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ABSTRACT

We consider the problem of checking whether a partial impiem
tation can (still) be extended to a complete design whiclyisva-
lent to a given full specification.

Several algorithms trading off accuracy and computatioaal
sources are presented: Starting with a simpleX@dased simula-
tion, which allows approximate solutions, but is not ablénd all
errors in the partial implementation, we consider more atdem
exact methods finally covering all errors detectable in tagigl
implementation. The exact algorithm reports no error if anty
if the current partial implementation conforms to the sfieation,
i.e. it can be extended to a full implementation which is egjaint
to the specification.

We give a series of experimental results demonstratingffee-e
tiveness and feasibility of the methods presented.

1. INTRODUCTION

Verification, i.e. the check whether a circuit implemerdatful-
fills its specification, is a crucial task in VLSI CAD. Growirigter-
est in universities and industry has lead to new results aymifis
cant advances concerning topics like property checkiade sppace
traversal and combinational equivalence checking [4, 711}

For the purpose of this paper combinational equivalencekehe
ing is of particular interest. Here, the task is to check Wwhethe
Boolean functions corresponding to the specification aediri
plementation are the same. Besides functional validatiothb
application of test patterns, mainly two approaches ard tsper-
form the equivalence check: One possibility is to transiatele-
mentation and specification into one Boolean formula whicheit-
isfiable if and only if implementation and specification iealthe
same Boolean function [18, 13, 8]. As an alternative, imgem
tation and specification can be transformed into a canoffioceai
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ple see Figure 1.Black Box Equivalence Checkiegables the use
of verification techniques in early stages of the design.idgresr-
rors can be already detected when only a partial implemientét
at hand — e.g. due to a distribution of the implementatiok tas
several groups of designers. Parts of the implementatibitchnare
not yet finished, are combined inBlack Boxes If the implemen-
tation differs from the specificatiofor all possible substitutions
of the Black Boxesa design error is found in the current partial
implementation, i.e. to detect an error in the current phitnple-
mentation it is necessary to find an assignment of zeros agglton
the primary inputs, which produces erroneous values atutpits
independently from the final implementation of the BlackdBox

Another application oBlack Box Equivalence Checking the
abstraction of “difficult parts” of an implementation, whigvould
cause a large peak size in memory consumption during the con-
struction of a canonical form for the implementation. Th&dié
ficult parts” of the design can be put into a Black Box and Black
Box Equivalence Checking is performed. An exact statememiita
the correctness of the full implementation is not possibid,it is
still possible to find errors in the partial implementaticaren to
the Black Box Equivalence Checker.

Black Box Equivalence Checkimgn also be used to verify as-
sumptions concerning the location of errors in impleméoiat
which do not fulfill their specifications: If there is some asgtion
on the location of errors (produced by an automatic errogrtha
sis tool or found by hand), then these regions of the desigmatr
off and put into Black Boxes. If Black Box Equivalence Cheki
gives the information that no error can be found in the des@nr
taining Black Boxes, we can conclude that the assumptiorthen
error location were correct, otherwise we know that therstrbe
errors also in other regions of the design.

The present paper deals with algorithms for equivalencekeche
ing of partial implementations under the assumption thairaki-

(e.g.BDDs [2]) such that the equivalence check reduces to a check hational circuit is given as specification and also all impgata-

whether the canonical representations of implementatiorspec-
ification are the same.

In this paper we address the problemBdéck Box Equivalence
Checking which occurs when the specification is known, but only
parts of the implementation are finished or known. (For amrexa
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tions and Black Boxes are of combinational nature. Firstiogs
to handle this problem have been proposed in [10, 9]. Whidedh
papers provide algorithms to find errors, it is not clear \hécrors
and how many of the potential errors are detected. If theoalis
one Black Box in the implementation, also results from carabi
tional logic optimization concerning permissible funcisqd19] can
be used. In this paper we present a thorough analysis of tie pr
lem leading to several algorithms to attack the Black Boxitau
lence Checking problem. For the time being, our algorithetg r
on symbolic simulation [3] by usingbDs. An implementation us-
ing SAT-engines [12] to solve the corresponding Booleamfda
seems feasible, but is not the focus of the current paper. aBur
gorithms need different amounts of resources (space am) &nd
differ from their accurateness: They range from a simpleriigm
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Figure 1: Specification and partial implementation.

using symbolic simulation for an approximation of the sigintto

an exact solution of the problem. Thereby the methods gimen i
[10, 9] are classified too. Approximate solutions are noeabl
find all errors in the partial implementation, but they arerect

in the sense that they do not report an error if there is stibs:
sibility to implement the Black Boxes leading to a correcexall
implementation. However, if we solve the Black Box Equivale
Checking approximatively, the information, that no errande
found, can be due to the approximative character of the appro
and does not necessarily imply that there is an implememtatf
the Black Boxes leading to a correct overall implementatiérg.
when Black Box Equivalence Checking is used to verify assump
tions on the location of design errors, it cannot be guasghtbat
the information, that no error can be found, implies thateher
location is confined to the Black Boxes (since this informattan
be due the approximative character of the approach). Wepeed
several experiments, which showed that improving the aoyuof
the algorithms indeed leads to a significant improvementheft-
ror detection capabilities (paid with an increase of corapanhal
resources).

The paper is structured as follows: In Section 2 we present se
eral algorithms for the Black Box Equivalence Checking jeoh
The different approaches are compared for numerous pizniide-
mentations of benchmark circuits in Section 3. The papes eiith
concluding remarks and directions for further researcteitidn 4.
For shortness of the paper no formal proofs are given. Theyea
found in [16].

2. EQUIVALENCE CHECKING AND PAR-
TIAL IMPLEMENTATIONS

In this section we provide several algorithms to handle Blac
Box Equivalence Checking. We start with a simple symbolig-si
ulation with respect to the 0X,logic (Sec. 2.1). Then we suc-
cessively increase the exactness (and the complexity)echlitio-
rithm resulting in docal check(Sec. 2.2.1), aoutput exact check
(Sec. 2.2.2) and aimput exact checkSec. 2.2.3).

In particular, in Section 2.2.3 we give @&xactcriterion to de-
cide for a given partial implementation and a specificatitretiier
the partial implementation is correct or not. Unlike preiscap-
proaches [10, 9] we can guarantee that there is really ansrte
of the partial implementation to a correct complete implatagon,
if the criterion of Section 2.2.3 reports no error (and ofrsay vice
versa, there is no extension of the partial implementaticad¢om-
plete implementation, if it does report an error).

As a running example for the demonstration of our algorithms
we use the specification given in Figure 1(a). Figure 1(bjsha
partial implementation containing two Black Boxes. Clgaalfter
a suitable implementation of the two Black Boxes the finallamp
mentation fulfills its specification.
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Figure 2: 0,1 X—simulation and Zj—simulation.

2.1 Symbolic 0,1x—simulation

A first algorithm for checking partial implementations isskd
on the usual 0,X—simulation, which is well-known in the area of
testing [1].

To evaluate a partial implementation for some input vectoewa
symbolX different from 0 and 1 is introduced. The val¥eneans
an “unknown” value due to the unknown functionality of the 8k
Boxes. To simulate a partial implementation witprimary inputs
for an input vector(ey, ... ,&n) € {0,1}" we assign the unknown
value X to all outputs of the Black Boxes. If all values for the
inputs of a gate are if0,1}, then the output of the gate is computed
according to the gate function as usual. If some inputs ofta ga
are set taX, the output is equal tX if and only if there are two
different replacements of th¢ values at the inputs by 0's and 1's,
which lead to different outputs of the gate.

We can take advantage of this simulation using 0, 1 ¥
detect errors in partial implementations. If the evaluatif the
partial implementation results in a value 0 (1) for some outthis
means that the output value is 0 (1) independently from the-fu
tionality of the Black Boxes. If on the other hand the speatfiin
produces 1 (0) for the same input vector, then we have found an
error in the partial implementation.

Figure 2(a) shows such a situation: Simulation with inputee
(1,0,0,0,0,0,0,0) leads to O for the first output, whereas for the
specification in Figure 1(a) the function value is 1.

To check for erroneous values fall input values, asymbolic
simulation [3] is performed. One possibility to do so woulkl to
useMTBDDS [6] with three terminal values 0, 1 aXl For our
experiments we simulat@TBDDS using a8DD package [16]. This
first method is the same as the method from [10] with the only
difference that [10] uses a two-bit-encoding of 0, 1 ahtbading
to a duplication of the signals of the circuit.

2.2 Symbolicz—simulation

A disadvantage of symbolic OX5-simulation lies in the fact that
not all errors, which are present in a partial implementatéan be
found due to well-known deficiencies of O¢simulation.

Figure 2(b) shows an example for such a situation. The partia
implementation of Figure 2(b) does not fulfill the specifioatof
Figure 1(a), i.e. there is no implementation for the Black&o
which leads to a correct overall implementation. Howeveradp-
proach of the previous section always compufest the output of
the exor, gate, since both inputs of thexor, gate areX. There-
fore the first primary output i¥, if x; = 0, and 1, ifx; = 1. Since
the first output of the specification is 1 as wellxif= 1, no error
can be detected at the first output. Moreover it is easy tolsse t
the partial implementation of the second output is corresplace
BB, by anor; gate). So the method of the previous section cannot
detect an error in the partial implementation.
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Figure 3: Output exact check and input exact check.

If we have a closer look at the partial implementation, we can
see, that the output of thexor, gate is Oindependently from the
output of BB, whereas the simplX—propagation does not take
into account that th&—information comes from the same output of
Black BoxBB;. So input vectok0,0,0,1,1,0,0,0) leads to output
(0,1) which is different from the outputl, 1) of the specification.

To consider the origin oK—informations we introduceliffer-
ent variablesz; for each Black Box and perform a (conventional)
symbolic simulation to compute for each primary outpudf the
circuit a functiong; which depends on the primary input variables
X1,-.-,Xn and thel variablesZy, ...,z for thel outputs of Black
Boxes (“symbolicZ—simulation”).

2.2.1 Local check

Now we consider cofactors of implementation and specificati
with respect to all primary input variables. If such a cofmabf
some output function of the partial implementation is 0 ¢th)s
means that the output value is 0 (1) independently from the-fu
tionality of the Black Boxes. If for the same output functioh
the specification this cofactor is 1 (0), then we have foundraor
in the partial implementation. Here the effect of the unknoxal-
ues at the outputs of Black Boxes is evaluated more accuyriatel
contrast to 0,X—simulation.

A check whether there is such a distinguishing vector forn o
put j of partial implementation and specification can be done ac-
cording to the following lemma. The correctness of the lenfiofa
lows from definitions and basic boolean manipulations. Theck
according to the lemma is called “local check”, since theckhie
done for each output separately.

LEMMA 2.1 (LOCAL CHECK). Let g be the function of out-
put j obtained by symbolicijZsimulation for a partial implemen-
tation with primary inputs ... ,X, and | outputs of Black Boxes
with corresponding variables1Z...,Z,. Let fj be output j of a
specification with primary inputsiX... ,X,. There is no input vec-
tor (€1,...,&n) With gj|x,=¢,,... x,=¢, = 1 @nd fj(eq,... , &n) = Oiff
((VZy...¥Z gj) — fj) = Land there is no input vectdey, ... ,&n)
With gj|x,=e,,... xo=e, = 0and fj(€1,... ,&n) = 1iff ((VZ1...VZ 1))
= fj)=1

2.2.2 Output exact check

The local check of the previous section basedZprsimulation
is more exact than 0X;-simulation (see Fig. 2(b)). However im-
plications between different outputs are not taken int@ant We
obtain an even more accurate check, if we use a more “global”
viewpoint.

This is illustrated by Figure 3(a). For the first output thdyon
possibility to fulfill the specification of Figure 1(a) is teplaceBBy
by the functiornx, - xs. However for the second output the only pos-

sibility to fulfill the specification is to replacBB; by X3-Xg5. This
implies that the partial implementation of Figure 3(a) isdmrect.
In spite of that, the error cannot be detected by the “locatkhof
the previous section, since it is done for each output séglgra

To detect errors of this type we have to compute “local condi-
tions” for each output, which guarantee correctness foisthgle
outputs, and then, we have to combine the local conditionkéok,
if these local conditions can be fulfilled at the same timeafbout-
puts.

The local conditions are computed based on the following con
siderations: To obtain a correct implementation, for eatdtmary
outputj and each assignmefts, ... ,&n) to the primary inputs an
assignmentds, ... ,9) to the Black Box outputs has to be chosen
such thatgj(ey,...,&n,01,...,8/) and fj(gy,... ,&n) are identical.
Thus a characteristic functiorond (g1, ... ,€&n,91,...,9), which
equals 1, if and only ifds,...,9) at the Black Box outputs leads
to the correct function valuéj(g1,... ,&q) at outputg; of the im-
plementation, can be easily computeddoyd = (gj = fj).

For a correct partial implementation all conditioosnd, ...,
condy have to be true. If there is an input assignme@t.. . ,€n)
such that for all assignmen(s,,...,d;) to the Black Box outputs
at least one conditionond is false, then it is clear that the partial
implementation cannot be used to obtain a correct final impte
tation. This leads us to a new, more accurate check, whichalte c
“output exact”.

LEMMA 2.2 (OUTPUT EXACT CHECK).
If 31 ...Ix\VZ;...VZ V’j“:1 cong; = 1then the partial implemen-
tation does not fulfill its specification.

Note that our “output exact” check reports an error in exactl
the same cases as the check of [9]. However it is computed in
a different way and does not need a representation of thelbver
circuit as a Boolean relation.

It is also easy to see that there is no error in the partial émpl
mentation (i.e. we can replace the Black Boxes to obtain a cor
rect final implementation), if our check reports no error ava
are allowed to use all primary inputs as inputs of the Black&o
The check reports no error iffx; ...Vxy32Z;...32 /\’j“:1 cond =
1, i.e. iff for each assignmerfgy,... ,&n) to the primary inputs
there exists an assignmefd,...,d) to the Black Box outputs,
such the conditionsondj for all outputsj are true, which means
thatgj(e1,... ,€n,81,...,9) andfj(ey,... ,&n) are identical for all
1< j<m Thus we can choose these valugs...,8 to de-
fine the function values for Black Box outputs. 1,1 under input
(817"' 78n)'

2.2.3 Input exact check

The output exact check is able to find all errors which areadlye
present in the partial implementation only if we assume #iat
primary inputs are also inputs of the Black Boxes. But thisdsa
realistic assumption. If we have fixed sets of input signaislie
Black Boxes (which may be different from all primary inpytit)s
possible that the output exact check does not find all errors.

Figure 3(b) shows such a case. It shows a partial implementa-
tion (for the specification of Figure 1(a)) with one Black BBE; .

If the Black Box is replaced bys - (xg + x7) implementation and
specification are equivalent. However the inputs of the BBox

are onlyxg and x7 and it is easy to see that there is no correct
implementation foBB;, which does not depend on inpxg (for

X4 = X5 = 0, Xg = X7 = 1, xg = 0 the output oBB; has to be 0 and
for x4 = x5 = 0, Xg = X7 = 1 andxg = 1 the output oBB; has to be

1). Thus the partial implementation is incorrect.



Now we have to define an “input exact check”, which also re-
flects this problem.

Note that for the restricted case of only one Black Box in the p
tial implementation, also the theory of Boolean relationeig by
Cerny [5] could be used to provide an input exact check. Siyil
in the case of one Black Box the theory of permissible fumstio
[19] is applicable, too. The implementation is incorretarid only
if for the Black Box the maximum set of permissible functipas
computed in [19], is empty. However this check is implemdnte
in a different way (e.g. it needs a representation of theaieir-
cuit as a Boolean relation) and it cannot be extended to the ch
several Black Boxes:

For the input exact check we use (among others) the condition

cond= /\'J-“=l cond; of the section beforecondcan be interpreted
as the characteristic function of a Boolean relation betwaessign-
ments(g1,...,&n) to the primary input variables and assignments
(61,-..,9) to the outputs of the Black Boxesondey, ... ,&n,
01,...,0) = 1ifand only if (81,...,9) is a “legal assignment” to
the outputs of the Black Boxes for primary input vedter, . . . , €n),
i.e. if and only if all output values of the partial implemation
with (g1,...,&n) assigned to the primary inputs af, ... ,8) as-
signed to the Black Box outputs are identical to the corradpm
output values of the specification for assignmeat. .. ,&n) to the
primary inputs.

Now we have to take into account that the inputs of Black Boxes
can be internal signals of the partial implementation antdatio
primary inputs are connected to the Black Box inputs. In tile f
lowing we assume that we habeBlack BoxesBB; to BB, which
can have several outputs and inputs. The input signals afkBla
Box BB; are connected to variablégs,...,ij; and the output

signals are connected to variablegs,... ,0jp, (U?zl{ojyl,...,
0jp } = {Z1,---,4}). To simplify the notations we abbreviate
ij1,---»1j);, by 1}, 0j1,...,0j,p; by Oj and the primary input vari-
ablesxy, ..., %, by X. Moreovervlj meansvij...Vij), andvO;
meansvoj ;... voj p, (accordingly ford).

We assume that the Black BoxB®; to BBy, are topologically
ordered, i.eBB; is the first Black Box in topological ordeBBy,
the last Black Box. Consider the Boolean functions which €om
pute the assignments of the Black Box inputs. For Black B8x

there ard; such functionsh{,... ,hljj. Because of the topological

order of the Black Boxesh{,... ,hlji can depend (at most) on pri-

mary input variables< and the output variable®y,...,0;j_1 of
BBy,...,BBj_1. The characteristic function of the Boolean rela-

tion forhy ... ,h,‘j is computed by

H;(X,01,...,0j_1,1j) = Al_y(ijx = hl(X,O1,... ,Oj_1)).

Based orcondX,0s,...,0p), which is a Boolean relation be-
tween primary input assignments and output assignmenttackB
Boxes, we compute the characteristic function of a Boole&tion
cond(ly,...,lp,01,...,0p) between input assignments of Black
Boxes and output assignments of Black Boxes.

cond is defined agond (I, ... ,lp,01,...,0p) = VX(H1(X,11)
+...+Hp(X,01,...,0p_1,lp) + condX,0O1,...,0p)).

cond computes 1 for an assignmefig,... ,lp,ws,... ,0p) tO
the Black Box inputs and outputs iff for all assignme#tio the
primary inputs

1For the case of several Black Boxes we see that the theoryrof pe
missible functions is onlyelatedto our problem. The computation
of permissible functions for one “cluster” (or Black Box)sasnes
that the other parts of the circuit are fixed to an “originatipile-
mentation. But this means that a correct implementatiomasvk

in advance.

e & and(i1,...,lp,w1,...,0y) lead to a signal assignment,
which is not consistent with the circuit of the partial imple
mentation (this is checked by the part

H]_(X, ll) +ot Hb(x,O]_, ,0p_1, lb)
of the formula above)
or

o (w,...,0y) is a “legal output” of the Black Boxes under in-
putg, i.e. & and(wy,...,wy) result in correct values at the
primary outputs of the partial implementation
(this is checked by the pacbnd X,0;,...,0p) of the for-
mula above)

l.e. forcond(1g,... ,lp,0,...,0y) to be 1,(wy,...,0y) has to
be a “legal output” of the Black Boxes under inpiyt whenever
&and(iy,...,lp,0,...,0p) lead to a signal assignment, which is
consistent with the circuit of the partial implementation.

It can be shown that there is a replacement of the Black Boxes
BBy, ... ,BBy by totally specified Boolean functions with input vari-
ablesly, ..., Iy, respectively, leading to a correct overall implemen-
tation if and only if there is a appropriate decompositiorcond
into b Boolean relations:

THEOREM2.1 (INPUT EXACT CHECK). Let fi,...,fn be
Boolean functions with input variables ,x.. ,xn, which are used
as a specification for a partial implementation with inputiebles
X1,---,Xn and b Black Boxes BB... ,BB,. The input variables
of BB;j are |}, the output variables Q the characteristic function
cond(ly, ...,l,01,..., Op) is defined as given above. Then there
is a replacement of BB... ,BB, by completely specified Boolean
functions with input variables)|... 1, respectively, leading to a
correct overall implementation, if and only if cohcan be decom-
posed intgy (1j,0j), such that

¥1;30jx;(1j,0;) = 1and cond > A®_, xj.

The proof of Theorem 2.1 can be found in [16]. Theorem 2.1
gives us a necessary and sufficient condition for the coresstof
the partial implementation.

However, we can show using a non-trivial reduction from 3SAT
that for a numbeb > 2 of Black Boxes the check of Theorem 2.1 is
NP-complete, even if the characteristic function émnd in Theo-
rem 2.1 is given as a function table, which is already exptiakin
the number of inputs and outputs of the Black Boxes. For &8s r
son, in practice we use a modified check which is exacbferl
(one Black Box) and an approximation for> 2 (more than one
Black Box).

Our new check, which reflects that the inputs of the Black Boxe
are not necessarily equal to all primary input signals, respao
error, if

VI11301V12305...VIL,30, cond =1 (1)

The following theorem holds:

THEOREM 2.2. The check of equation (1) is exact (in the sense
that it finds all errors in the partial implementation), ifb1, i.e. if
there is only one Black Box in the partial implementation.

PROOF The proof follows directly from the fact, that far= 1
the checks of equation (1) and of Theorem 2.1 are the same, if w
choosex; := cond (cond > /\11:1Xj is then trivial). [

In the general case, when more than one Black Box is present,
the check of equation (1) is not exact, i.e. it is not equivate the



Table 1: 10% of the gates included in one Black Box

#node detected errors #nodes implementati peak during check run time

spec.iﬂ r.p.|0,1X] loc.| oe| ieHO,l,X|Ioc.,oe| ie1r0,1x|loc.| oe| |eH r.p.|0,1X|loc.| oe| e
alud 14] 8 389[[ 90%| 95%| 95%]| 96%]| 96%|| 458 455 490 86| 88 96 159([1.17| 0.06[0.06] 0.06] 0.06
apex7 ||49| 37 314(]92%| 97%| 97%]| 98%]| 98%|| 256 258 263 38| 41 132 132|[0.41] 0.08/0.08] 0.08| 0.08
C17 5 2 8|| 84%| 88%]| 88%|88%]|96% 6 6 8 5 6 6 7(10.02| 0.01]0.01] 0.01| 0.01]
C432 ||36| 7 1211{|50%| 62%]| 65%|68%|80%]|| 796 3705 3725 123|257| 5779 38411)|3.22| 0.13|1.77| 0.42| 0.99
C499 || 41| 32|| 25866|| 26%| 59%]| 59%|69%| 80%|| 4377 12700 12672 487|496 28562 39142|6.29| 4.46|5.54| 7.19| 7.76
C880 |60 26 4870|| 78%| 87%|91%]|92%|92%|| 2956 5600] 5553 247|658|105919116561|3.84| 0.75|1.62|37.94/49.16
comp |32 3 137{| 27%| 63%| 65%| 67%]| 90% 82 90 111 39| 41 105 124(]1.57| 0.04/0.04| 0.04| 0.04
terml |[34] 10 81([92%| 95%| 95%]| 95%]| 95% 97 97 108 31| 32 34 69(|1.44] 0.07/0.07] 0.07| 0.07

[averagd] [[63%] 81%] 82%[ 84%] 91%]] |

‘circuit H in]out

check of Theorem 2.1, but we can formally prove [16] that — if there really exists an implementation, which can compertbater-
the Black BoxesBBBy,...,BBy are given in topological order — it rorinsertion. The following columns indicate the resosrneeded
is at least as good as our best check so far (see Section.22.2) to achieve the results. Columns 10-12 give the humbeenDof
Section 3 we present experiments to demonstrate thatréaiby nodes which are needed to represent the implementationn®sl
betteralso for examples with several Black Boxes. The method 13-16 show the maximum number of additiosaldb nodes, which
needs no restriction on the number and the location of thekBla are needed the perform the four different checks which aseda

Boxes. on symbolic simulation. And finally, columns 17-21 show the r
times in CPU seconds for the random pattern simulation aed th
four symbolic checks, respectively.

3. EXPERIMENTAL RESULTS Note that the error detection ratios for symbolic Bsimula-
To evaluate the different equivalence checks for partigdlén  tion are equal to the error detection ratios of approach. [2J}
mentations we implemented the described procedures Q&P though our implementation differs (using symbolic 82simula-
2.3.0[17] as the underlyinggDD package. Dynamic reordering  tjon instead of signal duplication and conventional syritbsimu-
[15] was activated during all experiments. The experimevese lation), errors are reported in the same cases. Simildréyetror
performed on a Pentium Il PC with 550 MHz, 1 GB memory, run-  detection ratios for the output exact check (colunoe’y are the

ning Linux 6.3. same as in [9], although the implementation is different.

For our experiments we generated partial implementatiars f As a first result we can notice thtte 0,1, X-based simulation
benchmark circuits: For each benchmark circuit a certaiotion with 5000 random patterns cannot compete with the symbaithm

of the gates was included in Black Boxes. In a first experiment  ods The detection ratios are considerably smaller than for-sym

included 10% of the gates in one Black Box (with several otspu  polic 0,1 X—simulation (see columns 5 and 6) while the run times

All reported results are an average on 5 different randoectiehs  are larger (columns 17 and 18). For the other methods we ean re

of Black Boxes. ally observe anmproved error detection accuracy from method to
Then we inserted errors into the partial implementation® W method(columns 6-9): With the exception térm3, which obvi-

randomly selected a gate, which did not belong to a Black Box, ously is easy for Black Box Equivalence Checking, all othema-

and inserted an error. The error type was also selectedmando  ples profit from a more sophisticated check in the sense the#,m

between several choices: We added/removed an invertenfor a sometimes significantly more errors are detected. In paaticwe

put or output signal of the gate, changed the type of the gateb ( observe, thathe application of the input exact check leads to a con-

to orp or orz to ancp) or removed an input line from aand or siderable improvement compared to the output exact cheiaity

or gate. Then we applied our check to detect errors in the partia cases (see e.g. comp, C49%he average numbers given in the last
implementation. Note that an error is reported only if thiereo line of the tables underline our observations made béfore
implementation for the Black Boxes such that the resultingue The experiments also show that the resources needed tamperfo
fulfills its specification. (The original benchmark circust used a check increase with its accuracy. Especially for the dusmal

as the specification.) Each experiment was repeated fort60 €  input exact check the improved accuracy has to be paid by-an in
Insertions. creased memory consumption and by larger run times. However

In Table 1 we give the results for the first experiment, whe%10  memory consumption and run times remain in a reasonabl@rang
of the gates were included in one Black Box. In column 1 the@am The equivalence check needs at most a few seconds in the worst
of the benchmark is given, in columns 2 and 3 the number oftipu  ¢ase.
and outputs of the benchmark are given. Column 4 shows the num  |n a second experiment we varied the generation of partjalém
ber of BDD nodes needed to represent the specifying benchmark mentations of our first experiment to obtain 5 different RiBoxes
circuit. In columns 5-9 the error detection ratio for 10(0einser- instead of one. Results are given in Table 2. Memory Cons'onnpt
tions (per black box selection) using different equivakesbecks  and run times are about in the same range compared to thedirst e
is reported. For comparison Column $.¢.") shows the resultofa  periment with the exception of circu@880where time and mem-

0, 1,X-based nOﬂ—SymbOliC simulation with 5000 random patterns. ory Consumption for output and input exact checks increabel_(t
Column 6 (“0,1X”) shows the error detection ratio for symbolic
0,1 X-simulation, column 7 (6c.”) for symbolic Zj—simulation
with local equivalence check (see Section 2.2.1), columfo8’Y 2o - . .
for symbolic Z—simulation with the “output exact” check of Sec- aﬁ'gﬁg;g;geo%sﬁ Af’f d%?:c?elgcgfoor)s( tg%;“npsm tﬁg?%??ﬁgﬁg‘;éﬁ?
E[on 2.2.2 arld column 9 ¢ )lfor symbollczi—3|mglat|qn W.'th the 9% of the cases our circuit modification described above did n
input exact” check of Section 2.2.3. Note that in this expemnt really insert an error into the partial implementation, ae imple-
the check of Section 2.2.3 is exact, since there is only omekBl  mentation for the Black Box can be found, such that the oleral
Box; i.e., in all cases, when this check does not report aryr,er implementation fulfills its specification.




Table 2: 10% of the gates included in five Black Boxes

circuit || in|out|| #node detected errors #nodes implementati peak during check run time

‘ H specj‘ r.p.|0,1X] loc.| oe] ieH0,1)<|Ioc.,oe| ie1r0,1x|loc.| oe| ieH r.p.|0,1X] loc.] oe| ie
alud 14] 8 389[] 50%]| 92%| 92%] 94%] 94%]|| 346 372 548]] 83| 85 103 419][4.93] 0.08/0.08] 0.08] 0.10
apex7 |[|49] 37 314(| 88%| 96%| 96%| 98%| 98%|| 235 232 249 28] 37 220 720[|0.53| 0.10{0.09] 0.11] 0.12
C17 5] 2 8[| 84%| 88%)] 88%]| 88%]| 96% 6 6 7 5| 6 6 7[0.03] 0.02/0.02] 0.02] 0.02
C432 (|36 7 1211{| 34%| 54%|66%| 72%|87%]|| 417 5675 6065/ 104|463 6577 28471{|4.47| 0.18]1.39 0.61 1.40]
C499 || 41| 32|| 25866]| 20%| 44%]|46%|58%| 75%|| 1858 8443 9246|| 199|207| 190168 534687(6.75 3.23|4.40 41.82] 68.52
C880 (/60| 26 4870|| 61%| 75%]80%]|82%]| 88%]|| 1276 3851 4055|| 207|444|12498991521876|6.16] 1.221.10[1140.11 1369.14
comp (|32| 3 137||10%]| 43%]|54%|57%| 83% 46 89 125 29| 35 170 209]|[2.10] 0.04{0.04 0.04 0.05
terml [[34] 10 81[[ 74%| 87%]| 88%]| 88%] 92%|| 139 144 184]] 33| 43 241 291037[2.76] 0.04]0.15] 0.15] 8.48
[averagd] [[53%] 72%] 76%]80%]| 89%]] |

22 minutes for the input exact cheékHowever the comparison of
error detection ratios shows an interesting resailthough the in-
put exact check in this case is not exact, the advantage ofiplg
exact check compared to the other checks in this case is axgar |
(compare e.g. the line giving the average values in the $ablenis
obviously demonstrates the power of our heuristics.

Experiments with a varied method to generate partial imptem
tations (40% instead of 10% of the gates included Black Bpxes
lead to comparable results. Results are omitted here antheean
found in [16].

Taken together, the high number of error detections foryati-s
bolic checks demonstrates the validity of the concept otkimg
partial implementations already at a stage of the designes®
where a significant portion of the design has still to be pentm.

4. CONCLUSIONS AND FUTURE WORK

Experimental results showed that improving the accuradhef
algorithms for Black Box Equivalence Checking indeed letls
a significant improvement of the error detection capabaiti We
have defined a series of different algorithms with incregsiocu-
racy and increasing consumption of computational ressurthlis
suggests to use these algorithms as a series of more and xacte e
methods to detect errors in partial implementations: fest@ 1X—
based simulation with only a few random patterns, then syimbo
0,1 X-simulation,z—simulation with local check, with output ex-
act check and finally with input exact check.

In the future we plan to compare oBDbD based implementation
of the different checks to a version using SAT-engines. Aaot
interesting question is how the methods can be extendedrify ve
also sequential circuits containing Black Boxes.
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