
Preprint from Proceedings of ITG/GI/GMM-Workshop ‘‘Methoden und
Beschreibungssprachen zur Modellierung und Verifikation von Schaltungen und
Systemen’’, Meissen, Germany, February 2001, pp. 45-57

Don’t Care Minimization of *BMDs: Complexity and
Algorithms

Christoph Scholl Marc Herbstritt Bernd Becker
Institute of Computer Science, Albert–Ludwigs–University,

D 79110 Freiburg im Breisgau, Germany
email:<scholl/herbstri/becker>@informatik.uni-freiburg.de

Abstract

We present for the first time methods to minimize* BMDs exploiting don’t care condi-
tions. These minimization methods can be used during the verification of circuits by* BMDs.
By changing function values for input vectors, which are in the don’t care set, smaller
* BMDs can be computed to keep peak memory consumption during* BMD construction as
low as possible. We determine the complexity of the problem of don’t care minimization
for * BMDs and thus justify the use of heuristics to approximate the solution. Preliminary
experimental results prove our heuristcs to be very effective in minimizing* BMD sizes.

1 Introduction
One of the most important tasks during the design ofIntegrated Circuitsis the verification of
an implemented circuit, i.e., the check whether the implementation fulfills its specification.
In the last few years several methods based onDecision Diagrams(DDs) have been proposed
[16, 4, 15] to perform verification. The idea is to transform both implementation and specifica-
tion of a combinational circuit into a DD. Then, due to the canonicity of the DD representation,
the equivalence check for specification and implementationreduces to the check whether the
corresponding DDs are identical.
The most popular data structure in this context wereBinary Decision Diagrams(BDDs) [3].
They were applied successfully e.g. to the verification of control logic and integer adders. But
there are functions of high practical relevance (e.g. integer multipliers), which cannot be rep-
resented efficiently byBDDs. To overcome the limitations ofBDDs other types of DDs were
defined, e.g.Binary Moment Diagrams(BMDs) andMultiplicative BMDs (* BMDs) [5], which
are able to represent integer–valued pseudo Boolean functionsf : f0; 1g

n

! Z and which are
especially suited for arithmetic functions.
When a circuit consists of several modules or subcircuits, existing methods to compute the
* BMD representing the overall circuit compute *BMDs for the modules and combine these
* BMDs to a *BMD for the overall circuit by *BMD operations [7]. Other methods use back-
ward construction [10, 14] from the circuit outputs towardsthe inputs and compose step by step
the *BMD for a gate of the current cut front into the *BMD for the intermediate result.
A potential, which has not been used in this process so far, isthe knowledge that certain input
combinations cannot be applied to subcircuits/modules. Input combinations, which cannot be
applied to subcircuits, can be given as don’t care informations in the circuit specification or
can be computed as satisfiability don’t cares by image computations [1]. These don’t cares can
be used to minimize *BMDs – either before combining the *BMDs for submodules by *BMD
operations or in the backward construction method when the processing of a submodule, for
which don’t care informations are at hand, is finished. In this context the minimization of
* BMDs by exploiting don’t care informations aims at reducing the* BMD sizes to keep peak
memory consumption as low as possible.
The problem we have to solve is to minimize a *BMD B for a functionf

B

under don’t care
conditions given by a characteristic functiond
 (d
(x) = 1, if x is a don’t care vector, i.e.x

cannot be applied to the subcircuit realizingf
B

). Sinced
 is a Boolean function, we assume
that it is represented by aBDD. Our task is to compute a *BMD B

0 realizing a functionf
B

0 , such
thatf

B

(x) = f

B

0

(x) for all x with d
(x) = 0 andB0 has a (nearly) minimum number of nodes
among all *BMDs fulfilling this property.
To the best of our knowledge the heuristics presented in thispaper are the first solution to
this problem. For the minimization ofBDDs under don’t care conditions there is a number of
methods in the literature, e.g. [9, 8, 6, 20, 19, 12]. Howeverfor * BMDs the problem seems
to be more difficult, since due to the Davio decomposition in *BMDs a change of the function
value for a single input vector (exploiting a don’t care for this input vector) has not only a “local
effect” in the Decision Diagram, but can affect larger partsof the *BMD (see Section 2). A paper
which has some relations to our work in this sense is [22]. In that workFDDs [13] are minimized
(which are also based on Davio decompositions). In fact our first method1 to minimize *BMDs
(which are representations of integer–valued functions) is somewhat similar to the minimization
of FDDs in [22] (FDDs are representations of Boolean functions). Another related paper is [21],
which minimizes Reed–Muller forms. However the method from[21], which decides, whether
to flip the value for a subset of coefficients in the Reed–Muller spectrum from 0 to 1 (1 to 0)
or not, with the goal to maximize the number of zeros in the Reed–Muller spectrum, is not
applicable when the values are integers as for functions represented by *BMDs.
We developed two different methods for the minimization of *BMDs under don’t care condi-
tions. After Section 2, which gives some basic definitions and notations, we determine the
complexity of the problem and present our two heuristic methods in Section 3. In Section 4
we give preliminary experimental results to evaluate the approaches. The minimization results
are very promising. The first method was able to reduce *BMD sizes by 75% on the average,
the second even by 79%. Finally, Section 5 concludes the paper and gives directions for future
research.

2 Preliminaries
In this section we give a brief review ofBDDs [3], BMDs and *BMDs [5]. BDDs are used
to represent Boolean functionsf : f0; 1g

n

! f0; 1g, and bothBMDs and *BMDs represent
integer–valued pseudo Boolean functionsf : f0; 1g

n

! Z.
A BDD is a rooted directed acyclic graphG = (V;E) with non empty node set V contain-
ing two types of nodes,non-terminalandterminalnodes. A non-terminal nodev has as label
a variableindex(v) 2 fx

1

; : : : ; x

n

g and two childrenlow(v); high(v) 2 V . We call low(v)
also0–successor(v) andhigh(v) 1–successor(v). The edge leading tolow(v) (high(v)) is
called low (high) edge ofv. BDDs are ordered [3]. A terminal nodev is labeled with a value
value(v) 2 f0; 1g and has no outgoing edges. The Boolean functionf

v

: f0; 1g

n

! f0; 1g

defined by aBDD nodev is defined recursively: Ifv is a terminal node withvalue(v) =
 2

f0; 1g, thenf
v

(x

1

; : : : ; x

n

) =
 and if v is a non-terminal node withindex(v) = x

i

, then
f

v

(x

1

; : : : ; x

n

) = x

i

� f

low(v)

(x

1

; : : : ; x

n

) + x

i

� f

high(v)

(x

1

; : : : ; x

n

). (BDDs use the so-called
Shannon decomposition.) The function represented by aBDD B is equal to the function repre-
sented by its root nodev

root

.
Like BDDs BMDs are based on a rooted directed acyclic graph. In contrast toBDDs the terminal
nodesv are labeled with valuesvalue(v) 2 Z. The recursive definition of the pseudo Boolean
functionf

v

: f0; 1g

n

! Z represented by aBMD nodev differs from BDDs: If v is a terminal
node withvalue(v) =
 2 Z, thenf

v

(x

1

; : : : ; x

n

) =
 and if v is a non-terminal node with
index(v) = x

i

, thenf
v

(x

1

; : : : ; x

n

) = f

low(v)

(x

1

; : : : ; x

n

) + x

i

� f

high(v)

(x

1

; : : : ; x

n

). BMDs use
the so-calledpositive Davio decomposition. It follows from this recursive definition that the
function represented bylow(v) is equal tof

v

j

x

i

=0

y, but in contrast to Shannon decomposition
the function represented byhigh(v) is

f

v

j

x

i

=1

� f

v

j

x

i

=0

: (1)
1see Section 3
yFor a function,f : f0; 1g

n

! Z f

x

i

=0

(f
x

i

=1

) is the function which results from a substitution ofx

i

by
constant0 (1) and is called negative (positive) cofactor off with respect tox

i

.

x1

x2

1 5 4

10

10

(a) reduced

x1

1

x2

10

0

x2

1 5 04

0 1

(b) non-reduced

Figure 1: Example for aBMD.

SinceBMDs use another decomposition type thanBDDs (positive Davio decomposition instead
of Shannon decomposition), the reduction rules to reduce the BMD sizes and to makeBMDs
a canonical data structure have to be changed compared toBDDs: As in the case ofBDDs, if
for terminal nodesv andv0 2 V value(v) = value(v

0

) or if for non-terminal nodesv andv0

index(v) = index(v

0

), low(v) = low(v

0

) andhigh(v) = high(v

0

) thenv = v

0. However due
to the Davio decomposition we have the reduction rule that ina reducedBMD there is no node
v 2 V with high(v) = t, t terminal node withvalue(t) = 0.
For simplicity we assume in the following that the variablesoccur in the fixed orderx

1

; : : : ; x

n

.
To give a relation between nodes of aBMD B and cofactors of the functionf

B

represented by
B, we define “the node which is reached by(�

1

; : : : ; �

l

) 2 f0; 1g

l (l � n)”:
To determine the node reached by(�

1

; : : : ; �

l

) we start at the root node and follow the edges
according to(�

1

; : : : ; �

l

). If we are at a nodev labeled withx
i

and�
i

= 0, then we follow the
edge tolow(v) and if�

i

= 1, we go tohigh(v). Special attention has to be paid to the case, when
�

i

–successor(v) has not labelx
i+1

. If in this case�
i

–successor(v) is a non–terminal, choosek
with x

k

= index(�

i

–successor(v)) and if �
i

–successor(v) is a terminal choosek = n + 1.
Then we have to take into account, that in an non–reduced version of theBMD the edge leading
to �

i

–successor(v) would be replaced by a path of nodes leading to�

i

–successor(v) where the
labels arex

i+1

; : : : ; x

k�1

and the high edges lead to the constant 0, respectively. Therefore we
go to �

i

–successor(v) only if �
i+1

= : : : = �

k�1

= 0, otherwise we say that the terminal 0 is
reached by(�

1

; : : : ; �

l

) (since 0 would be reached in a non–reduced version of theBMD). We
call the node reached by(�

1

; : : : ; �

l

) also(�
1

; : : : ; �

l

)–node and the function represented by this
nodef (�

1

;:::;�

l

)

B

.

Example 2.1 Figure 1(a) shows an example of aBMD for functionf withf(0; 0) = 1, f(0; 1) =
6, f(1; 0) = 5 andf(1; 1) = 10. The(0; 0)–node is the terminal1, the(0; 1)–node is terminal
5, the(1; 0)–node is terminal4, but the(1; 1)–node is terminal0, since the high edge starting
from the root leads to a terminal and not to a node with labelx

2

and – as shown in Figure 1(b)
– in the non–reducedBMD vector(1; 1) leads to terminal 0.

Using (1) we can conclude the following lemma by induction:

Lemma 2.1 Let B be a BMD representing a functionf
B

: f0; 1g

n

! Z and let v be the
(�

1

; : : : ; �

l

)–node (l � n). Then the functionf (�

1

;:::;�

l

)

B

represented byv is equal to

f

(�

1

;:::;�

l

)

B

=

X

(Æ

1

;:::;Æ

l

)�(�

1

;:::;�

l

)

(�1)

P

l

i=1

(�

i

�Æ

i

)

f

B

j

x

1

=Æ

1

;:::;x

l

=Æ

l

: (2)

(For Æ; � 2 f0; 1gl : Æ � � iff Æ
i

� �

i

81 � i � l.)

Lemma 2.1 shows that the change of the functionf

B

for a single input vector�, i.e. the change
of cofactorf

B

j

x=�

, has not only a “local effect” in the Decision Diagram, but affects all
–nodes
with � �
.
* BMDs were defined in [5] to further reduce the size ofBMDs by increasing the amount of
subgraph sharing. In *BMDs each edge has an additional multiplicative edge weightm 2 Z,
such that an edge with edge weightm leading to a nodev represents a functionm�f

v

. Reduction
rules guarantee that functions

1

� g and

2

� g (

1

;

2

2 Z n f0g) are represented by the same
node (but by different edges).

3 Don’t care assignment
In the following we present a solution to the problem to minimize a *BMD by assigning values
to don’t cares. We have to solve the following problemDC*BMD:
Given: A * BMD B representing a functionf : f0; 1g

n

! Z and aBDD C representing a
function
 : f0; 1gn ! f0; 1g.
Find: A * BMD B

0 representing a functionf 0

: f0; 1g

n

! Z, such thatf �
 = f

0

�
 andB0 has
the minimum number of nodes among all *BMDs fulfilling the same property (and respecting
the same variable order).
The corresponding problem forBMDs instead of *BMDs is calledDCBMD.
DC*BMD andDCBMDare hard problems, more precisely we can prove the followingtheorem:

Theorem 3.1 DC*BMD and DCBMD areNP complete.

Proof: The proof thatDC*BMD andDCBMD areNP–hard is done by a reduction from the
graph colorability problem.DC*BMD, DCBMD2 NP is shown usingWLCDs [18]. For details
see Appendix A. 2

Because of this complexity result we are looking for aheuristicsolution ofDC*BMD in the
following.

3.1 Methodmin polynomial
Our first methodmin polynomial is motivated by the relationship betweenBMDs over vari-
ablesx

1

; : : : ; x

n

and polynomials overx
1

; : : : ; x

n

: The rule to evaluateBMDs directly implies a
method to derive the polynomial representing the same function as theBMD. E.g. the function
from Figure 1(a) is equal to(1 + x

2

� 5) + x

1

� 4 = 1 + 5x

2

+ 4x

1

. In general the polynomial
contains the term
 � x�1

1

� : : : � x

�

n

n

(x1
i

= x

1

andx0
i

= 1) if and only if the node reached by
(�

1

; : : : ; �

n

) is terminal
 6= 0.
It is easy to see that the size of theBMD B representing functionf

B

is always less or equal
to the size of the polynomial3 representingf

B

. Since *BMDs can be obtained fromBMDs by
reduction, this is clearly also true for *BMDs.
Our first method consists in a (heuristic) minimization of the size of this polynomial, which is
an upper bound on theBMD and the *BMD size. For vectors(�

1

; : : : ; �

n

), such that the terminal
reached by(�

1

; : : : ; �

n

) is
 6= 0, we try to use don’t cares to change the value of the terminal
to zero. If (�

1

; : : : ; �

n

) is a don’t care vector, i.e.d
(�
1

; : : : ; �

n

) = 1, we change the function
valuef

B

(�

1

; : : : ; �

n

) such that the terminal reached by(�
1

; : : : ; �

n

) will be 0. Using the formula
of Lemma 2.1 it is clear that we just have to set for the changedfunctionf

B

0

f

B

0

(�

1

; : : : ; �

n

) = f

B

(�

1

; : : : ; �

n

)�

to achieve this goal. After that we must not forget to adjust the values of other terminals ac-
cording to this change off

B

(�

1

; : : : ; �

n

), since the value off
B

(�

1

; : : : ; �

n

) has an impact on all
terminals, which are reached by vectors
 � �.
The main idea of our methodmin polynomialis illustrated in Figure 2(a). Figure 2(a) shows
a BMD for the functionf : f0; 1g

2

! Z with polynomial1 + 4x

2

+ 3x

1

+ 8x

1

x

2

. There are
two don’t care vectors:d
(0; 0) = d
(1; 1) = 1. The don’t care values for(0; 0) and(1; 1) are
represented in theBMD by the shaded boxes of terminals1 and8. At first, we set terminal 1,
which is reached by(0; 0) to 0. To achieve this we make use of the don’t care vector(0; 0) and
changef(0; 0) by adding�1. Then we have to propagate the change to all terminals which
are reached by vectors> (0; 0). According to the formula of Lemma 2.1 we have to change
terminal4 by adding 1, terminal 3 by adding 1 and terminal 8 by adding�1. The resulting
values for the terminals are given in Figure 2(a) in the row1st dcbelow the original terminals.
Finally we make use of the don’t care(1; 1) by adding -7 tof(1; 1) resulting in a 0–terminal
reached by(1; 1). Since there is no vector greater than(1; 1), we do not have to propagate
the change in this case and the resulting terminals are shownin the second row2nd dcbelow

3The size of a polynomial is defined as the number of constants,variable names and operators + and� in the
polynomial.

x1

1st dc

2nd dc

1

x2

10

0

x2

1 4 83

0 5 74

0 5 04

0 1
x1

x2

0 5 4

10

10

(a)min polynomial

x1

1

x2

10

0

x2

1 4 83

4 1 00

0 1 x2

4 1

10

(b) independentdfs

Figure 2: Example:BMD minimization.

1 * BMD function min polynomial(* BMD B; BDD DC)

2 if DC = 1 then return 0 fi; if DC = 0 then return B fi; if B =
onstant then return B fi;
3 if computed table contains entryresult for (B;DC) then return result fi;
4 Let v be top variable ofB andDC;B

low

= Bj

v=0

; B

high

= Bj

v=1

� Bj

v=0

;DC

low

= DCj

v=0

; DC

high

= DCj

v=1

5 B

0

low

:= min polynomial(B

low

;DC

low

)

6 B

0

high

:= min polynomial(B

high

+ (B

low

�B

0

low

); DC

high

)

7 B

0

= B

0

low

+ v � B

0

high

8 if size(B0

) � size(B) thenB0

= B fi;
9 insert entryB0 for (B;DC) into computed table

10 return B

0

;

Figure 3: Pseudo code formin polynomial.

the original terminals. Finally, we obtain a changed function with polynomial5x
2

+ 4x

1

. The
reduced version of the resultingBMD is shown on the right hand side of Figure 2(a).
The order of processing the different don’t care values in the example was not arbitrary: Since
we process the terminals from left to right the propagation of changes due to other don’t care
assignments cannot destroy the zeros we have already set. For this reason our recursive pro-
cedure processes the *BMD in a depth–first manner following low edges before high edges.
Pseudo code of the resulting recursive proceduremin polynomialto minimize a *BMD B using
don’t cares specified by aBDD DC is given in Figure 3. Note that in line 6 the propagation
of the changes made toB

low

is performed by addingB
low

� B

0

low

to B

high

before applying
min polynomialtoB

high

.

3.2 Method independentdfs
The second method is motivated by the “matching siblings” heuristics from [20]. This heuris-
tics was introduced to minimizeBDDs in a recursive procedure. When the procedure processes
a BDD nodev, it tries to assign don’t cares in such a way thatlow(v) andhigh(v) become iden-
tical. If this is possible, we have to keep this subgraph onlyonce and additionally – because of
theBDD reduction rules – nodev can be removed, because the subfunction is now independent
from variableindex(v).
SinceBMDs use positive Davio decomposition instead of Shannon decomposition, the func-
tion represented by a nodev cannot be made independent from variableindex(v) by changing
low(v) andhigh(v) to make them identical. Here we try to make use of don’t cares to change
high(v), such that it becomes0. Then, the function represented byv is independent from
index(v) and we can deletehigh(v) and (according toBMD reduction rules) also nodev.
Thus, we have to check for a nodev, which is reached by(�

1

; : : : ; �

l

), whether the node func-
tion can be made independent from variablex

l+1

by exploiting don’t cares fromd
j
x

1

=�

1

;:::;x

l

=�

l

.
Figure 2(b) illustrates the method using the same example asin Figure 2(a). At the beginning
we check whether the root nodev can be made independent fromx

1

by using don’t cares, which
is equivalent to the question, if we can sethigh(v) to zero. To do this we can exploit don’t cares
both fromd
j

x

1

=0

and fromd
j

x

1

=1

, i.e. both the don’t cares at(0; 0) and(1; 1) in this example.
The terminal reached by(1; 0) cannot be set to 0 using don’t cares fromd
j

x

1

=1

, but it is possi-
ble to use don’t care(0; 0) (adding 3 tof(0; 0)) to set this terminal to 0. Then we use don’t care
(1; 1) to set the terminal reached by(1; 1) to 0 and in fact, it is possible to make the root node
independent fromx

1

. The changed values for the terminals are given in Figure 2(b) in the row

1 * BMD function independentdfs(* BMD B; BDD DC)

2 if DC = 1 then return 0 fi; if DC = 0 then return B fi; if B =
onstant then return B fi
3 if computed table contains entryresult for (B;DC) then return result fi
4 Let v be top variable ofB andDC;B

low

= Bj

v=0

; B

high

= Bj

v=1

� Bj

v=0

;DC

low

= DCj

v=0

; DC

high

= DCj

v=1

5 (su

ess;B

low;diff

) :=
he
k zero(B

high

; DC

low

; DC

high

)

6 if su

ess then
7 B

0

= independent dfs(B

low

+B

low;diff

; DC

low

�DC

high

)

8 else
9 B

0

low

:= independent dfs(B

low

;DC

low

)

10 B

0

high

:= independent dfs(B

high

+ (B

low

� B

0

low

); DC

high

)

11 B

0

= B

0

low

+ v �B

0

high

12 fi
13 if size(B0

) � size(B) thenB0

= B fi
14 insert entryB0 for (B;DC) into computed table
15 return B

0

Figure 4: Pseudo code forindependentdfs.

1 (boolean; * BMD) function checkzero(* BMD B

H

; BDD DC

L

; BDD DC

H

)

2 if B
H

= 0 or DC

H

= 1 then return (1; 0) fi

3 if B
H

=
onstant andDC

H

= 0 andDC

L

= 1 then return (1; B

H

) fi

4 if DC

H

= 0 andDC

L

= 0 then return (0; 0) fi
5 if computed table contains entryresult for (B

H

;DC

L

;DC

H

) then return result fi
6 Let v be top variable ofB

H

, DC

L

andDC

H

;

7 B

H;low

= B

H

j

v=0

; B

H;high

= B

H

j

v=1

� B

H

j

v=0

;

8 DC

L;low

= DC

L

j

v=0

;DC

L;high

= DC

L

j

v=1

; DC

H;low

= DC

H

j

v=0

; DC

H;high

= DC

H

j

v=1

9 (su

ess;B

L diff;low

) :=
he
k zero(B

H;low

;DC

L;low

;DC

H;low

)

10 if su

ess = 0 then return (0; 0) fi
11 (su

ess;B

L diff;high

) :=
he
k zero(B

H;high

+ B

H;low

;DC

L;high

;DC

H;high

)

12 if su

ess = 0 then return (0; 0) fi
13 B

L diff

= (1� v) �B

L diff;low

+ v �B

L diff;high

14 insert entry(1; B
L diff

) for (B
H

;DC

L

; DC

H

) into computed table
15 return (1; B

L diff

)

Figure 5: Pseudo code forcheckzero.

below the original terminals. The reducedBMD is given on the right hand side of Figure 2(b).
It is easy to see that it is not possible to make the remaining node independent fromx

2

, since
there are no don’t cares which could be exploited. (Note thatalso the don’t care(0; 0) must not
be used in the minimization of this node, since it was alreadyused to make the root function
independent fromx

1

.) Exploitation of don’t care(0; 0) could make the function depend onx
1

again.)
The check, whether a function of a nodev, which is reached by(�

1

; : : : ; �

l

), can be made in-
dependent from variablex

l+1

usingd
j
x

1

=�

1

;:::;x

l

=�

l

can be formulated as a recursive procedure,
which checks first if the low son can be set to 0 and then if the high son can be set to 0. This
check is used in a depth–first traversal of the *BMD. Whenever we reach a node which can
be made independent from its top variable, we perform the modification and the effect of the
change is propagated similar to proceduremin polynomial.
Pseudo code for procedureindependentdfs, which minimizes a *BMD B using a don’t care set
given byDC, is shown in Figure 4. In line 5 the algorithm checks whether the high sonB

high

of a node labeled by variablev can be set to 0 or not. For this check don’t cares from two
sets can be used: One set is represented byDC

high

= DCj

v=1

and the other set is represented
by DC

low

= DCj

v=0

(see also example from Figure 2(b)). The check is done by a procedure
checkzero. checkzeroreturns a Boolean variablesu

ess, which indicates, whether the check
was successful or not, and a *BMD B

low;diff

. If the check is not successful (su

ess = 0 in
line 6) the algorithm proceeds like proceduremin polynomial. If the check is successful, i.e. if
B

high

can be set to 0, the exploitation of don’t cares fromDC

low

has to be taken into account:
Exploiting don’t cares fromDC

low

means changing the negative cofactor to setB

high

to 0.
These changes are returned as a *BMD B

low;diff

by the procedurecheckzero. Thus we have to
minimizeB

low

+ B

low;diff

instead ofB
low

in line 7. The don’t cares, which we are allowed to
use in line 7, are not given byDC

low

, but only byDC

low

�DC

high

, since we have to keep the

j�bmd

min

j ratio j�bmd

min

j

j�bmdj

Time
Circuit #PI #PO jDCj j�bmdj

az mp dfs az mp dfs az mp dfs
5xp1 7 10 15 76 19 12 3 0.250 0.157 0.039 0:00 0:00 0:00

9symml 9 1 97 223 242 183 182 1.085 0.820 0.816 0:09 0:00 0:00
alu2 10 6 91 401 372 139 147 0.927 0.346 0.366 0:30 0:01 0:01

apex7 49 37 120 1390 2305 118 49 1.658 0.084 0.035 0:08 1:28 3:27
c8 28 18 126 346 336 17 13 0.971 0.049 0.037 0:02 1:23 0:02

mux 21 1 5798 60 47 34 34 0.783 0.566 0.566 0:00 0:06 0:18
pcler8 27 17 34 44 61 32 21 1.386 0.727 0.477 0:01 0:00 0:09

rd73 7 3 36 89 87 43 36 0.977 0.483 0.404 0:02 0:00 0:00
rd84 8 4 65 196 200 114 81 1.020 0.581 0.413 0:15 0:00 0:00
sao2 10 4 52 128 96 47 37 0.750 0.367 0.289 0:01 0:00 0:00
z4ml 7 4 30 69 87 30 26 1.260 0.434 0.376 0:00 0:00 0:00

P

3022 3852 769 629 1.247 0.254 0.208

Table 1: Results for don’t care minimization.

resultB0 in line 7 independent from variablev.
For completeness, pseudo code for the procedurecheckzerowhich checks, whether don’t cares
can be used to set the function of a node to 0, can be found in Figure 5.

4 Experimental results
We implemented the two methods for *BMD minimization based onwld, an experimental
Word-Level DD package developed at University of Freiburg [11] and performed experiments
to compare the different approaches. The experiments were performed using a SPARC UltraII
with a memory limit of 400 MB.
To generate incompletely specified functions from completely specified functions, we used
a method proposed in [6]: We collapse each benchmark circuitto two-level form (sum-of-
products form). Each cube in this two-level form is contained in the on-set of at least one
output function. Now we consider the set of all these cubes and randomly select cubes with a
probability of 40% to be included into the don’t care set. Forthe resulting don’t care set aBDD
is computed. Then a *BMD for an integer–valued function representing the benchmarkcircuit
is computed. Here outputf

i

(0 � i � m� 1) is weighted by2i, such that the function value of
this integer–valued functionf for input vector� is f(�) =

P

m�1

i=0

2

i

� f

i

(�). As variable order
we used the initial order given in the benchmark specification. The results are summarized in
Table 1. In the first column the benchmark circuit is given, inthe second column the number
of primary inputs and in the third column the number of primary outputs. Column 4 shows the
number ofBDD nodes needed to represent the don’t care set and column 5 the number of nodes
needed to represent the initial *BMD. Columns 6–8 give the *BMD sizes after minimization.
Three different methods are compared: For comparison we give in columnazthe simple method
to set all don’t care input vectors to function value 0, whichcan be done by computingf

B

� d
.
Columnmpgives the results for our proceduremin polynomialand columndfs the results for
our procedureindependentdfs. Columns 9–11 give the ratios “size of minimized *BMD divided
by size of initial *BMD”, again for the three different methods. Finally the corresponding CPU
times are given in columns 12–14 in format minutes:seconds,rounded to seconds.
The results show that setting all don’t cares to 0 (columnsaz) is not a successful method. On
the average the sizes even increase by 24.7%. In contrast, our two methods for don’t care
minimization are both very effective in minimizing the *BMD sizes: Methodmin polynomial
(columnsmp) is able to reduce *BMD sizes by 74.6% on the average and methodindepen-
dentdfs (columnsdfs) reduces the sizes even by 79.2%. Columns 13 and 14 show that these
results can be achieved within a small amount of run time.

5 Conclusions and future work
We presented two heuristic methods for don’t care minimization of *BMDs. Experimental re-
sults proved them to be very effective in reducing *BMD sizes within a small amount of CPU
time.
At the moment we are working on a modified version of methodindependentdfs, which is

based on the observation that in contrast toBDDs [20] for *BMDs the order in which we process
the nodes can influence the quality of the result due to the propagation of the change. Setting
the high son of a nodev to 0 can destroy the possibility to set the high son of anothernodev0

to 0. Since the subgraph of the high son of a node at a higher level in the *BMD will be larger
on the average, we expect that the gain of setting the high sonof such a node to 0 is also larger.
Therefore nodes at higher levels should be processed first leading to a breadth-first traversal of
the *BMD instead of a depth-first traversal.
Moreover, we are working on an application of our *BMD minimization in the verification
of Pentium style integer dividers to keep peak memory consumption small during backward
construction [10]. Don’t cares are computed by an iterativeimage computation for the different
add&shift stages.

A Proof of Theorem 3.1
We prove Theorem 3.1 for the decision problem versionsDCBMD0 andDC*BMD0 of DCBMD
andDC*BMD.

DCBMD0: Given aBMD B representing a functionf : f0; 1g

n

! Z, a BDD C representing a
function
 : f0; 1gn ! f0; 1g and a constants 2 IN . Is there aBMD B

0 of size� s (with
the same variable order) representing a functionf

0

: f0; 1g

n

! Z, such thatf �
 = f

0

�
?

DC*BMD0: Given a *BMD B representing a functionf : f0; 1g

n

! Z, aBDD C representing a
function
 : f0; 1gn! f0; 1g and a constants 2 IN . Is there a *BMD B

0 of size� s (with
the same variable order) representing a functionf

0

: f0; 1g

n

! Z, such thatf �
 = f

0

�
?

At first, we prove the theorem for problemDCBMD0.
Proof: The first part is to prove thatDCBMD0 is NP-hard. The proof uses ideas and proof
techniques from [17] and [2]. In [17] Sauerhoff and Wegener prove that minimizing theBDD
size of incompletely specified functions is NP-hard and in [2] Bollig, Löbbing, Sauerhoff and
Wegener prove that the same problem is NP-hard forFDDs. SinceFDDs also use the positive
Davio decomposition, the proof can be adapted toBMDs.
Similar to [2] and [17] we construct a reduction from the well-known graph colorability problem
(GC) to DCBMD0.
An instance ofGC is a connected undirected graphG = (V;E) with the property thatE does
not contain any edgesfv; vg, v 2 V , and a numberk. The problem is to decide whetherG has
ak-coloring, i.e. whether there is a function� : V ! f1; : : : ; kg, such that the endpoints of the
edges are colored differently (�(v) 6= �(w) for all fv; wg 2 E.
Let G = (V = fv

1

; : : : ; v

n

g; E) and k be the given instance forGC. The corresponding
instance forDCBMD0 consists of aBMD B, a BDD C and a size bounds.
For theBMD and theBDD we use the following variables (wherem is a parameter defined later
on in the proof); the variables are to be tested in the given order:

x

1

; : : : ; x

n

; y

1

; : : : ; y

m

; z

1

; : : : ; z

n

:

We first describe theBMD B. ThisBMD realizes almost the same function as in the proof of [2].
The function values are only0 and1, but we have to take into account that we have to construct
a BMD, i.e. a word–level data structure. We use a substructure depending on thex–variables at
the top ofB as a switch to choose exactly one of the sub–BMDsB

1

; : : : ; B

n

of B (see Figure
6(a)). These sub–BMDs will correspond to the vertices of the graphG. Let f be the function
computed byB and letf

i

be the function computed by the sub–BMD B

i

.
All the sub–BMDsB

i

for i = 1; : : : ; n have the structure shown in Figure 6(b). The numberm

of y–nodes will be needed to adjust the graph size of the sub–BMDsB
i

. The part containing the
z–variables again is a switch. This time, one of the constantsa

on

ij

(j 2 f1; : : : ; ng) describing
the neighborhood of vertexv

i

in G is chosen by the switch. We define forj 2 f1; : : : ; ng

a

on

ij

:=

�

1; if fv
i

; v

j

g 2 E;

0; otherwise.

xnxnxnxn

xn-1

B1 B2 BnBn-1

x2

x3x3

x1

x2

0

0

0 00 0

0

0 1

0
1

0
1

0
1

0
1

0
1

0
1

0 1

0 1

0

1

(a) Top part ofB

znznznzn

zn-1

y2

ai1
on ai2

on ain
onai,n-1

on ai,n+1
on

ym

z2

z3z3

z1

z2

y1

0

0

0

0

0 0 0

0

0

0 1

0 1

0 1

0
1

0
1

0
1

0
1

0
1

0
1

0 1

0 1

0 1

0 1

(b) Structure of sub–BMDsB
i

Figure 6: Definition ofBMD B.

Note that especiallyaon
ii

= 0 for 1 � i � n.
The value ofaon

i;n+1

is set to(�1) �
P

n

j=1

a

on

ij

, such that the sum of all valuesaon
ij

equals zero.
We have to find out now which function is represented by the thus constructedBMD. Let br

i

denote an input vector of lengthr, which has a zero at thei–th position and ones everywhere
else. Examining the construction ofB, we find out that

f j

x=�

:=

(

f

i

; if � = b

n

i

;

P

n

i=1

f

i

; if � = (1; : : : ; 1);

0 ; if � 2 f0; 1gn n fbn
1

; : : : ; b

n

n

; (1; : : : ; 1)g:

A sub–BMD B

i

obviously computes zero, if at least one of they–variables is zero. The part
containing thez–variables has the same structure as the top part ofB, so it is easy to see that
for 1 � i � n, � 2 f0; 1gm,
 2 f0; 1gn

f

i

(�;
) :=

�

a

on

i;j

; if � = (1; : : : ; 1) and
 = b

n

j

;

0 ; otherwise.

Note that for� = (1; : : : ; 1) and
 = (1; : : : ; 1) the definitionaon
i;n+1

= (�1) �

P

n

j=1

a

on

ij

guarantees thatf
i

(�;
) = 0.
The care set for functionf has to be specified by aBDD C. Before we construct aBDD C to
represent a characteristic function
 of the care set, we define valuesa
are

ij

as follows (1 � i; j �

n):

a

are

ij

:=

�

1; if j = i _ fv

i

; v

j

g 2 E;

0; otherwise.

The underlying graph of theBDD is similar to theBMD. The top part of the graph is given by
Figure 7(a). It differs from the graph in Figure 6(a) from thefact, that terminals 0 are replaced
by terminals 1 (except the last 0), for1 � i � n B

i

is replaced byC
i

.
The graphs for the sub–BDDsC

i

(1 � i � n) are given by Figure 7(b). Again, the difference
to the graph in Figure 6(b) lies in the fact, that terminals 0 are replaced by terminals 1,aon

ij

are
replaced bya
are

ij

(1 � j � n) andaon
i;n+1

is replaced by 1.
Let
 be the function computed byC, then it is easy to see that for�;
 2 f0; 1g

n and for
� 2 f0; 1g

m

(�; �;
) :=

(

a

are

ij

; if � = b

n

i

; � = (1; : : : ; 1);
 = b

n

j

; (i; j 2 f1; : : : ; ng);

0 ; if � = (1; : : : ; 1);

1 ; otherwise.

xnxnxnxn

xn-1

C1 C2 CnCn-1

x2

x3x3

x1

x2

1

1

1 01 1

1

0 1

0
1

0
1

0
1

0
1

0
1

0
1

0 1

0 1

0

1

(a) Top part ofC

znznznzn

zn-1

y2

ai1
care ai2

care ain
careai,n-1

care

ym

z2

z3z3

z1

z2

y1

1

1

1

1

1 1 1 1

1

1

0 1

0 1

0 1

0
1

0
1

0
1

0
1

0
1

0
1

0 1

0 1

0

1

0 1

(b) Structure of sub–BDDsC
i

Figure 7: Definition ofBDD C.

Like for f
i

andB
i

we use in the following the notion

i

for the function represented byC
i

;

i

=

x=b

n

i

.
Finally, we chooses := k(m+ n(n+ 1)=2) + n(n+ 1)=2 + 2 for theBMD size in the instance
of DCBMD0. Both constructed graphsB andC have sizeO(nm + n

3

). We will fix m to
n(n + 1)

2

=2 + 2 below, so that these sizes are polynomial inn. Note that strictly speakingB
andC are not aBMD and aBDD, since it is possible that reduction rules are applicable toB and
C to reduce the graph size. However the reduction ofB to aBMD and ofC to aBDD can easily
be done in polynomial time and it can only reduce the size. Allin all we can say that the size
of the constructed instance ofDCBMD0 is polynomial inn and can be computed in polynomial
time.
We have to show that

(G; k) 2 GC () (B;C; s) 2 DCBMD0

:

=): Let a k–coloring ofG be given. We have to construct aBMD B

0 which computes a
functionf 0 such thatf �
 = f

0

�
 and whose size is bounded bys. ForB0 we use the
same graph structure as forB.
Letf 0 be the function represented by theBMD B

0 and letf 0

i

be the function of the subgraph
B

0

i

defined in the same way as in the construction ofB.
For1 � i; j � n we replaceaon

ij

by

a

0

ij

:=

�

0; if v
i

andv
j

have the same color;
1; otherwise.

The value ofa0
i;n+1

is set to(�1) �
P

n

j=1

a

0

i;j

, such that also inB0 the sum of all valuesa0
ij

equals zero.
We first verify that indeedf �
 = f

0

�
. Let � = b

n

i

, � = (1; : : : ; 1) and
 = b

n

j

,
i.e. an input where
(�; �;
) = a

are

ij

and f 0

(�; �;
) = a

0

ij

. If a
are
ij

= 0 then (f �

)(�; �;
) = (f

0

�
)(�; �;
) = 0. If a
are
ij

= 1, thenj = i or fv
i

; v

j

g 2 E. If j = i, then
f(�; �;
) = a

on

ii

= 0 andf 0

(�; �;
) = a

0

ii

= 0. If fv
i

; v

j

g 2 E, f(�; �;
) = a

on

ij

= 1

andf 0

(�; �;
) = a

0

ij

= 1, since in this case,v
i

andv
j

must have different colors.
If � = (1; : : : ; 1), then
(�; �;
) = 0.
For all other choices of�, � and
, we getf 0

(�; �;
) = f(�; �;
) = 0.
Now we will show that after applying theBMD reduction rulesB0 will have at mosts
nodes. It is easy to see thatf

0

i

= f

0

j

, if the verticesv
i

andv
j

belong to the same color class.
Thus all functionsf 0

i

belonging to vertices in the same color class can be represented by
the same subgraph ofB0. Thus the subgraphsB0

1

: : : B

0

n

can be merged to at mostk
different subgraphs. The resulting reducedBMD has at mostk(m+n(n+1)=2)+n(n+

1)=2 + 2 = s nodes.

(=: Now let aBMD B

0 for f 0 with f �
 = f

0

�
 be given for whichjB0

j � s. Letf 0

i

:= f

0

j

x=b

n

i

.
We define a coloring ofG as follows.
Two verticesv

i

, v
j

from G obtain the same color, ifff 0

i

= f

0

j

. It is easy to verify that
this is a legal coloring. We have to show that fromf 0

i

= f

0

j

it follows thatfv
i

; v

j

g =2 E.
First, let us consider the case that

j

(b; b

n

i

) = a

are

ji

= 1, whereb = (1; : : : ; 1). Then
f

0

j

(b; b

n

i

) = f

j

(b; b

n

i

) = a

on

ji

and, since

i

(b; b

n

i

) = a

are

ii

= 1, f 0

i

(b; b

n

i

) = f

i

(b; b

n

i

) =

a

on

ii

= 0. Thusf 0

i

= f

0

j

impliesaon
ji

= f

0

j

(b; b

n

i

) = f

0

i

(b; b

n

i

) = 0 andfv
i

; v

j

g =2 E. If

j

(b; b

n

i

) = a

are

ji

= 0, fv
i

; v

j

g =2 E follows directly from the definition ofa
are
ji

.
Now we have to show that our coloring does not use too many colors (at mostk). We
claim thatjB0

j � d(m + 1), if there are at leastd pairwise different functionsf 0

i

with
i 2 f1; : : : ; ng. For the proof of this claim we consider cofactorsh

ir

:= f

0

i

j

y

1

=1;:::;y

r

=1

of f 0, wherei 2 f1; : : : ; ng andr 2 f0; : : : ; mg (we leth
i0

:= f

0

i

). We show that these
cofactors are represented inB0 and that enough cofactors are pairwise different, such that
they are represented by different nodes.
First we show that the cofactor functionsh

ir

are represented by nodes ofB

0. We con-
sider the node, which is reached by the path(b

n

i

; b)

4 with b = (1; : : : ; 1) 2 f0; 1g

r, and
show that this node representsh

ir

. According to Lemma 2.1 the node reached by(b

n

i

; b)

represents the function
X

(�;�)�(b

n

i

;b)

(�1)

P

n

j=1

((b

n

i

)

j

��

j

)+

P

r

j=1

(b

j

��

j

)

f

0

x

1

=�

1

;:::;x

n

=�

n

;y

1

=�

1

;:::;y

r

=�

r

Since
j
x

1

=�

1

;:::;x

n

=�

n

� 1; f j

x

1

=�

1

;:::;x

n

=�

n

� 0 for � < b

n

i

and also

i

j

y

1

=1;:::;y

j�1

=1;y

j

=0

� 1; f

i

j

y

1

=1;:::;y

j�1

=1;y

j

=0

� 0; we have
f

0

j

x

1

=�

1

;:::;x

n

=�

n

� 0 for � < b

n

i

andf 0

i

j

y

1

=1;:::;y

j�1

=1;y

j

=0

� 0:

Therefore
X

(�;�)<(b

n

i

;b)

(�1)

P

n

j=1

((b

n

i

)

j

��

j

)+

P

r

j=1

(b

j

��

j

)

f

0

x

1

=�

1

;:::;x

n

=�

n

;y

1

=�

1

;:::;y

r

=�

r

� 0

and the node reached by(bn
i

; b) represents exactlyh
ir

.
Now we consider a subsetI � f1; : : : ; ng of indices withjIj = d, such that for all
i 6= j 2 I f

0

i

6= f

0

j

. We show that for alli 2 I, r 2 f0; : : : ; mg the cofactorsh
ir

are different. Forr
1

6= r

2

2 f0; : : : ; mg cofactorsh
ir

1

andh
jr

2

are different, since for
r 2 f0; : : : ; m�1g h

ir

depends ony
r+1

: h
ir

j

y

r+1

=0

= f

0

i

j

y

1

=1;:::;y

r

=1;y

r+1

=0

� 0 as already
shown above andh

ir

j

y

r+1

=1

6� 0, sinceh
ir

j

y

r+1

=1;:::;y

m

=1

= f

0

i

j

y

1

=1;:::;y

m

=1

is not constant
0 (this follows from the fact that there is at least one outgoing edgefv

i

; v

j

g of nodev
i

in
G and thereforef 0

i

j

y

1

=1;:::;y

m

=1

(b

n

j

) = a

on

ij

= 1).
Next we show that fori 6= j 2 I the functionsh

ir

andh
jr

are different. Forr = 0

h

i0

= f

0

i

6= f

0

j

= h

j0

. Sinceh
ir

j

y

r+1

=0

= h

jr

j

y

r+1

=0

� 0 (as shown above)h
ir

6= h

jr

impliesh
i;r+1

6= h

j;r+1

andh
ir

6= h

jr

for all r 2 f0; : : : ; mg follows by induction.
We have definedjIj � (m + 1) = d � (m + 1) pairwise different functions, which are not
constant 0 and which have to be represented by nodes ofB

0. Since no node can represent
two different functions, we havejB0

j � d(m + 1).
We are now able to complete the proof for “(=”. Let d be the number of equivalence
classes of equalf 0

i

and thus the number of colors of our coloring. We know thatjB

0

j �

d(m + 1) and thatjB0

j � s = k(m + n(n + 1)=2) + n(n + 1)=2 + 2. Together with the
fact thatk � n, we obtain

d < k +

(k + 1)n(n+ 1)=2 + 2

m+ 1

� k +

n(n + 1)

2

=2 + 2

m + 1

and settingm := n(n+ 1)

2

=2 + 2 finally d � k, i.e. we use at mostk colors.
4As defined in Section 2.

It remains to prove thatDCBMD0 is inNP . It is possible to guess aBMD B

0 of sizes. We have
to prove that for the functionf 0 realized byB0 the checkf �
 = f

0

�
 can be done in polynomial
time. To prove this, we useWLCDs [18]. According to [18]B,
 andB0 can be translated
into WLCDs in linear time. Then we have to check whether(f � f

0

) �
 � 0. Subtraction of
two WLCDs B andB0 can be done in linear time and multiplication in quadratic time. The
better worst case complexity of operations forWLCDs has to be paid by a more complicated
equivalence check, but the check is still polynomial. AlthoughWLCDs are not a canonical data
structure, the reduction of aWLCD to a WLCD representing the same function with a minimal
number of nodes can be done in polynomial time by Gaussian eliminations which are performed
level by level. Since there is only oneWLCD representing the 0–function, namely the empty
WLCD containing no nodes at all, we simply have to check, whether the reducedWLCD has zero
nodes or not. This proves that the checkf �
 = f

0

�
 can be done in polynomial time.
2

The proof for problemDC*BMD0 can be done in a similar way by having a close look at the
proof forDCBMD0.
Proof: (Sketch)
We construct the same functionsf and
 as in the proof forBMDs. To obtain a *BMD from the
constructed graphB we just have to apply additional reduction rules, which can further reduce
the graph size compared toBMDs, but it is clear that the construction can also be performedin
polynomial time.
In the “=)”–part of the proof forDCBMD0 we constructed from ak–coloring aBMD B of size
� s. Here we construct the same graph and the additional *BMD reduction rules can make the
graph only smaller.
In the “(=”–part we constructed a coloring withd � k colors from aBMD with at mosts
nodes. Due to additional *BMD reduction rules this construction has to be changed slightly for
* BMDs. Like in the proof forBMDs we consider functionsh

ir

, i 2 f1; : : : ; ng, r 2 f0; : : : ; mg.
Functionsh

ir

are represented by nodes in the *BMD.5 Now two verticesv
i

; v

j

from G obtain
the same color, iffh

i0

andh
j0

are represented by the same *BMD node. As in theBMD proof
we have to prove that this is a legal coloring. We have to show that from the fact thath

i0

and
h

j0

are represented by the same *BMD node, i.e. 1
k

i

� h

i0

=

1

k

j

� h

j0

, k

j

� h

i0

= k

i

� h

j0

for
k

i

; k

j

2 Z n f0g, it follows thatfv
i

; v

j

g =2 E. Again the first case is

j

(b; b

n

i

) = a

are

ji

= 1. Then
h

j0

(b; b

n

i

) = f

j

(b; b

n

i

) = a

on

ji

and, since

i

(b; b

n

i

) = a

are

ii

= 1, h
i0

(b; b

n

i

) = f

i

(b; b

n

i

) = a

on

ii

= 0.
Thusk

j

� h

i0

= k

i

� h

j0

impliesk
i

� a

on

ji

= k

i

� h

j0

(b; b

n

i

) = k

j

� h

i0

(b; b

n

i

) = k

j

� 0 = 0. Thus
a

on

ji

= 0, sincek
i

6= 0 and thereforefv
i

; v

j

g =2 E. If

j

(b; b

n

i

) = a

are

ji

= 0, fv
i

; v

j

g =2 E follows
from definition.
To prove thatd � k we have to prove for the *BMD B

0 that jB0

j � d(m + 1). Again, this is
proven by the fact, that in the *BMD d(m + 1) different functionsh

ir

6� 0 are represented by
different nodes. As in the case ofBMDs we conclude that functionsh

ir

andh
jr

0 with r 6= r

0

are represented by different nodes, since the functions essentially depend on a different set of
variables. Again we consider a subsetI � f1; : : : ; ng of indices withjIj = d, such that for all
i 6= j 2 I h

i0

andh
j0

are represented by different nodes, i.e. there exist nok

i

; k

j

2 Z n f0g

with k

j

� h

i0

= k

i

� h

j0

. We show that fori 6= j 2 I the functionsh
ir

andh
jr

(r 2 f0; : : : ; mg)
are represented by different nodes. Sinceh

ir

j

y

r+1

=0

= h

jr

j

y

r+1

=0

� 0, 9k
i

; k

j

2 Z n f0g with
k

j

� h

i;r+1

= k

i

� h

j;r+1

would implyk
j

� h

ir

= k

i

� h

jr

and by inductionk
j

� h

i0

= k

i

� h

j0

, which
is a contradiction. FromjB0

j � d(m + 1) we conclude againd � k.
The proof, thatDC*BMD0 is in NP , can be done in a completely analogeous manner: Also
* BMDs can be transformed toWLCDs in linear time and the remaining arguments are the same.

2

5Here we use for functionsg 6� 0 the notion “g is represented by *BMD nodev” iff g = k � f

v

for k 2 Zn f0g.
Note that in a *BMD there cannot be two nodes which represent the same function in this sense.

References
[1] K. Bartlett, R. K. Brayton, G. Hachtel, R. M. Jacoby, C. R.Morrison, R. Rudell, A. L. Sangiovanni-

Vincentelli, and A. R. Wang. Multilevel logic minimizationusing implicit don’t cares. IEEE Trans. on
CAD, 7(6):723–740, 1988.

[2] B. Bollig, M. Löbbing, M. Sauerhoff, and I. Wegener. Complexity theoretical aspects of OFDDs.IFIP WG
10.5 Workshop on Applications of the Reed-Muller Expansionin Circuit Design, pages 198–205, 1995.

[3] R.E. Bryant. Graph - based algorithms for Boolean function manipulation.IEEE Trans. on Comp., 35(8):677–
691, 1986.

[4] R.E. Bryant. Binary decision diagrams and beyond: Enabeling techniques for formal verification. InInt’l
Conf. on CAD, pages 236–243, 1995.

[5] R.E. Bryant and Y.-A. Chen. Verification of arithmetic functions with binary moment diagrams. InDesign
Automation Conf., pages 535–541, 1995.

[6] S. Chang, D. Cheng, and M. Marek-Sadowska. Minimizing ROBDD size of incompletely specified multiple
output functions. InEuropean Design & Test Conf., pages 620–624, 1994.

[7] Y.-A. Chen and R.E. Bryant. ACV: an arithmetic circuit verifier. In Int’l Conf. on CAD, pages 361–365,
1996.

[8] O. Coudert, C. Berthet, and J.C. Madre. Verification of sequential machines based on symbolic execution. In
Automatic Verification Methods for Finite State Systems, LNCS 407, pages 365–373, 1989.

[9] O. Coudert, C. Berthet, and J.C. Madre. Verification of sequential machines using Boolean functional vectors.
In Proceedings IFIP International Workshop on Applied FormalMethods for Correct VLSI Design, pages
111–128, 1989.

[10] K. Hamaguchi, A. Morita, and S. Yajima. Efficient construction of binary moment diagrams for verifying
arithmetic circuits. InInt’l Conf. on CAD, pages 78–82, 1995.

[11] M. Herbstritt. Erfüllbarkeitsprobleme bei Word-Level Decision Diagrams. Master’s thesis, University
Freiburg, April 2000.

[12] Y. Hong, P.A. Beerel, J.R. Burch, and K.L. McMillan. Safe BDD minimization using don’t cares. InDesign
Automation Conf., pages 208–213, 1997.

[13] U. Kebschull, E. Schubert, and W. Rosenstiel. Multilevel logic synthesis based on functional decision dia-
grams. InEuropean Conf. on Design Automation, pages 43–47, 1992.

[14] M. Keim, M. Martin, B. Becker, R. Drechsler, and P. Molitor. Polynomial formal verification of multipliers.
In VLSI Test Symp., pages 150–155, 1997.

[15] A. Kuehlmann and F. Krohm. Equivalence checking using cuts and heaps. InDesign Automation Conf.,
pages 263–268, 1997.

[16] S. Malik, A.R. Wang, R.K. Brayton, and A.L. Sangiovanni-Vincentelli. Logic verification using binary
decision diagrams in a logic synthesis environment. InInt’l Conf. on CAD, pages 6–9, 1988.

[17] M. Sauerhoff and I. Wegener. On the complexity of minimizing the OBDD size for incompletely specified
functions.IEEE Trans. on CAD, 15(11):1435–1437, 1996.

[18] C. Scholl, B. Becker, and T.M. Weis. Word-level decision diagrams, WLCDs and division. InInt’l Conf. on
CAD, pages 672–677, 1998.

[19] C. Scholl, S. Melchior, G. Hotz, and P. Molitor. Minimizing ROBDD sizes of incompletely specified func-
tions by exploiting strong symmetries. InEuropean Design & Test Conf., pages 229–234, 1997.

[20] T.R. Shiple, R. Hojati, A.L. Sangiovanni-Vincentelli, and R.K. Brayton. Heuristic minimization of BDDs
using don’t cares. InDesign Automation Conf., pages 225–231, 1994.

[21] D. Varma and E.A. Trachtenberg. Computation of reed–muller expansions of incompletely specified boolean
functions from reduced representations.IEE Proceedings, 138(2):85–92, 1991.

[22] Z. Zilic and K. Radecka. Don’t care FDD minimization by interpolation. InInt’l Workshop on Logic Synth.,
pages 353–356, 1998.

