are at a node labeled withz; ande; = 0, then we follow the
edge tolow(v) and ife; = 1, we go tohigh(v). Special atten-
tion has to be paid to the case, whgasuccessdw) has not label
z;+1. If in this casee;—successdw) is a non—terminal, choose
k with 2, = indez(e;—successdw)) and if e;—successdw) is
a terminal choos&e = n + 1. Then we have to take into ac-
count, that in an non—-reduced version of theD the edge leading
to e;—successdw) would be replaced by a path of nodes leading
to ¢;—successdw) where the labels are;t1,...,zr_1 and the
high edges lead to the constant 0, respectively. Therefergav
to e;—successdw) only if €;41 = ... = ex—1 = 0, otherwise we
say that the terminal O is reached i, ...,) (since 0 would
be reached in a non—-reduced version of ghep). We call the
node reached bk, .. ., ¢) also(e, . . ., ,)—node and the func-

tion represented by this nodigl’“"”).

Example 2.1 Figure 1(a) shows an example oBaD for function
f with £(0,0) = 1, £(0,1) = 6, f(1,0) = 5 and f(1,1) = 10.
The (0, 0)—node is the terminal, the (0, 1)—node is terminab,

tForafunction,f : {0,1}* — 7 fu,—o (f,=1) is the function which
results from a substitution af; by constantd (1) and is called negative
(positive) cofactor off with respect tac;.

the (1,0)—node is terminal, but the(1, 1)—node is terminaD,
since the high edge starting from the root leads to a termamal
not to a node with labet» and — as shown in Figure 1(b) — in the
non-reducedMmD vector(1,1) leads to terminal O.

Using (1) we can conclude the following lemma by induction:

Lemma 2.1 Let B be aBMD representing a functiotfig : {0,1}"
— Z and letv be the(es, . . ., &;)—node { < n). Then the function

FEto) represented by is equal to

€1 5-.0)€ L €;—6;
fél D= (_1)21_1(g)fB|11:51,~-~,z1:5l' (2

(Ford,ec {0,1} : 6 < eiff 6; < e; V1 < i <L)

Lemma 2.1 shows that the change of the functfgnfor a
single input vectok, i.e. the change of cofactgfiz|,=., has not
only a “local effect” in the Decision Diagram, but affect$ &
nodes withe < ~.

*BMDs were defined in [4] to further reduce the sizesefDs
by increasing the amount of subgraph sharing. Bmbs each
edge has an additional multiplicative edge weighte Z, such
that an edge with edge weight leading to a node represents a
functionm - f,,. Reduction rules guarantee that functiensg and
¢ - g (c1,c2 € Z)\ {0}) are represented by the same node (but by
different edges).

3. DON'T CARE ASSIGNMENT

In the following we present a solution to the problem to miizien
a *BMD by assigning values to don't cares. We have to solve the
following problemDC*BMD:
Given: A *BMD B representing a functiofi : {0, 1}" — Z and
aBDD C representing a function: {0,1}" — {0,1}.
Find: A *BmMD B’ representing a functioff’ : {0,1}" — Z,
such thatf - ¢ = f' - cand B’ has the minimum number of nodes
among all BmDs fulfilling the same property (and respecting the
same variable order).

DC*BMD is a hard problem, more precisely we can prove the
following theorem [16]:

Theorem 3.1 DC*BMD is N P complete.

That is why we are looking for a heuristic solution@€*BMD in
the following.

3.1. Methodmin_polynomial

Our first methodnin_polynomialis motivated by the relationship
betweensmMDs over variables, ..., z, and polynomials over
z1,...,Z,: The rule to evaluatemps directly implies a method
to derive the polynomial representing the same functionhas t
BMD. E.g. the function from Figure 1 is equal (b + z» - 5) +

z1 -4 = 1+ bzs + 4z1. In general the polynomial contains the
terme-z$' - ... - 25 (zf = x; andz) = 1) if and only if the
node reached bk, . .., €,) is terminalc # 0.

It is easy to see that the size of tBeD B representing func-
tion fp is always less or equal to the size of the polynofial-
resentingfs. Since BMDs can be obtained frommDs by reduc-
tion, this is clearly also true forgmbps.

Our first method consists in a (heuristic) minimization of th
size of this polynomial, which is an upper bound on thedb and
the *BMD size. For vectorgey,...,€,), such that the terminal
reached by(ei,...,€,) isc # 0, we try to use don't cares to
change the value of the terminal to zero(df, .. ., ¢,) is adon't
care vector, i.edc(es, . . .,€,) = 1, we change the function value
fB(e1,. .., €en) such that the terminal reached Gy, . . ., €,) will

3The size of a polynomial is defined as the number of constaats,
able names and operators + arid the polynomial.

Figure 4: ExampleBMD minimization byindependentfs.

Figure 2: ExampleBMD minimization bymin_polynomial

in a recursive procedure. When the procedure processema
nodev, it tries to assign don’t cares in such a way that (v) and

1 *BwmD function minpolynomia(*Bvb B,BDD DC) high(v) become identical. If this is possible, we have to keep this
2 it DC =[1]thenretum [0]fi; if DC =[0]then retum B i subgraph only once and additionally — because ofthe reduc-
3 if B = constant then return B fi tion rules — nodev can be removed, because the subfunction is
4 Letw be top variable oB and DC, now independent from variabiedez (v).
3 Bigw = Bloco. Buign = Blo=a = Blu=o, SinceBMDS use positive Davio decomposition instead of Shan-
7 B “"f’__mm |”=l°’ ’.”lgh = DClu=1 non decomposition, the function represented by a nodan not
low ‘= _polynomial(Biow, DClow) . L .
8 Bl = min_polynomial(Bnigh + (Biow — Blow), DChign) be made independent from variabiglez (v) by changingow(v)
9 B'=B|,, +v-Bj, andhigh(v) to make them identical. Here we try to make use of
10 if size(B') < size(B)retum B’ else return B fi don't cares to changkigh(v), such that it become& Then, the
function represented by is independent fromindez(v) and we
Figure 3: Pseudo code famin_polynomial car(;i deletehigh(v) and (according t@mbD reduction rules) also
nodev.
be0. Using the formula of Lemma 2.1 it is clear that we just have Thus, we have to check for a node which is reached by
to set for the changed functiofy (e1,...,€), whether the node function can be made independent
from variablez; 1 by exploiting don’t cares frondc|z, = ,....0;=¢, -
fer(e1,...,en) = fB(e1,...,€n) —C Figure 4 illustrates the method using the same example aigin F
. . . ure 2. At the beginning we check whether the root noasan be
to achieve this goal. After that we must not forget to adjbstval- made independgnt fro?znl by using don’t cares, which is equiv-
ues of other terminals according to this changg®fes, . . ., €n), alent to the question, if we can sktgh(v) to zero. To do this

since the value of g (e, . .., €,) has an impact on all terminals,

which are reached by vectofs> e. o . i.e. both the don't cares &0, 0) and (1, 1) in this example. The

_ The main idea of our methaaiin.polynomialis illustrated in - terminal reached by1,0) can not be set to 0 using don't cares
Figure 2. Figure 2 shows@wup for the functionf : {0,1}" = Z ~ from dc|,, 1, but it is possible to use don't ca(e, 0) (adding 3
with polynomial 1 + 4z + 3z1 + 8z1z2. There are two don't g £(0, 0)) to set this terminal to 0. Then we use don’t cétel)
care vectorsdc(0,0) = dc(1,1) = 1. The don’t care values for tq set the terminal reached Iy, 1) to 0 and in fact, it is possible
(0,0) and(1,1) are represented in tremD by the shaded boxes o make the root node independent fram The changed values
of terminalsl and8. At flrst, we set terminal 1, which is reached for the terminals are given in Figure 4 in the row below thgm|
by (0,0) to 0. To achieve this we make use of the don't care vec- terminals. The reducegivp is given on the right hand side of Fig-
tor (0,0) and changef(0,0) by adding—1. Then we have to yre 4. Itis easy to see that it is not possible to make the r@ngi
propagate the change to all terminals which are reached &y ve npode independent from., since there are no don’t cares which
tors> (0,0). According to the formula of Lemma 2.1 we have to could be exploited. (Note that also the don't céded) must not
change terminal by adding 1, terminal 3 by adding 1 and terminal e ysed in the minimization of this node, since it was alrasbd
8 by adding—1. The resulting values for the terminals are givenin to make the root function independent fram. Exploitation of
Figure 2 in the rowdst dcbelow the original terminals. Finally we don't care(0,0) could make the function depend on again.)
make use of the don't calé, 1) by adding -7 tof (1, 1) resulting The check, whether a function of a nodewhich is reached by

we can exploit don't cares both frode|., =0 and fromdc|s, =1,

in a O-terminal reached k()l, 1) Since there is no V(_ECtOIf greater (61, RN Cl)y can be made independent from variabie_l using
than(1,1), we do not have to propagate the change in this case andg|, _.. . _. canbe formulated as a recursive procedure, which
the resulting terminals are shown in the second 2oMt dcbelow checks first if the low son can be set to 0 and then if the high son
the original terminals. Finally, we obtain a changed fumetivith can be set to 0; details can be found in [16]. This check is used
polynomial5z2 + 4z:. The reduced version of the resultiagiD in a depth—first traversal of thesb. Whenever we reach a node

is shown on the right hand side of Figure 2. which can be made independent from its top variable, we parfo

The order of processing the different don't care values & th the modification and the effect of the change is propagateilsi
example was not arbitrary: Since we process the terminafs fr to procedurenin_polynomial

left to right the propagation of changes due to other donfeca

assignments can not destroy the zeros we have already s#hig-o 4. EXPERIMENTAL RESULTS

reason our recursive procedure processesaivb'in adepth-first \ye jmpiemented the two methods foemp minimization based
manner following low edges before high edges. Pseudo catieof "\ (5) an experimental Word-Level DD package developed at
resulting recursive procedunein_polynomialto minimize a ‘8MD University of Freiburg [10] and performed experiments topare

B using don't cares specified byemb DC is given in Figure 3 : ; ‘
) i : the different approaches. The experiments were performidu
(we omit details like computed table etc.). Note that in the a SPARC Ultrall with a memory limit of 400 MB.

propagati,on of the changes madeBg,, is performed by adding To . e X

_ P :] generate incompletely specified functions from compfete
Biow = Blow .to Bhign before applyingmin.polynomialto Bigh. specified functions, we used a method proposed in [5]: We col-
3.2. Methodindependentlfs lapse each benchmark circuit to two-level form (sum-ofeficis
The second method is motivated by the “matching siblingsitise form). Each cube in this two-level form is contained in the on
tics from [18]. This heuristics was introduced to minimzeps set of at least one output function. Now we consider the set of

. [*BMD min |)
o |*BMD pin | ratio - ———2n 1 Time
Circuit | #PI | #PO | |DC| |*BMD| [*BMD|
az | mp | dfs az | mp | dfs az | mp | dfs
5xp1 7 10 15 76 19 12 3 0.250 0.157 0.039 0:00 0:00 0:00
9symml 9 1 97 223 242 183 182 1.085 0.820 0.816 0:09 0:00 0:00
alu2 10 6 91 401 372 139 147 0.927 0.346 0.366 0:30 0:01 0:.01
apex7 49 37 120 1390 2305 118 49 1.658 0.084 | 0.035 0:08 1:28 3:27
c8 28 18 126 346 336 17 13 0.971 0.049 0.037 0:02 1:23 0:02
mux 21 1 5798 60 a7 34 34 0.783 0.566 0.566 0:00 0:06 0:18
pcler8 27 17 34 44 61 32 21 1.386 0.727 0.477 0:01 0:00 0:09
rd73 7 3 36 89 87 43 36 0.977 0.483 0.404 0:02 0:00 0:00
rd84 8 4 65 196 200 114 81 1.020 0.581 0.413 0:15 0:00 0:00
sao2 10 4 52 128 96 a7 37 0.750 0.367 0.289 0:.01 0:00 0:00
z4ml 7 4 30 69 87 30 26 1.260 0.434 | 0.376 0:00 0:00 0:00
[ST 3022] 3852 [769 [629 |[1.247 | 0.254 | 0.208 |

Table 1: Results for don’t care minimization.

all these cubes and randomly select cubes with a probalbility
40% to be included into the don’t care set. For the resultimgjtd
care set @DD is computed. Then aBwmD for an integer—valued
function representing the benchmark circuit is computedereH
outputf; (0 <7 < m — 1) is weighted by2*, such that the func-
tion value of this integer—valued functigh for input vectore is

fle) = 712" - fi(e). As variable order we used the initial
order given in the benchmark specification. The results ame s
marized in Table 1. In the first column the benchmark circsiit i
given, in the second column the number of primary inputs and i
the third column the number of primary outputs. Column 4 show
the number o8BDD nodes needed to represent the don't care set
and column 5 the number of nodes needed to represent the ini-
tial *BMD. Columns 6-8 give theBMD sizes after minimization.
Three different methods are compared: For comparison veeigiv
columnazthe simple method to set all don't care input vectors to

function value 0, which can be done by computjfig dc. Column
mp gives the results for our procedumein_polynomialand col-
umn dfs the results for our proceduiadependentfs Columns
9-11 give the ratios “size of minimizeds¥b divided by size of
initial *BMD”, again for the three different methods. Finally the
corresponding CPU times are given in columns 12-14 in format
minutes:seconds, rounded to seconds.

The results show that setting all don't cares to 0 (colusms
is not a successful method. On the average the sizes eveasecr
by 24.7%. In contrast, our two methods for don’t care minamniz
tion are both very effective in minimizing thes#D sizes: Method
min_polynomial (columnsmp) is able to reduce BmMD sizes by
74.6% on the average and methadependentfs (columnsdfs)
reduces the sizes even by 79.2%. Columns 13 and 14 show that;2)
these results can be achieved within a small amount of rua tim

(1]

(2]
(3]

(4
(5]

(6]
(7]

(8]

El

(10]
(11]

5. CONCLUSIONS AND FUTURE WORK [13]
We presented two heuristic methods for don’t care mininozrat

of *BMDs. Experimental results proved them to be very effective [14]
in reducing BMD sizes within a small amount of CPU time.

Atthe moment we are working on a modified version of method [15]
independentfs which is based on the observation that in contrast
to BDDs [18] for *BMDs the order in which we process the nodes [4¢)
can influence the quality of the result due to the propagatidhe
change. Setting the high son of a nad 0 can destroy the pos-
sibility to set the high son of another nodeto 0. Since the sub-
graph of the high son of a node at a higher level in the® will
be larger on the average, we expect that the gain of settinlgitfn
son of such a node to 0 is also larger. Therefore nodes atrighe [18]
levels should processed first leading to a breadth-firsetsal of
the *8MD instead of a depth-first traversal.

Moreover, we are working on an application of o@D min-
imization in the verification of Pentium style integer digid to
keep peak memory consumption small during backward camstru
tion [9]. Don't cares are computed by an iterative image cotap
tion for the different add&shift stages.

(17]

(19]

[20]

6. REFERENCES

K. Bartlett, R. K. Brayton, G. Hachtel, R. M. Jacoby, C.NRorrison,
R. Rudell, A. L. Sangiovanni-Vincentelli, and A. R. Wang. Mevel
logic minimization using implicit don’t caredEEE Trans. on CAD
7(6):723-740, 1988.

R.E. Bryant. Graph - based algorithms for Boolean fumtinmanip-
ulation. IEEE Trans. on Comp35(8):677—-691, 1986.

R.E. Bryant. Binary decision diagrams and beyond: Etabéeech-
niques for formal verification. Iimt'l Conf. on CAD pages 236-243,
1995.

R.E. Bryant and Y.-A. Chen. Verification of arithmetiafctions with
binary moment diagrams. IBesign Automation Confpages 535—
541, 1995.

S. Chang, D. Cheng, and M. Marek-Sadowska. MinimizingBRD
size of incompletely specified multiple output functionsEuropean
Design & Test Conf.pages 620-624, 1994.

Y.-A. Chen and R.E. Bryant. ACV: an arithmetic circuitrifeer. In
Int'l Conf. on CAD pages 361-365, 1996.

O. Coudert, C. Berthet, and J.C. Madre. Verification afusmntial
machines based on symbolic execution. Aatomatic Verification
Methods for Finite State Systems, LNCS,4fges 365-373, 1989.
O. Coudert, C. Berthet, and J.C. Madre. Verification afjsential
machines using Boolean functional vectors Phoceedings IFIP In-
ternational Workshop on Applied Formal Methods for CorretiSI
Design pages 111-128, 1989.

K. Hamaguchi, A. Morita, and S. Yajima. Efficient consttion of
binary moment diagrams for verifying arithmetic circuitén Int'l
Conf. on CADpages 78-82, 1995.

M. Herbstritt. Erfullbarkeitsprobleme bei Word-Le\Decision Dia-
grams. Master’s thesis, University Freiburg, April 2000.

Y. Hong, P.A. Beerel, J.R. Burch, and K.L. McMillan. $aBDD
minimization using don'’t cares. IBesignh Automation Confpages
208-213, 1997.

U. Kebschull, E. Schubert, and W. Rosenstiel. Mulié#kelogic syn-
thesis based on functional decision diagramsEumopean Conf. on
Design Automationpages 43-47, 1992.

M. Keim, M. Martin, B. Becker, R. Drechsler, and P. Molit Poly-
nomial formal verification of multipliers. IWLSI Test Symppages
150-155, 1997.

A. Kuehlmann and F. Krohm. Equivalence checking usiaots @and
heaps. IrDesign Automation Confpages 263—-268, 1997.

S. Malik, A.R. Wang, R.K. Brayton, and A.L. Sangiovanni
Vincentelli. Logic verification using binary decision diams in a
logic synthesis environment. Int'l Conf. on CAD pages 6-9, 1988.
C. Scholl, M. Herbstritt, and B. Becker. Exploiting dbrares
to minimize *BMDs. Technical report, Albert-Ludwigs-Ursity,
Freiburg, September 2000.

C. Scholl, S. Melchior, G. Hotz, and P. Molitor. Mininiig ROBDD
sizes of incompletely specified functions by exploitingoaty sym-
metries. InEuropean Design & Test Conpages 229-234, 1997.
T.R. Shiple, R. Hojati, A.L. Sangiovanni-Vincentelind R.K. Bray-
ton. Heuristic minimization of BDDs using don't cares. Design
Automation Conf.pages 225-231, 1994.

D. Varma and E.A. Trachtenberg. Computation of reecHenex-
pansions of incompletely specified boolean functions freaduced
representationdEE Proceedings138(2):85-92, 1991.

Z. Zilic and K. Radecka. Don't care FDD minimization hbytérpo-
lation. InInt'l Workshop on Logic Synthpages 353—-356, 1998.

