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Abstract

We present for the first time methods to minimiB&bDs exploiting don't care condi-
tions. These minimization methods can be used during tlifecagion of circuits by* BMDs.
By changing function values for input vectors, which arelia tlon't care set, smaller
*BMDS can be computed to keep peak memory consumption diging construction as
low as possible. We determine the complexity of the probledomt care minimization
for *BMDS and thus justify the use of heuristics to approximate thetisa. Preliminary
experimental results prove our heuristcs to be very effedti minimizing*BMD sizes.

1 Introduction

One of the most important tasks during the desigintégrated Circuitss the verification of
an implemented circuit, i.e., the check whether the implatiaaeon fulfills its specification.

In the last few years several methods basedenision DiagramgDDs) have been proposed
[16, 4, 15] to perform verification. The idea is to transforottbimplementation and specifica-
tion of a combinational circuit into a DD. Then, due to theaaigity of the DD representation,
the equivalence check for specification and implementataduces to the check whether the
corresponding DDs are identical.

The most popular data structure in this context wiemeary Decision Diagramg¢BDDS) [3].
They were applied successfully e.g. to the verification oftad logic and integer adders. But
there are functions of high practical relevance (e.g. ietegultipliers), which cannot be rep-
resented efficiently bgbDs. To overcome the limitations &DDs other types of DDs were
defined, e.gBinary Moment Diagram¢smDs) andMultiplicative BMDs (*BMDS) [5], which
are able to represent integer—valued pseudo Boolean éumsgti: {0, 1}" — Z and which are
especially suited for arithmetic functions.

When a circuit consists of several modules or subcircuitsstieg methods to compute the
*BMD representing the overall circuit computembs for the modules and combine these
*BMDS to a *BMD for the overall circuit by 8MD operations [7]. Other methods use back-
ward construction [10, 14] from the circuit outputs towatitks inputs and compose step by step
the *BMD for a gate of the current cut front into th&®p for the intermediate result.

A potential, which has not been used in this process so féngi&knowledge that certain input
combinations cannot be applied to subcircuits/moduleguticombinations, which cannot be
applied to subcircuits, can be given as don’t care inforomatiin the circuit specification or
can be computed as satisfiability don’t cares by image coatipuis [1]. These don't cares can
be used to minimize BMDs — either before combining thesMbs for submodules bygmbD
operations or in the backward construction method when thegssing of a submodule, for
which don't care informations are at hand, is finished. Irs ttontext the minimization of
*BMDS by exploiting don’t care informations aims at reducing tse1D sizes to keep peak
memory consumption as low as possible.

The problem we have to solve is to minimize aMD B for a function fg under don’t care
conditions given by a characteristic functida (dc(z) = 1, if z is a don't care vector, i.ex



cannot be applied to the subcircuit realizifig). Sincedc is a Boolean function, we assume
that it is represented bysDD. Our task is to compute a8MD B’ realizing a functiorys/, such
that fg(z) = fp(z) for all z with de(z) = 0 and B’ has a (nearly) minimum number of nodes
among all BMDs fulfilling this property.

To the best of our knowledge the heuristics presented inghper are the first solution to
this problem. For the minimization &DDs under don’t care conditions there is a number of
methods in the literature, e.qg. [9, 8, 6, 20, 19, 12]. HowdwerBMDS the problem seems
to be more difficult, since due to the Davio decompositionsmbs a change of the function
value for a single input vector (exploiting a don’t care floistinput vector) has not only a “local
effect” in the Decision Diagram, but can affect larger paftthe *BMD (see Section 2). A paper
which has some relations to our work in this sense is [22]h&b workFDDs [13] are minimized
(which are also based on Davio decompositions). In fact ostrifiethod to minimize *BMDs
(which are representations of integer—valued functiomspmewhat similar to the minimization
of FDDs in [22] (FDDs are representations of Boolean functions). Anotheredlpaper is [21],
which minimizes Reed—Muller forms. However the method fij@i, which decides, whether
to flip the value for a subset of coefficients in the Reed—Mugfeectrum from 0 to 1 (1 to 0)
or not, with the goal to maximize the number of zeros in thedR&&uller spectrum, is not
applicable when the values are integers as for functionesepted by BMDs.

We developed two different methods for the minimization efvbs under don’t care condi-
tions. After Section 2, which gives some basic definitiond antations, we determine the
complexity of the problem and present our two heuristic rmd¢hin Section 3. In Section 4
we give preliminary experimental results to evaluate th@a@aches. The minimization results
are very promising. The first method was able to reduge ¥ sizes by 75% on the average,
the second even by 79%. Finally, Section 5 concludes ther @aqukgives directions for future
research.

2 Preliminaries

In this section we give a brief review @&DDs [3], BMDS and BMDs [5]. BDDs are used
to represent Boolean functiornfs: {0,1}" — {0,1}, and botheBMDs and BMDs represent
integer—valued pseudo Boolean functighs{0, 1}" — Z.

A BDD is a rooted directed acyclic gragh = (V, E) with non empty node set V contain-
ing two types of nodegjon-terminalandterminalnodes. A non-terminal nodehas as label
a variableindez(v) € {z1,...,z,} and two childreNow(v), high(v) € V. We calllow(v)
also0—successdw) and high(v) 1-successdrv). The edge leading tbow(v) (high(v)) is
called low (high) edge of. BDDs are ordered [3]. A terminal nodeis labeled with a value
value(v) € {0,1} and has no outgoing edges. The Boolean funcfion {0,1}" — {0,1}
defined by a8DD nodev is defined recursively: 1t is a terminal node withvalue(v) = ¢ €
{0,1}, then f,(z1,...,2,) = ¢ and if v is a non-terminal node wittndexz(v) = w;, then
fo(®1, . %0) = T+ fioww) (@1, - - -5 Tn) + T - frighw) (@1, ..., T,). (BDDS use the so-called
Shannon decomposition.) The function representedkyra B is equal to the function repre-
sented by its root node. ;.

Like BDDS BMDS are based on a rooted directed acyclic graph. In contrastis the terminal
nodesv are labeled with valuesalue(v) € Z. The recursive definition of the pseudo Boolean
function f, : {0,1}" — Z represented by BMD nodev differs fromBpDs: If v is a terminal
node withvalue(v) = ¢ € Z, thenf,(zy,...,z,) = c and ifv is a non-terminal node with
index(v) = x;, thenf,(z1,...,2n) = fioww)(®1, .-, Tn) + Ti - frigh(w)(®1, - .., Tn). BMDS USE
the so-calledoositive Davio decompositiont follows from this recursive definition that the
function represented byow(v) is equal tof, |,,—s', butin contrast to Shannon decomposition
the function represented liygh(v) is

fo

;=1 — fv

z;=0- (1)

!see Section 3
fFor a function,f : {0,1}" — Z fu.—o (fz;=1) is the function which results from a substitution of by
constand (1) and is called negative (positive) cofactorofvith respect tac;.



(a)reduced (b) non-reduced
Figure 1. Example for awvp.

SinceBMDS use another decomposition type tieps (positive Davio decomposition instead
of Shannon decomposition), the reduction rules to redueatb sizes and to makembDs

a canonical data structure have to be changed compameos: As in the case o8DDs, if

for terminal nodes andv’ € V value(v) = value(v') or if for non-terminal nodes andv’
index(v) = index(v'"), low(v) = low(v') andhigh(v) = high(v") thenv = v'. However due

to the Davio decomposition we have the reduction rule thatieducedmbD there is no node

v € V with high(v) = t, t terminal node withvalue(t) = 0.

For simplicity we assume in the following that the varialbesur in the fixed ordet,, . .., z,.

To give a relation between nodes oBRID B and cofactors of the functiofiz represented by
B, we define “the node which is reached (ay, . .., ¢) € {0, 1} (I < n)™:

To determine the node reached @y, . ..,¢;) we start at the root node and follow the edges
according td(ey, . .., ). If we are at a node labeled withz; ande; = 0, then we follow the
edge tdow(v) and ife; = 1, we go tohigh(v). Special attention has to be paid to the case, when
e;—successdn) has not labek; ;. If in this cases;—successdw) is a non—terminal, choose
with z, = index(e;—successdw)) and if e,—successdw) is a terminal choosé = n + 1.
Then we have to take into account, that in an non—-reducetwarstheBmD the edge leading
to e;,—successdw) would be replaced by a path of nodes leading;t@successdwp) where the
labels arer; 1, ..., z;_1 and the high edges lead to the constant O, respectivelyefidrerwe

go toe;—successdw) only if €;,; = ... = ¢,_1 = 0, otherwise we say that the terminal 0 is
reached by, ..., ¢) (since 0 would be reached in a non-reduced version oBkie). We
call the node reached ly,, ..., ¢) also(ey, . . ., ¢)—node and the function represented by this

nodef ),

Example 2.1 Figure 1(a) shows an example o& D for functionf with f(0,0) = 1, f(0,1) =

6, f(1,0) = 5and f(1,1) = 10. The(0, 0)—node is the terminal, the (0, 1)—node is terminal
5, the(1,0)—node is terminad, but the(1, 1)-node is termina, since the high edge starting
from the root leads to a terminal and not to a node with labghnd — as shown in Figure 1(b)
—in the non—-reducedmD vector(1, 1) leads to terminal O.

Using (1) we can conclude the following lemma by induction:

Lemma 2.1 Let B be aBMD representing a functiorfz : {0,1}" — Z and letv be the
(€1,...,€)—node [ < n). Then the functiodgl’“"e’) represented by is equal to

€1yenns € i—1 (68
fletna) _ S ()T s )

(Foré,e € {0,1} :§ < €iff §; < V1 <i <)

Lemma 2.1 shows that the change of the functfgrfor a single input vectog, i.e. the change
of cofactorfz|.—., has not only a “local effect” in the Decision Diagram, bueafts ally—nodes
with e < 7.

*BMDsS were defined in [5] to further reduce the sizeBoiDs by increasing the amount of
subgraph sharing. InBMDs each edge has an additional multiplicative edge weigtt 7Z,
such that an edge with edge weighteading to a node represents a function - f,. Reduction
rules guarantee that functions- g ande, - g (¢1,¢2 € Z \ {0}) are represented by the same
node (but by different edges).



3 Don't care assignment

In the following we present a solution to the problem to miiziena *8MD by assigning values
to don't cares. We have to solve the following problB@*BMD:

Given: A *BMD B representing a functiof : {0, 1} — Z and aBDD C representing a
functionc : {0,1}" — {0, 1}.

Find: A *BMD B’ representing a functioff : {0,1}" — Z, such thatf - ¢ = f'- candB’ has
the minimum number of nodes among aiMDs fulfilling the same property (and respecting
the same variable order).

The corresponding problem fembs instead of 8MDs is calledDCBMD.

DC*BMD andDCBMD are hard problems, more precisely we can prove the follottiagrem:

Theorem 3.1 DC*BMD and DCBMD areN P complete.

Proof: The proof thaDC*BMD andDCBMD are N P-hard is done by a reduction from the
graph colorability problemDC*BMD, DCBMD € N P is shown usingvLcDs [18]. For details
see Appendix A. O

Because of this complexity result we are looking foneuristicsolution of DC*BMD in the
following.

3.1 Methodmin_polynomial

Our first methodmin_polynomialis motivated by the relationship betweembs over vari-
ablesry, ..., z, and polynomials overy, ..., x,: The rule to evaluatemps directly implies a
method to derive the polynomial representing the same ifomets thesmD. E.g. the function
from Figure 1(a) is equal t0l + x5 - 5) + z; - 4 = 1 + bz + 4z;. In general the polynomial
contains the terna - 2§ - ... -z (z} = x; andz? = 1) if and only if the node reached by
(€1,...,€,)is terminalc # 0.

It is easy to see that the size of te®D B representing functiorfp is always less or equal
to the size of the polynomi&kepresentingfz. Since 8BMDS can be obtained frommbDs by
reduction, this is clearly also true foB#MDs.

Ouir first method consists in a (heuristic) minimization a# ghze of this polynomial, which is

an upper bound on trevbD and the BMD size. For vectorsée, . . ., €,), such that the terminal
reached byey, ..., ¢,) isc # 0, we try to use don't cares to change the value of the terminal
to zero. If(ey,...,€,) is a don't care vector, i.elc(ey, ..., e,) = 1, we change the function
valuefg(ey, ..., €,) such that the terminal reached @y, . . ., €,) will be 0. Using the formula

of Lemma 2.1 it is clear that we just have to set for the charigection fp:

fB’(Ela---aen) = fB(ela---aen) —C

to achieve this goal. After that we must not forget to adjustalues of other terminals ac-
cording to this change ofg(ey, . .., €,), since the value ofz(ey, . . ., €,) has an impact on all
terminals, which are reached by vector e.

The main idea of our methaahin_polynomialis illustrated in Figure 2(a). Figure 2(a) shows
aBwmbD for the functionf : {0,1}*> — Z with polynomiall + 4z, + 3z, + 8z12,. There are
two don’t care vectorsdc(0,0) = de(1,1) = 1. The don’t care values fq0, 0) and(1, 1) are
represented in themD by the shaded boxes of termindl&nd8. At first, we set terminal 1,
which is reached by0, 0) to 0. To achieve this we make use of the don't care ve(pd) and
changef(0,0) by adding—1. Then we have to propagate the change to all terminals which
are reached by vectors (0,0). According to the formula of Lemma 2.1 we have to change
terminal4 by adding 1, terminal 3 by adding 1 and terminal 8 by addiig The resulting
values for the terminals are given in Figure 2(a) in the dsivdcbelow the original terminals.
Finally we make use of the don't café, 1) by adding -7 tof (1, 1) resulting in a O—terminal
reached by(1,1). Since there is no vector greater th@n1), we do not have to propagate
the change in this case and the resulting terminals are shottve second rov2nd dcbelow

3The size of a polynomial is defined as the number of constaatigble names and operators + arid the
polynomial.



(@) min_polynomial (b) independentfs
Figure 2. ExampleBMD minimization.

*BMD function min_polynomia(*smp B, BDD DC')

if DC = then return @fi; if DC = @then return B fi; if B = constant then return B fi;

if computed table contains entrgsult for (B, DC') then return result fi;

Let v be top variable oB andDC, B;,,, = B|v:01Bhigh = B‘v:l - B|v:01DClow = DC‘U:(), DC’high = DC|v:1
low ‘= Min_polynomial(Biow, DCioy )

B;”.gh := min_polynomial(Brigh + (Biow — By, )» DChigh)

B = Bl’ow tuv- B;Ligh

if size(B') > size(B) then B' = B fi;

insert entryB’ for (B, DC) into computed table

return B';

OQOWWONOOUAPAWN B

[any

Figure 3: Pseudo code famin_polynomial

the original terminals. Finally, we obtain a changed fumctivith polynomialsz, + 4z,. The
reduced version of the resultimgiD is shown on the right hand side of Figure 2(a).

The order of processing the different don’t care values éengkample was not arbitrary: Since
we process the terminals from left to right the propagatibohanges due to other don'’t care
assignments cannot destroy the zeros we have already sethigoeason our recursive pro-
cedure processes th&®MbD in a depth—first manner following low edges before high edges
Pseudo code of the resulting recursive proceduirepolynomialto minimize a 8BMD B using
don’t cares specified by BDD DC' is given in Figure 3. Note that in line 6 the propagation
of the changes made B, is performed by addind3,, — Bj,,, t0 B, before applying
min_polynomialto B;gp,.

3.2 Methodindependentifs

The second method is motivated by the “matching siblingsiriséics from [20]. This heuris-
tics was introduced to minimiz@DdDs in a recursive procedure. When the procedure processes
aBDD nodev, it tries to assign don'’t cares in such a way that(v) andhigh(v) become iden-
tical. If this is possible, we have to keep this subgraph amige and additionally — because of
the BDD reduction rules — node can be removed, because the subfunction is now independent
from variableindez(v).

SinceBMDS use positive Davio decomposition instead of Shannon dposition, the func-
tion represented by a nodecannot be made independent from variahléez(v) by changing
low(v) andhigh(v) to make them identical. Here we try to make use of don’t cavehange
high(v), such that it become8. Then, the function represented byis independent from
index(v) and we can deletkigh(v) and (according t8MD reduction rules) also node

Thus, we have to check for a nodewhich is reached bye,, .. ., ¢), whether the node func-
tion can be made independent from variablg by exploiting don't cares frorc|,, =, ....z;=¢ -
Figure 2(b) illustrates the method using the same example Rigure 2(a). At the beginning
we check whether the root nodean be made independent framby using don’t cares, which
is equivalent to the question, if we can &é§h(v) to zero. To do this we can exploit don't cares
both fromdc|,,-o and fromdc|,,-1, i.e. both the don’t cares &b, 0) and(1, 1) in this example.
The terminal reached b, 0) cannot be set to 0 using don't cares frdn,, -1, but it is possi-
ble to use don'’t caré), 0) (adding 3 tof (0, 0)) to set this terminal to 0. Then we use don't care
(1,1) to set the terminal reached l9¥, 1) to 0 and in fact, it is possible to make the root node
independent fromz;. The changed values for the terminals are given in Figurgi@(the row




1 *BwmD function independentdfs(* smD B, BDD DC)
2 if DC = then return @fi; if DC = @then return B fi; if B = constant then return B fi
3 if computed table contains entrgsult for (B, DC) then return result fi
4 Letw be top variable oB and DC, By = Blv=0, Brigh = Blv=1 — Blv=0, DCiow = DC|y=0, DChign = DC|y=1
5 (success,Biow,diff) := check zero(Bpigh, DClow, DChign)
6 if successthen
7 B = independent_dfs(Blow + Blou},diffv DCjow - DC’high)
8 else
9 Bj,,, = independent._df s(Bjow, DCiow)
10 B;Ligh := independent_df s(Bpigh + (Blow — Bj,,,)s DChigh)
11 B’:Bl’ow+v-B;_bigh
12 fi

13 if size(B') > size(B) then B’ = Bfi
14 insert entryB’ for (B, DC) into computed table

15 return B’
Figure 4: Pseudo code fordependentlfs
1 (boolean *BMD) function checkzerq*BMD By, BDD DCp,,BDD DCpy)
2 if By = @or DCy = then return (1,@) fi
3 if By = constant and DCyg = @and DCy, = then return (1, By ) fi
4 if DCy = @ and DCp, = @then return (0, ) fi
5 if computed table contains entrgsult for (Bg, DCr,, DCg) then return result fi
6 Letwv be top variable oBy, DCr, andDCy,
7 BH,jow = BH|v=0, BH,high = BH|v=1 — BH|v=0,
8 DCL 0w = DCL|v=0,DCr high = DCL|yv=1,DCHx 10wy = DCx|v=0, DCH high = DCH|v=1
9 (success,BL_diff,low) = check_zero(BH 10w, DCL low, DCH low)
10 if success = 0 then return (0,@) fi
11 (success, BL_diff,high) ‘= check zero(By high + BH,low, DCL, high» DCH high)
12 if success = 0 then return (0,@) fi
13 Br_giff = (1 = v) - BL_dif f.low + ¥ - BL_dif f,high
14 insertentry(1, By _qiff) for (Bg, DCL, DCpr) into computed table
15 return (LBL_diff)

Figure 5: Pseudo code feheckzera

below the original terminals. The reduce#ID is given on the right hand side of Figure 2(b).
It is easy to see that it is not possible to make the remainatte independent froms,, since
there are no don't cares which could be exploited. (Notedtsat the don’t car€0, 0) must not
be used in the minimization of this node, since it was alreagd to make the root function
independent fronz;.) Exploitation of don’t carg0, 0) could make the function depend en
again.)

The check, whether a function of a nodewhich is reached bye, ..., ¢), can be made in-
dependent from variable ; usingde|,,—,.....,—, Can be formulated as a recursive procedure,
which checks first if the low son can be set to 0 and then if tigh lson can be set to 0. This
check is used in a depth—first traversal of trevb. Whenever we reach a node which can
be made independent from its top variable, we perform theificaton and the effect of the
change is propagated similar to proceduonie_polynomial

Pseudo code for proceduredependentfs which minimizes a BMD B using a don'’t care set
given by DC, is shown in Figure 4. In line 5 the algorithm checks whetherftigh sonBy;,,

of a node labeled by variabke can be set to 0 or not. For this check don't cares from two
sets can be used: One set is representeB®y;,, = DC|,-1 and the other set is represented
by DC},, = DC/|,—o (see also example from Figure 2(b)). The check is done by eeproe
checkzera checkzeroreturns a Boolean variabkeiccess, which indicates, whether the check
was successful or not, and 8MD By, 4is¢. If the check is not successfudyccess = 0 in
line 6) the algorithm proceeds like procedune_polynomial If the check is successful, i.e. if
Biign can be set to 0, the exploitation of don't cares fror@),,, has to be taken into account:
Exploiting don’t cares fromDC,, means changing the negative cofactor to Bgj,, to 0.
These changes are returned asalb B, 4 by the procedureheckzera Thus we have to
minimize By, + Biow,difs iINStead ofBy,,, in line 7. The don't cares, which we are allowed to
use in line 7, are not given b C},,,, but only byDC,,, - DChign, since we have to keep the



. [*BMDyin | )
o [*BMD 1 | ratio Time
Circuit | #PI | #PO | |DC| | |*BMD [*BMD]
az | mp | dfs az | mp_| dfs az | mp | dfs
5xpl 7 10 15 76 19 12 3 0.250 0.157 0.039 0:00 0:00 0:00
9symml 9 1 97 223 242 183 182 1.085 0.820 0.816 0:09 0:00 0:00
alu2 10 6 91 401 372 139 147 0.927 0.346 0.366 0:30 0:.01 0:01
apex’ 49 37 120 1390 2305 118 49 1.658 0.084 0.035 0:08 1:28 3:27
c8 28 18 126 346 336 17 13 0.971 0.049 0.037 0:02 1.23 0:02
mux 21 1 5798 60 47 34 34 0.783 0.566 0.566 0:00 0:06 0:18
pcler8 27 17 34 44 61 32 21 1.386 0.727 0.477 0:01 0:00 0:09
rd73 7 3 36 89 87 43 36 0.977 0.483 0.404 0:02 0:00 0:00
rd84 8 4 65 196 200 114 81 1.020 0.581 0.413 0:15 0:00 0:00
sao2 10 4 52 128 96 47 37 0.750 0.367 0.289 0:.01 0:00 0:00
z4ml 7 4 30 69 87 30 26 1.260 0.434 0.376 0:00 0:00 0:00
[ > [ 3022 ] 3852 [ 769 | 629 | 1.247 | 0.254 | 0.208 |

Table 1: Results for don’t care minimization.

resultB’ in line 7 independent from variabte
For completeness, pseudo code for the procecdeekzerowhich checks, whether don’t cares
can be used to set the function of a node to 0, can be found urd-g

4 Experimental results

We implemented the two methods foBMD minimization based omd d, an experimental
Word-Level DD package developed at University of Freiburj][and performed experiments
to compare the different approaches. The experiments vexfermed using a SPARC Ultrall
with a memory limit of 400 MB.

To generate incompletely specified functions from compjespecified functions, we used
a method proposed in [6]: We collapse each benchmark citouiivo-level form (sum-of-
products form). Each cube in this two-level form is contdire the on-set of at least one
output function. Now we consider the set of all these cubesrandomly select cubes with a
probability of 40% to be included into the don’t care set. ta resulting don’t care setepD

is computed. Then aBmD for an integer—valued function representing the benchroiackiit

is computed. Here outpyft (0 <i <m —1)is weighted byzz such that the function value of
this integer—valued functioffi for input vectore is f(e) As variable order
we used the initial order given in the benchmark spemfmatgbhe results are summarized in
Table 1. In the first column the benchmark circuit is giventhia second column the number
of primary inputs and in the third column the number of prignantputs. Column 4 shows the
number ofsDD nodes needed to represent the don’t care set and column Griftegen of nodes
needed to represent the initia®D. Columns 6-8 give theBMD sizes after minimization.
Three different methods are compared: For comparison vesigisolumnazthe simple method
to set all don’t care input vectors to function value 0, whieim be done by computingg - dc.
Columnmp gives the results for our proceduman polynomialand columndfsthe results for
our proceduréndependentfs Columns 9-11 give the ratios “size of minimizesiMD divided
by size of initial *8BMD”, again for the three different methods. Finally the copasding CPU
times are given in columns 12-14 in format minutes:secandsided to seconds.

The results show that setting all don’t cares to 0 (coluam)ss not a successful method. On
the average the sizes even increase by 24.7%. In contrastwounethods for don'’t care
minimization are both very effective in minimizing th&fbD sizes: Methodmin_polynomial
(columnsmp) is able to reduce BMD sizes by 74.6% on the average and methwtkpen-
dentdfs (columnsdfs) reduces the sizes even by 79.2%. Columns 13 and 14 showhtss t
results can be achieved within a small amount of run time.

5 Conclusions and future work

We presented two heuristic methods for don’t care mininoredf *BMDS. Experimental re-
sults proved them to be very effective in reducirgvmd sizes within a small amount of CPU
time.

At the moment we are working on a modified version of methmmependentfs, which is



based on the observation that in contragtbms [20] for *BMDSs the order in which we process
the nodes can influence the quality of the result due to thpggation of the change. Setting
the high son of a node to 0 can destroy the possibility to set the high son of anatloelev’

to 0. Since the subgraph of the high son of a node at a higherilethe *8BmD will be larger
on the average, we expect that the gain of setting the higlefssunch a node to 0 is also larger.
Therefore nodes at higher levels should be processed fdinig to a breadth-first traversal of
the *BMD instead of a depth-first traversal.

Moreover, we are working on an application of oulBMD minimization in the verification
of Pentium style integer dividers to keep peak memory coms$iam small during backward
construction [10]. Don't cares are computed by an iterativaege computation for the different
add&shift stages.

A Proof of Theorem 3.1

We prove Theorem 3.1 for the decision problem vers@8MD andDC*BMD’ of DCBMD
andDC*BMD.

DCBMD': Given aBMD B representing a functioffi : {0,1}" — Z, aBDD C representing a
functione : {0,1}" — {0,1} and a constart € IN. Is there e8MD B’ of size< s (with
the same variable order) representing a funcfion{0,1}" — Z, suchthatf - ¢ = f'-¢?

DC*BMD': Given a*8MD B representing a functiofi : {0,1}" — 7Z, aBDD C representing a
functione : {0,1}" — {0,1} and a constart € IN. Is there a BMD B’ of size< s (with
the same variable order) representing a funcfion{0,1}" — Z, suchthatf -c = f'-¢?

At first, we prove the theorem for probleDBCBMD'.

Proof: The first part is to prove thddCBMD' is NP-hard. The proof uses ideas and proof
techniques from [17] and [2]. In [17] Sauerhoff and Wegern@wp that minimizing thesDD
size of incompletely specified functions is NP-hard and jngallig, Lobbing, Sauerhoff and
Wegener prove that the same problem is NP-hard-bars. SincerDbDs also use the positive
Davio decomposition, the proof can be adaptednms.

Similar to [2] and [17] we construct a reduction from the wiatlown graph colorability problem
(GC) to DCBMD..

An instance ofGC is a connected undirected gragh= (V, E) with the property that’ does
not contain any edge®, v}, v € V, and a numbek. The problem is to decide wheth@rhas
ak-coloring, i.e. whether there is a functign V' — {1, ..., k}, such that the endpoints of the
edges are colored differently(v) # ¢(w) for all {v,w} € E.

LetG = (V = {v1,...,v,}, F) andk be the given instance fa#C. The corresponding
instance foDCBMD consists of &8Mb B, aBDD C and a size bounsl

For theBmD and theBDD we use the following variables (whene is a parameter defined later
on in the proof); the variables are to be tested in the givderor

Ty s Ty Y1y -y Ymy 21y -+ -4 2n-

We first describe themb B. ThisBMD realizes almost the same function as in the proof of [2].
The function values are onlyand1, but we have to take into account that we have to construct
aBMD, i.e. a word—level data structure. We use a substructurerai#pg on thec—variables at

the top of B as a switch to choose exactly one of the sWbs By, ..., B, of B (see Figure
6(a)). These sulBmDs will correspond to the vertices of the gragh Let f be the function
computed byB and letf; be the function computed by the sumD B;.

All the sub-BmDs B; fori = 1, ..., n have the structure shown in Figure 6(b). The numher

of y—nodes will be needed to adjust the graph size of themubs B;. The part containing the
z—variables again is a switch. This time, one of the constaffit¢; € {1,...,n}) describing

the neighborhood of vertex in G is chosen by the switch. We define fpe {1,...,n}

on { 1, if {v;,v;} € E;

%j =1 0, otherwise.



(a) Top part ofB (b) Structure of subsMmDS B;
Figure 6: Definition oBMD B.

Note that especiallg?® = 0for1 <i < n.

The value ofa?": ., is setto(—1) - Z? , agft, such that the sum of all valueg’ equals zero.

We have to find out now which function is represented by the tanstructedmbp. Let b]
denote an input vector of lengih which has a zero at the-th position and ones everywhere

else. Examining the construction B8f we find out that

fi Sifa=0p,
fle=a ::{ S 1fz, Ifa_(l 1),
0 ,ifae{0, 1}”\{b a0 (1 D)

A sub-BMD B; obviously computes zero, if at least one of tjevariables is zero. The part
containing the:—variables has the same structure as the top paBt Gb it is easy to see that
forl <i<mn,pe{0,1}™ ~ve{0,1}"

£4(8.7) ::{ a™ if = (1,...,1) andy = b,

0 , otherwise.

Note that forg = (1,...,1) andy = (1,...,1) the definitionag;,,, = (-1) - 327, af}
guarantees that (3, v) = 0.

The care set for functioifi has to be specified bysbbd C. Before we construct abb C to
represent a characteristic functioof the care set, we define valug$™ as follows ( <4, j <

n):

care . 1,ifj:iV{Ui,Uj} GE;
%j =) 0, otherwise.

The underlying graph of thepD is similar to theBMD. The top part of the graph is given by
Figure 7(a). It differs from the graph in Figure 6(a) from thet, that terminals O are replaced
by terminals 1 (except the last 0), for< ¢ < n B; is replaced by;.

The graphs for the sulBbDs C; (1 < i < n) are given by Figure 7(b). Again, the difference
to the graph in Figure 6(b) lies in the fact, that terminals@raplaced by terminals ;"' are
replaced by (1 < j < n) anday’, ., is replaced by 1.

Let ¢ be the function computed b§/, then it is easy to see that far,v € {0,1}" and for
g e{0,1}™

agre, ifa=07,8=(1,...,1),y =0}, (i,j € {1,...,n}),
(a,8,7) 0 ,ifa=(1,...,1),
1 , otherwise.



(a) Top part ofC' (b) Structure of subsDDs C;
Figure 7: Definition o8DD C.

Like for f; and B; we use in the following the notion; for the function represented ly;;
C; = C:c:b?-
Finally, we choose := k(m + n(n +1)/2) + n(n + 1) /2 + 2 for theBMD size in the instance
of DCBMD'. Both constructed graphB8 and C have sizeO(nm + n*). We will fix m to
n(n + 1)%/2 + 2 below, so that these sizes are polynomiakinNote that strictly speakings
andC are not 8MD and aBDD, since it is possible that reduction rules are applicablg snd
C to reduce the graph size. However the reductioB®d aBMD and ofC' to aBDD can easily
be done in polynomial time and it can only reduce the size.irAllll we can say that the size
of the constructed instance DPCBMD is polynomial inn and can be computed in polynomial
time.
We have to show that

(G,k) e GC < (B, C,s) € DCBMD.

= Let a k—coloring of G be given. We have to constructeavd B’ which computes a
function f’ such thatf - ¢ = f’ - ¢ and whose size is bounded by For B’ we use the
same graph structure as fBr
Let f' be the function represented by @D B’ and letf/ be the function of the subgraph
B; defined in the same way as in the constructiofBof
Forl < i,j < nwe replacex;} by

;o { 0, if v; andv; have the same color;

%j =3 1, otherwise.

The value o}, ., is setto(—1) - >°7% , a; ;, such that also i’ the sum of all values;;
equals zero.

We first verify that indeedf - ¢ = f'-c. Leta =0}, 8 = (1,...,1) andy = b7,
i.e. an input where(a, 8,7) = aff™ and f'(a, 8,7) = aj;. If aff™ = 0 then(f -
c)(a, B,7) = (f'-c)(a, B,7) = 0. If aff"™ = 1, thenj = i or {v;,v;} € E. If j =14, then
fla,B,7) = aff = 0andf'(a, B,7) = aj; = 0. If {v;,v;} € E, f(a,8,7) = af} =
andf'(«a, 8,v) = a;; = 1, since in this casey andv; must have different colors.

If = (1,...,1), thenc(a, B,7) = 0.

For all other choices af, g and~, we getf'(«, 3,v) = f(«, 3,7) = 0.

Now we will show that after applying thembp reduction rulesB’ will have at mosts
nodes. Itis easy to see thit= f}, if the vertices); andv; belong to the same color class.
Thus all functionsf/ belonging to vertices in the same color class can be repezséy
the same subgraph @’. Thus the subgraphBj ... B, can be merged to at mokt
different subgraphs. The resulting redueab has at mosk(m +n(n +1)/2) + n(n +
1)/2+ 2 = s nodes.



<= NowletaBmD B’ for f'with f-c = f'-cbe given for whichB'| < s. Let f; := f'[,—».
We define a coloring oz as follows.
Two verticesy;, v; from G obtain the same color, iff; = f;. Itis easy to verify that
this is a legal coloring. We have to show that frgfin= f; it follows that{v;, v;} ¢ E.
First, let us consider the case thatb, b}) = a${" = 1, whereb = (1,...,1). Then
f]’-(b, br) = f;(b,0}) = agt and, since;(b, b)) = af*e = 1, fl(b,b1) = fi(b,b}) =
ai = 0. Thusf; = f;impliesa} = f;(b,b}) = f (b b") = 0 and{v;,v;} ¢ E. If
cj(b,b7) = ai™ =0, {vz, v;} ¢ E foIIows directly from the definition o5;™.
Now we have to show that our coloring does not use too manysaﬁm mostk). We
claim that|B'| > d(m + 1), if there are at leas{ pairwise different functiong; with
i € {1,...,n}. For the proof of this claim we consider cofactdrs = f/|,,—1,..4,-1
of f', wherei € {1,...,n}andr € {0,...,m} (we leth;, := f/). We show that these
cofactors are representedi and that enough cofactors are pairwise different, such that
they are represented by different nodes.
First we show that the cofactor functiohg are represented by nodes Bf. We con-
sider the node, which is reached by the p@thv)* with v = (1,...,1) € {0,1}", and
show that this node represerits. According to Lemma 2.1 the node reached(b; b)
represents the function

(). —ai )+ ST (bi—P;
E (—]_) J—l(( i )] Ol]) Z]—l( J /6])f:::lzod,---,-’lin:anvyl:glv"“y’":fe’“
(a,B)<(b},b)

Sincecly,—ay....on—an = 1, fleizas...2n=a, = 0fOr a < b and also
Ci|y1:17---1yj—1:17yj:0 = ]‘7 fi|y1:1,...,yj_1:1,yj:0 = 0, we have

! J— ! J—
f'ler=au, en=an = 0 fOra < b7 andfi|y1=1»---»yj—1:1»yj:0 =0.
Therefore

(b)) . —as r —
Z (=1) 7= (002 O ﬁj)fm a1 =0 Y1 =B yr =fr = O
(,B8)<(b]',b)

and the node reached by, b) represents exactly;,.

Now we consider a subsét C {1,...,n} of indices with|I| = d, such that for all
i #3j €1 f # f;. We show that for ali € I, » € {0,...,m} the cofactorsh,
are different. For; # r, € {0,.. m} cofactorshw1 andh],q2 are different, since for

re€{0,...,m—1} h; depends 0@,,+1 irlys1=0 = filyr=1,..yn=1,4,.1=0 = 0 as already
shown above antl;, |y, ,,=1 #Z 0, sinCehy, |y, =1, yn=1 = fily1=1,..ym=1 IS NOt CONStant
0 (this follows from the fact that there is at least one outgadge{v;, v; } of nodew; in

G and thereforef/|,, -1, ,,=1(b}) = ag} = 1).

Next we show that foi # j € [ the functionsh;, andh;, are different. For = 0
hio = fi # f; = hjo. Sincehi, |y, ..o = hjrly,.,—0 = 0 (as shown above);. # hj,
impliesh; 11 # hjr+1 andh;,. # h;,. forall r € {0, ..., m} follows by induction.

We have definedl| - (m + 1) = d - (m + 1) pairwise different functions, which are not
constant 0 and which have to be represented by nodBs &ince no node can represent
two different functions, we haveB’| > d(m + 1).

We are now able to complete the proof fae==". Let d be the number of equivalence
classes of equaf and thus the number of colors of our coloring. We know tlif >
d(m + 1) and thaﬂB’| <s=k(m+n(n+1)/2)+n(n+1)/2 + 2. Together with the
fact thatk < n, we obtain

(k+1)n(n+1)/2+2 <k+n(n+1)2/2+2
m+1 - m+1

d<k+

and settingn := n(n + 1)2/2 + 2 finally d < k, i.e. we use at most colors.

4As defined in Section 2.



It remains to prove thddCBMD is in NP. Itis possible to guess@vD B’ of sizes. We have
to prove that for the functioif’ realized byB’ the checkf - ¢ = f’- ¢ can be done in polynomial
time. To prove this, we use/LCDs [18]. According to [18]B, ¢ and B’ can be translated
into wLcDs in linear time. Then we have to check whetligr— f') - ¢ = 0. Subtraction of
two wLcDs B and B’ can be done in linear time and multiplication in quadratioeti The
better worst case complexity of operations ¥rcbs has to be paid by a more complicated
equivalence check, but the check is still polynomial. AlibbwLcbs are not a canonical data
structure, the reduction of\LCD to awLCD representing the same function with a minimal
number of nodes can be done in polynomial time by Gaussianretions which are performed
level by level. Since there is only oneLcD representing the O—function, namely the empty
WLCD containing no nodes at all, we simply have to check, whetiereéducedavLcD has zero
nodes or not. This proves that the cheicke = f' - ¢ can be done in polynomial time.

O

The proof for problenDC*BMD’ can be done in a similar way by having a close look at the
proof forDCBMD'.

Proof: (Sketch)

We construct the same functiofisandc as in the proof foBmDs. To obtain a BMD from the
constructed grapB we just have to apply additional reduction rules, which aathier reduce
the graph size compared BmDS, but it is clear that the construction can also be performed
polynomial time.

In the “="—part of the proof foDCBMD' we constructed from &—coloring aBMD B of size

< s. Here we construct the same graph and the additiosb* reduction rules can make the
graph only smaller.

In the “—="—part we constructed a coloring wiih < & colors from aBMD with at mosts
nodes. Due to additionaBMD reduction rules this construction has to be changed sjidgbi!
*BMDS. Like in the proof foBMDs we consider functions;,, i € {1,...,n},r € {0,...,m}.
Functionsh;, are represented by nodes in themd.> Now two verticesv;, v; from G obtain
the same color, ifh;, andh;, are represented by the samsvd node. As in thesmMD proof
we have to prove that this is a legal coloring We have to shawfrom the fact thak,;, and

hjo are represented by the sam@MD node, i.e.;- L. hio = ki hjo < kj - hig = ki - hjo for

ki, k; € Z\ {0}, it follows that{v;, v;} ¢ E. Agaln the first case is; (b, b}') = a5™® = 1. Then
hjo(b, b}) = £;(b,b}) = a3 and, since; (b, b}') = agf"™® = 1, hi(b,b}) = fi(b,b]) = agi* = 0.
Thusk - hio = ki - hjo |mpI|esk a3t = ki - hjo(b,b7) = kj - hi(b,b}) = k; -0 = 0. Thus

aj; = 0 sincek; # 0 and thereforq% v} ¢ E.If c](b b}) = ajie =0, {v, vj} ¢ E follows
from definition.
To prove that! < k& we have to prove for theemp B’ that|B’| > d(m + 1). Again, this is
proven by the fact, that in thesMD d(m + 1) different functionsh;, # 0 are represented by
different nodes. As in the case BMMDs we conclude that functiorfs, andh;, with r # »'
are represented by different nodes, since the functiorengally depend on a different set of
variables. Again we consider a subget {1,...,n} of indices with|I| = d, such that for all
i # j € I hj andh;, are represented by different nodes, i.e. there exist;ng, € Z \ {0}
with k; - hio = k; - hjo. We show that fog # j € I the functionsh” andh;, (r € {0,...,m})
are represented by different nodes. Sihgg,, ,—o = hj,ly,,,—0 = 0, Hkl,k €Z\ {0} with
kj . hi,r—l—l =k;- hj,r'—l—l would ImplykJ chiy, = k; hﬂ- and by |ndUCt|0ﬂ€ chipg = k; - h](), which
is a contradiction. FromB'| > d(m + 1) we conclude agaid < k.
The proof, thaDC*BMD’ is in NP, can be done in a completely analogeous manner: Also
*BMDS can be transformed tgLCDs in linear time and the remaining arguments are the same.

O

>Here we use for functiong # 0 the notion ‘g is represented byemp nodev” iff g = k- f, fork € Z \ {0}.
Note that in a BMD there cannot be two nodes which represent the same funntibisisense.
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