Preprint from Proceedings of ITG/GI/GMM-Workshop “Methoden und
Beschreibungssprachen zur Modellierung und Verifikation von Schaltungen und
Systemen”, Meissen, Germany, February 2001, pp. 31-43

Checking Equivalence for Partial Implementations

Christoph Scholl Bernd Becker

Institute of Computer Science
Albert—Ludwigs—University
D 79110 Freiburg im Breisgau, Germany
email: <name>@informatik.uni-freiburg.de

Abstract

We consider the problem of checking whether a partial impleation can (still) be
extended to a complete design which is equivalent to a gitkspiecification.

Several algorithms trading off accuracy and computatioredources are presented:
Starting with a simple 0,1,X-based simulation, which afiapproximate solutions, but is
not able to find all errors in the partial implementation, wensider more and more exact
methods finally covering all errors detectable in the pdriraplementation. The exact
algorithm reports no error if and only if the current parti@nplementation conforms to
the specification, i.e. it can be extended to a full implemt@on which is equivalent to the
specification.

We give a series of experimental results demonstratingftaetiweness and feasibility
of the methods presented.

1 Introduction

Verification, i.e. the check whether a circuit implemeraatiulfills its specification, is a crucial
task in VLSI CAD. Growing interest in universities and intlyshas lead to new results and
significant advances concerning topics like property cimgglstate space traversal and combi-
national equivalence checking [7, 9, 18, 14].

For the purpose of this paper combinational equivalencekehe is of particular interest. Here,
the task is to check whether the Boolean functions corredipgrto the specification and the
implementation are the same. Besides functional validdiiothe application of test patterns,
mainly two approaches are used to perform the equivalermekclOne possibility is to trans-
late implementation and specification into one Boolean tdamvhich is satisfiable if and only
if implementation and specification realize the same Bavofaaction [23, 16, 11]. As an alter-
native implementation and specification can be transformteda canonical form such that the
equivalence check reduces to a check whether the canoeralsentations of implementation
and specification are the samBbDDs[4] and Word-level Decision Diagrams likesfDs[6],
HDDS[8] ork*BMDS[10] are popular choices for such canonical forms.

In this paper we address the problemBifick Box Equivalence Checkinghich occurs when
the specification is known, but only parts of the implemeatasre finished or known. (For an
example see Figures 1(a), 1(bBlack Box Equivalence Checkiegables the use of verification
techniques in early stages of the design. Design errorseairéady detected when only a par-
tial implementation is at hand — e.g. due to a distributiothefimplementation task to several
groups of designers. Parts of the implementation, whiclmatget finished, are combined into
Black Boxes|If the implementation differs from the specificatitor all possible substitutions
of the Black Boxesa design error is found in the current partial implementati.e. to detect
an error in the current partial implementation it is necassafind an assignment of zeros and

ones to the primary inputs, which produces erroneous vaug® outputsndependently from
the final implementation of the Black Boxes

Another application oBlack Box Equivalence Checkimgthe abstraction from “difficult parts”
of an implementation, which would cause a large peak sizeemary consumption during the
construction of a canonical form for the implementatione3d “difficult parts” of the design
can be put into a Black Box and Black Box Equivalence Checksngerformed. An exact
statement about the correctness of the full implementasiaot possible, but it is still possible
to find errors in the partial implementation given to the BI&ox Equivalence Checker.

Black Box Equivalence Checkiogn also be used to verify assumptions concerning the totati
of errors in implementations, which do not fulfill their sjfezations: If there is some assump-
tion on the location of errors (produced by an automaticretiagnosis tool or found by hand),
then these regions of the design are cut off and put into BBates. If Black Box Equivalence
Checking gives the information that no error can be fountiédesign containing Black Boxes,
we can conclude that the assumptions on the error locatioa ea@rect, otherwise we know
that there must be errors also in other regions of the design.

The present paper deals with algorithms for equivalencekehg of partial implementations
under the assumption that a combinational circuit is givesecification and also all imple-
mentations and Black Boxes are of combinational naturst Riethods to handle this problem
have been proposed in [13, 12]. While these papers provgteidims to find errors, it is not
clear which errors and how many of the potential errors areatied. In this paper we present a
thorough analysis of the problem leading to several algor# to attack the Black Box Equiv-
alence Checking problem. For the time being, our algorithehson symbolic simulation [5]
by usingeDDs. An implementation using SAT-engines [17] to solve theesponding Boolean
formula seems feasible, but is not the focus of the currepépaOur algorithms need different
amounts of resources (space and time) and differ from tleerateness: They range from a
simple algorithm using symbolic simulation for an approatian of the solution to an exact
solution of the problem. Thereby the methods given in [13at@ classified too. Approximate
solutions are not able to find all errors in the partial impbenation, but they are correct in
the sense that they do not report an error if there is still ssiaity to implement the Black
Boxes leading to a correct overall implementation. Howg¥&ve solve the Black Box Equiv-
alence Checking approximatively, the information, thaenmor can be found, can be due to the
approximative character of the approach and does not reedgsmply that there is an imple-
mentation of the Black Boxes leading to a correct overalllengentation. E.g. when Black Box
Equivalence Checking is used to verify assumptions on tb&tion of design errors, it can not
be guaranteed that the information, that no error can bedfdmplies that the error location is
confined to the Black Boxes (since this information can betdeeapproximative character of
the approach). We performed several experiments, whiclesththat improving the accuracy
of the algorithms indeed leads to a significant improveméh® error detection capabilities
(paid with an increase of computational resources).

The paper is structured as follows: In Section 2 we give soreknpinaries. Several algorithms
for the Black Box Equivalence Checking problem are preskmtesection 3. In Section 4 the
different approaches are compared for numerous partideimgntations of benchmark circuits.
The paper ends with some concluding remarks and directmrfsifther research in Section 5.
For shortness of the paper no formal proofs are given. Theyedound in [21].

2 Preliminaries

Let f : {0,1} — {0,1} be a Boolean function with inputs. As usual, for a constahte
{0,1} and an input variable;(1 < i < n) fls,=s(T1,...,2n) = f(z1,. .., @i 1,0, Tig1,.. .,
r,) denotes theofactorof f with respect tar; = b. Instead off|,,—o and f|,,—1 we also write
fz, and f,,, respectively.

Thecofactorof f with respect to a set of variables and constants is definadtively:

Tiy =b1,..yTip=byr — (f Tjy =b1,.., xir_lzbr—1> T, =by -

Xp XaX3 X4Xs XeX7 X3 X X‘zx‘s Xg4Xs XeX7 Xg

BB,

\
f) f g &

(a) Specifying circuit (b) Partial implementation with two Black
Boxes

Figure 1: Specification and partial implementation.

A cofactor f|,, =, ...z,=b, With respect to all input variables is calle¢ampletecofactor.
Boolean functions can be representedsmps [15, 2, 19]. In the restricted form &foBDDS
they even provide canonical representations for Booleaations and they allow efficient ma-
nipulations [4]. ROBDDs can be used to check equivalence of Boolean functions by glesi
check for equality. Since we work only withoBDDs in the following we briefly call them
BDDS.

Given a circuit representation of a Boolean functiorgt for this Boolean function can be
computed bysymbolic simulatiorn5]. At the beginning of the symbolic simulation each input
of the circuit is associated with a unige®D variable. Then th&DD representations of the
functions computed by the gates of the circuit are computedpological order starting with
the inputs. ThesDD for the function of a gate can be computed ustmp operations [4, 3],
when theBDDs for the functions of all its predecessor gates are alreathpated.

3 Equivalence checking and partial implementations

In this section we provide several algorithms to handle tlaeiBBox Equivalence Checking.
We start with a simple symbolic simulation with respect te th1 X logic (Sec. 3.1). Then
we successively increase the exactness (and the complekttye algorithm leading to kbcal
check(Sec. 3.2.1), anutput exact checfSec. 3.2.2) and aimput exact checkSec. 3.2.3).

In particular, in Section 3.2.3 we give for the first timeexactcriterion to decide for a given
partial implementation and a specification whether theigdamplementation is correct or not.
Unlike previous approaches [13, 12] we can guarantee tlea¢ tis really an extension of the
partial implementation to a correct complete implemeantstif the criterion of Section 3.2.3
reports no error (and of course, vice versa, there is no siterf the partial implementation
to a complete implementation, if it does report an error).

As a running example for the demonstration of our algoritinasise the specification given in
Figure 1(a). Figure 1(b) shows a partial implementatiornt@mmg two Black Boxes. Clearly,
after a suitable implementation of the two Black Boxes thalfimplementation fulfills its
specification.

3.1 SymbolicZ-simulation

A first algorithm for checking partial implementations isskd on the usual 0,X, simulation,
which is well-known in the area of testing [1].

To evaluate a partial implementation for some input vectoewa symbolX different from 0 and

1 is introduced. The valu& means an “unknown” value due to the unknown functionality of
the Black Boxes. To simulate a partial implementation witbrimary inputs for an input vector
(€1,...,€,) € {0, 1}™ we assign the unknown value€ to all outputs of the Black Boxes. If all
values for the inputs of a gate are{ie\, 1}, then the output of the gate is computed according to
the gate function as usual. If some inputs of a gate are s€t the output is equal t& if and
only if there are two different replacements of tevalues at the inputs by 0’s and 1’s, which
lead to different outputs of the gate.

B¢
£
29
»
&%

(@) Evaluation wrt. input vecto(1,0,0,0,0, O, (b) Partial implementation with a detectable
0,0) error

Figure 2: 0,1X simulation for partial implementations

As an example Figure 2(a) shows the evaluation of the pamiplementation of Figure 1(b)
with respect to input vectdl, 0,0, 0,0, 0,0, 0). Note that the first output of the partial imple-
mentation isl independently from the functionality of the Black Boxes.

We can take advantage of this simulation using 0, 1 Antb detect errors in partial imple-
mentations. If the evaluation of the partial implementatresults in a value 0 (1) for some
output, this means that the output value is 0 (1) indepehdé&aim the functionality of the
Black Boxes. If on the other hand the specification producé® for the same input vector,
then we have found an error in the partial implementation.

Figure 2(b) shows such a situation: When we compare thegpartplementation to the spec-
ification of Figure 1(a) applying input vectdt, 0,0, 0,0, 0,0, 0), we see that the first output
of the (partial) implementation is O whereas it is 1 for the@fication. Generalizing the usual
notion of a distinguishing vector for designs without Bldg#xes to designs containing Black
Boxes we can say thét, 0,0, 0, 0,0, 0, 0) is adistinguishing vectofor the specification in Fig-
ure 1(a) and the partial implementation in Figure 2(b). Qfrse, only vectors which produce
0 or 1 (notX) at outputs of the partial implementation can play a roleissrdjuishing vectors.
Since we do not want to simulate specification and implentiemt#or all 2" input vectors one
after the other to find distinguishing vectors, we make ussyhbolic simulation”. This leads
to our first method for Black Box equivalence checking, whghkimilar to [13]. In contrast to
[13] we do not use a two-bit-encoding of 0, 1 aNdleading to a duplication of the signals of
the circuit, but we use an additional varialffe&tco model the new valu&. For an outpui of

a partial implementation our symbolic simulation compw@e®D for a functiong; with n + 1
inputszy, ... z,, Z and

0, if the (0,1,X) simulation with inputey, . .., €,) produce® (1)
Z, if the (0,1X) simulation with inpueq, . . ., €,) producesX

9i |:v1:61,...,:vn:en

{ 1, if the (0,1X) simulation with inputey, . . ., €,) producesl

To computesDDs for the functiong; by symbolic simulation the inputs of the circuit are asso-
ciated with uniquesDD variables as in a conventional symbolic simulation. Allmutsignals

of Black Boxes are associated with the new variagbléNow BDDs for the functions computed
by the gates of the circuit are built in topological ordelatreg the Black Box outputs (asso-
ciated with variableZ) as inputs of the circuit. The gates of the circuit can be @ssed in a
manner similar to a conventional symbolic simulation. 8iatt types of gates can be expressed
using two-inputand, gates, two-inpubr, gates andnv gates, we can assume w.l.0.g. that the
gates have typesids, ors or inv. When we process amd, (or;) gate, we combine theDDS

for the two predecessor functions bgab AN D (OR) operation as in the conventional sym-
bolic simulation. For annv gate we perform &VOT operation on th&DbD of the predecessor
function, now followed by aompose operation (see e.g. [4]) which composé$or Z (written
asg|,. for a composition of for Z in g).

Xp XpX3 X4Xs XeX7 Xg X

BB, BB,

[] []

g 5]

(a) Partial implementation with error de- (b) Motivation for output exact check
tectable byZ;,—simulation, but not byZ-
simulation

Figure 3: Motivation for local check and output exact check.

It is easy to see that this procedure leadso representations fulfilling property (1).

We call the procedure described above “symbglisimulation”. After we have obtained func-
tions g; for all outputs of the partial implementation by symbaffesimulation and functions
fi for all outputs of the specification by a conventional synibsimulation, the check whether
there is a distinguishing vector between specification amglementation is based on the fol-
lowing lemma, whose correctness follows from the defingiand basic boolean manipulations.

Lemma 3.1 (Z-simulation) There is no input vectdfe, .. ., €,) With g;|z,—,
fi(El, .. .,En) =0 iff

en—e, = 1 and

.....

(gilz=0 = fi) =1
and there is no input vectde,, . .., €,) With g;|z,—¢,... z,—, = 0and f;(e, ..., e,) = 1iff

(Gilz=1 — fi) = 1.

3.2 SymbolicZ;—simulation

A disadvantage of symbolig—simulation lies in the fact that not all errors, which aregant

in a partial implementation, can be found by the proceduserileed above.

Figure 3(a) shows an example for such a situation. The partementation of Figure 3(a)
does not fulfill the specification of Figure 1(a), i.e. thesend implementation for the Black
Boxes which leads to a correct overall implementation. Hexéhe approach of the previous
section always computes at the output of thexor, gate, since both inputs of theor, gate
are X. Therefore the first primary output i¥, if z; = 0, and 1, ifx; = 1. Since the first
output of the specification is 1 as well,4{f = 1, no error can be detected at the first output.
Moreover it is easy to see that the partial implementatich@&econd output is correct (replace
BB, by anor, gate). So the method of the previous section cannot detemranin the partial
implementation.

If we have a closer look at the partial implementation, we sa@, that the first output does
not depend on the output of Black BaxB;: The output of theexor, gate whose inputs are
connected to the output @B, is 0 independently from the output &fB,. Therefore input
vector(0,0,0,1,1,0,0,0) leads to output0, 1) which is different from the outputl, 1) of the
specification.

The reason why the error could not be detected’bgimulation lies in the fact that the values
X at the inputs of thexor, gate are not accurately processed: The simpipropagation does
not take into account that th&—information comes from the same output of the Black Box
BB, (resulting in valud) at the output).

To consider the origin oK —informations it is not enough to introduce one variaBléor all
Black Box outputs. Instead of that we introdudiéferent variablesZ; for each Black Box
outputi. After the inputs of the circuit have been associated witlqueBDD variables a

(conventional) symbolic simulation is performed. The tefar primary output; of the circuit
is a functiong; which depends on the primary input variables. . ., z, and thel variables
Zi, ..., 7 for thel outputs of Black Boxes.

Example 3.1 Symbolic simulation with output variablég for BB, and Z, for BB, in Figure
3(a) results ing; = z; for output 1 andys = 75 - (24 - x5) + x5 - Z for output 2.

3.2.1 Local check

As in the case ofZ/—simulation we considerompletecofactors of implementation and spec-
ification with respect to all primary input variablesIf a complete cofactor of some output
function of the partial implementation is 0 (1), this meahnattthe output value is 0 (1) inde-
pendently from the functionality of the Black Boxes. If fdret same output function of the
specification this cofactor is 1 (0), then we have found aarérr the partial implementation.
The only difference of this method compared4esimulation is the fact that the effect of the
unknown values at the outputs of Black Boxes is evaluatecraocurately.

A check whether there is such a distinguishing vector for@put j of partial implementation
and specification can be done according to the following lamAgain, the correctness of the
lemma follows from definitions and basic boolean manipalai The check according to the
lemma is called “local check”, since the check is done foheadput separately.

Lemma 3.2 (local check)Let g; be the function of output after symbolicZ;—simulation for

a partial implementation with primary inputs,, ..., z, and[outputs of Black Boxes with
corresponding variableg’,, ..., Z;. Let f; be output; of a specification with primary inputs
T1y.--yTp-

There is no input vectofey, . . ., €,) With gj|z; =, 2=, = 1 @Nd f;(e€1, ..., €,) = 0O iff

and there is no input vectde, . . ., €,) With gj|s,—c,,. on=e, = 0andf;(es,...,¢,) = 1iff

.....

(VZ,...YZ,55) — f;) = L.

3.2.2 Output exact check

The local check of the previous section basedgrsimulation is more exact thaf+-simulation
(see Fig. 3(a)). However implications between differeripats are not taken into account. We
obtain an even more accurate check, if we use a more “glol@Npoint.

This is illustrated by Figure 3(b). For the first output thdyomossibility to fulfill the specifi-
cation of Figure 1(a) is to replad@B; by the functionz, - 5. However for the second output
the only possibility to fulfill the specification is to repa® B, by 7, - 5. This implies that the
partial implementation of Figure 3(b) is incorrect. In gpiff that, the error can not be detected
by the “local check” of the previous section, since it is déoreeach output separately.

To detect errors of this type we have to compute “local coonli’ for each output, which
guarantee correctness for the single outputs, and thenaweetbh combine the local conditions
to check, if these local conditions can be fulfilled at the saime for all outputs.

The local conditions are computed based on the followingic@nations: To obtain a correct
implementation, for each primary outpgtand each assignmefy,,...,¢,) to the primary
inputs an assignmexd, . . ., d;) to the Black Box outputs has to be chosen such that

gj(el,...,en,51,...,5l) and fj(El,...,En)

!Here we call a cofactor complete, if it is a cofactor with so allprimary input variables.

are identical, i.e. such that

[(gj)|x1:61 Tn=€n — (fj>|z1:el xn:en](dla sy 5l> =1.

The relation between input assignmefds, ..., ¢,) and assignment§, ..., d;) to the out-
puts of Black Boxes, which are necessary to fulfill the speaifon, can be expressed by the
characteristic function

cond;(er, ..., €n,01,...,01) =

= \/ xil et x;n) [(gj>|w1161 Tp=€n = (fj)|x1:e1 wn:en]-

(61 En)G{O,l}n

The characteristic functionond; equalsl for argument(ey, ..., €,, 61,...,4d;), if and only
if gj(er,...,€n,01, ...,0;) and f;(er,...,¢,) are identical, i.e. if and only if an assignment
of (61,...,0;) to the Black Box outputs for inpUk;, . . ., €,) leads to a correct output of the

implementation for this inpufe,, . . ., €,). It holds that

cond; = (g; = f;)
andcond; can be computed using oB®D operation forg; and f;.
For a correct partial implementation all conditiofigd;, .. ., cond,, have to be true. If there
is an input assignmertty, ..., €,) such that for all assignments,, ..., ;) to the Black Box
outputs at least one conditiennd, is false, then it is clear that the partial implementation ca
not be used to obtain a correct final implementation. Thiddaas to a new, more accurate
check, which we call “output exact”.

Lemma 3.3 (output exact check)If

dxy ... 2z, VZ, ...V, \/ cond; =1
j=1
then the partial implementation does not fulfill its speaition.

Example 3.2 Consider the partial implementation of Figure 3(b) and tpeafication of Fig-
ure 1(a). For input(0,0,0,1,1,0,0,0), output 1 of the implementation equals output 1 of
the specification only if the Black Box outputlidor this input. This impliegond; (0,0, 0,
1,1,0,0,0,6;) = 1 only if 6 = 1. However, for input0,0,0,1, 1,0,0,0) output 2 of the
implementation equals output 2 only if the Black Box output fior this input. This implies
condy(0,0,0,1,1,0,0,0,4;) = 1 only if & = 0. There is no assignment 8, such that both
cond;(0,0,0,1,1,0,0,0, 4;) andconds(0,0,0,1,1,0, 0,0, ;) are equal tol and therefore the
“output exact” check reports an error.

Note that our “output exact” check reports an error in exatttt same cases as the check of
[12]. However itis computed in a different way and does netthe representation of the overall
circuit as a Boolean relation.

It is also easy to see that there is no error in the partialemeintation (i.e. we can replace the
Black Boxes to obtain a correct final implementation), if obeck reports no error arvde are
allowed to use all primary inputs as inputs of the Black BoXdge check reports no error iff

Vay ... V2,32, ...3Z; |\ cond; = 1,

J=1

i.e. iff for each assignmertt,, . . ., €,) to the primary inputs there exists an assignnént.. .,
4;) to the Black Box outputs, such the conditiansd; for all outputs; are true, which means
thatg;(ei,...,€en, d1,...,8;) and f(ei, ..., €,) are identical for alll < j < m. Thus we can
choose these valués, . . ., §; to define the function values for Black Box outputs. .,/ under
input (e, ..., €n).

Figure 4. Motivation for input exact check
3.2.3 Input exact check

The output exact check is able to find all errors which areadlyepresent in the partial imple-
mentation only if we assume that all primary inputs are atpais of the Black Boxes. But this
is not a realistic assumption. If we have fixed sets of inpgnais for the Black Boxes (which
may be different from all primary inputs), it is possibletki@e output exact check does not find
all errors.

Figure 4 shows such a case. It shows a partial implementétothe specification of Figure
1(a)) with one Black BoxB B; . If the Black Box is replaced bys - (¢ + x7) implementation
and specification are equivalent. However the inputs of thelBBox are onlyrg andzx;.

e Output 2 of the specification is O faf; = =5 = 0, z¢ = x7 = 1 andxg = 0. Therefore
BB, has to be 0 under this input, since output 2 of the implemiemia 1, if the output
of BB, is 1.

e Output 2 of the specification is 1 fary = x5 = 0, z¢ = z7; = 1 andzg = 1. There-
fore BB, has to be 1 under this input, since output 2 of the implemematould be 0
otherwise.

We can conclude that there is no correct implementatiorBfB; which does not depend on
input zg and so the partial implementation is incorrect.

Now we have to define a check which also reflects this problemthts check we use (among
others) the condition

cond = /\ cond;
j=1
of the section before:ond can be interpreted as the characteristic function of a Boolelation

between assignments, . .., €,) to the primary input variables and assignme€ats. . ., §;) to
the outputs of the Black Boxes:

cond(€q, ..., €n,01,...,0) =1

if and only if (04, ...,d;) is a “legal assignment” to the outputs of the Black Boxes fimpry
input vector(ey, . . ., €,), i.e. if and only if all output values of the partial implentation with
(€1,...,€,) assigned to the primary inputs afd, . . ., §;) assigned to the Black Box outputs
are identical to the corresponding output values of theifipation for assignmen(e, . . ., €,)

to the primary inputs.

Now we have to take into account that the inputs of Black Baasbe internal signals of the
partial implementation and not all primary inputs are cartee to the Black Box inputs. In the
following we assume that we haveBlack BoxesB B; to BB, which can have several outputs
and inputs. The input signals of Black B&xB; are connected to variablés, . . ., i;;, and the
output signals are connected to variablgs . . ., 0, (U;’.Zl{oj,l, s 05y = A2, .. Z1}).
To simplify the notations we abbreviatg,, . .., i;;, by I;, 0;1,...,05,, by O; and the pri-
mary input variablesey, ..., z, by X. Moreovervl; meansvi;; ...Vi;;. andv0O; means
Voj1...Yo0;,, (accordingly ford).

We assume that the Black Box&3, to BB, are topologically ordered, i.8B; is the first
Black Box in topological orderBB, the last Black Box. Consider the Boolean functions
which compute the assignments of the Black Box inputs. FaciBIBox BB; there arel;

such functionsh{, ..., h].. Because of the topological order of the Black Boxef,. .., h,
can depend (at most) on primary input variablésand the output variables;, ..., O;_1 of
BB,...,BB;_;. The characteristic function of the Boolean relation &gr .. ., h{j is com-
puted by

L

H](X, 01, ceey Ojfl, I]> = /\(ijk = h‘;c(X, Ol, Caey 0];1)).

k=1
Based orvond(X, Oy, . . ., Op), which is a Boolean relation between primary input assignsie
and output assignments of Black Boxes, we compute the deaistc function of a Boolean
relation cond'(Iy, ..., Iy, O, ..., 0,) between input assignments of Black Boxes and output
assignments of Black Boxesond' is defined as

cond (I, ..., Iy,0q,...,0p) =
— VX (Hl(X, I+ ...+ Hy(X,01, ..., 05 1, 1) + cond(X, Or, . .., 0,,)) .

cond' computes 1 for an assignmént, . . ., 1, wy, . . ., w;) to the Black Box inputs and outputs
iff for all assignmentg to the primary inputs

e £ and(iy,...,pwi,...,wy) lead to a signal assignment, which is not consistent with
the circuit of the partial implementation (this is checksdtbe partH; (X, ;) + ... +

Hy(X,0,...,04_1, I}) of the formula above)
or

o (wi,...,wp) is a“legal output” of the Black Boxes under inpti.e. £ and(wy, . . ., wp)
result in correct values at the primary outputs of the partiglementation
(this is checked by the patbnd(X, Oy, .. ., O,) of the formula above).

l.e. forcond' (11, ..., wi,...,wp) tobe 1(wy,...,w,) has to be a “legal output” of the Black
Boxes under inpug, wheneveg and(cq, . .., t, w1, - . . ,wp) lead to a signal assignment, which
is consistent with the circuit of the partial implementatio

It can be shown that there is a replacement of the Black B&4es . . ., BB, by totally speci-
fied Boolean functions with input variablés, . . ., I, respectively, leading to a correct overall
implementation if and only if there is a appropriate decositpan of cond’ into b Boolean
relations:

Theorem 3.1 (input exact check)Let f, ..., f,, be Boolean functions with input variables
z1,...,T,, Which is used as a specification for a partial implementatath input variables
t1,...,z, andb Black BoxesBB;, ..., BB,. The input variables oBB; are I;, the output
variablesO;, the characteristic functiomrond'(I, ..., 1, Oy, ..., Oy) is defined as shown
above. Then there is a replacemenfZiB,, . . . , BB, by completely specified Boolean functions
with input variablesly, . . ., I, respectively, leading to a correct overall implementatiband
only if cond' can be decomposed inig(Z;, O;), such that

vI;30;x;(I;; 0;) = 1land 2

b
cond > /\Xj- (3)
j=1

circuit [[infouti|#node§ detected errors #nodes implementati peak during check run time

t‘ spec.||r.p.| Z|loc.| oe| ie|| Z|loc., oe] ieTr Z|loc.| oe| ie||r.p.| Zl|loc.| oe| ie
alu4 14 8 389]9094959495%4969496%]| 45§ 455§ 49(]] 86| 89 96/ 159[1.170.060.06 0.06 0.06
apex7/ [|49 37| 314[929%97%4979498%498%| 256 258§ 263] 3§ 41] 132 132]0.410.080.04 0.0 0.08
C17 5 2 8[|849%488%488%488%496% 6 6 8| 5 6 6] 7]]0.020.01/0.07] 0.01 0.07]
C432 |36 7]] 1217]509%4629465%68%80%]| 79§ 3705 3728|123257 5779 38411]3.220.131.77 0.42 0.99
C499 [|47] 32|| 25866|26%4599459%699480%|437 12700 12672|48749F 28562 39142(6.294.465.54 7.19 7.76
C880 ||60] 26]] 4870[78%487949194929492%]|295 5600 5553(247658105919116561]3.840.751.6237.9449.14
comp (|32 3 137(279463%65%467%490%| 82| 90 111] 39 41] 10§ 124]1.570.040.04 0.04 0.04
term1 [[34] 10 81][929%495%95%95%95%| 97 97 108| 31| 32| 34 691.440.070.07 0.07 0.07

[averagg] [63%481%482%84%91%] |
Table 1. 10% of the gates included in one Black Box

The proof of Theorem 3.1 is technically complicated and cafolind in [21].

Theorem 3.1 gives us a necessary and sufficient conditiothiocorrectness of the partial
implementation.

However, we can show using a non-trivial reduction from 3$dt for a numbeb > 2 of
Black Boxes the check of Theorem 3.1N¥sP-complete, even if the characteristic function for
cond' in Theorem 3.1 is given as a function table, which is alreagyoaential in the number
of inputs and outputs of the Black Boxes. For this reason veefospractical application a
modified check which is

e exact forb = 1 (one Black Box) and
e an approximation fob > 2 (more than one Black Box).

Our new check, which reflects that the inputs of the Black Bate not necessarily equal to all
primary input signals, reportso error, if

VI,30,V1,30, .. . V1,30, cond' =1 4)
The following theorem holds

Theorem 3.2 The check of equation (4) is exact (in the sense that in fidsraks in the par-
tial implementation), ib = 1, i.e. if there is only one Black Box in the partial impleméiua.

Proof: The proof follows directly from the fact, that fér= 1 the checks of equation (4) and
of Theorem 3.1 are the same, if we chogse= cond’ (the truth of part (3) is then trivial).C

In the general case, when more than one Black Box is presentheck of equation 4 is not

exact, i.e. it is not equivalent to the check of Theorem 3utwe can formally prove that it is at

least as good as our best check so far (see Section 3.2.23ctioi$4 we present experiments
to demonstrate that it ially betteralso for examples with several Black Boxes.

4 Experimental results

To evaluate the different equivalence checks for partigdlé@mentations we implemented the
described procedures usiag/ DD 2.3.0 [22] as the underlyingdDD package. Dynamic re-
ordering [20] was activated during all experiments. Theegxpents were performed on a
Pentiumlll PC with 550 MHz, 1 GB memory, running Linux 6.3.

For our experiments we generated partial implementatimm benchmark circuits: For each
benchmark circuit a certain fraction of the gates was inetlith Black Boxes. In a first experi-
ment we included 10% of the gates in one Black Box (with séwergputs). All reported results
are an average on 5 different random selections of Black 8oxe

Then we inserted errors into the partial implementations:rs#idomly selected a gate, which
did not belong to a Black Box, and inserted an error. The éyyme was also selected randomly
between several choices: We added/removed an invertenforpat or output signal of the
gate, changed the type of the gai@d, to or, or or, to and,) or removed an input line from

circuit [[infouf|#node§ detected errors #nodes implementati peak during check run time
spec.||r.p.| Z|loc.| oe| ie|| Zlloc., o€ z'etw] Z|loc.| oe| ie||r.p.] Z| loc| o€ ie
alu4 14 8 389]75%4819481%4849490%] 393 68009 52619| 71] 84[821289 800302/2.260.04462.34341.04129.35
apex7/ [|49 37| 314[92%97%97%98%98%| 284 282 287] 38 42 12§ 127]0.470.0§ 0.0 0.0 0.06
C17 5 2 8][599488%488%488%498% 6] 6] 8| 4] 6 8| 8[|0.070.01] 0.01 0.0 0.01
C432 [|36] 7]] 1211|479%460%65%70%480%| 579 7184 7034 84390 12094 603833(3.030.40 3.64 0.94 29.27
C499 [|41] 32| 25866|13%4389440%629466%]|3125 14495 1453([29833(0 39553122434%6.392.99 3.61 4.92129.98
C880 |[60Q] 26]] 4870[78%87%491%4929492%[2941] 55571 5527(246661108383 121482|3.840.47 0.95 25.14 32.08
comp [[32] 3 137]29946494669468%488%| 79 97| 109| 36] 38 95 135]1.570.03 0.03 0.03 0.04
term1 [[34] 10 81][929496949694969496%]| 99 102 106 30] 32| 34 44]11.390.04 0.0§ 0.0§ 0.05

[averagg] [619% 769 78%82%89%]] |
Table 2: 40% of the gates included in one Black Box

infout] #node§ detected errors #nodes implementatig) peak during check run time
spec.||r.p.| Z|loc.| oe| ie|| Zlloc., oe| ie|rI Zloc.| oe| ie||r.p.| Zlloc.| oe| ie
alud (14 § 389]50%4929492%4949494%]| 34 372 54g] 83 85 103 419]4.930.090.0§ 0.0§ 0.1Q
apex7 (|49 37 314/|88%496%496%098%498%| 235 232 249| 28 37 220 720[0.530.100.09 0.1 0.17
C17 5 2 8[[849488%488%488%496% 6 6 7 5 6 [§ 7(/0.030.020.02 0.02 0.02
C432 (|36 7| 1211{349%954%6694729%87%| 417 5679 6064H(104463 6574 28471(4.470.181.39 0.61 1.4(Q
C499 ||41] 32| 25866|20%449d4694589475%]|185§ 8443 9244(199207 190168 534687|6.793.234.40 41.84 68.52
C880 (|60 26| 487Q[{61%75%809%482%88% (127§ 3851 405Y|2074441249899152187¢(6.161.221.101140.111369.1
comp [[32 3 137(109943%4549%057%483%| 46 89 125| 29 35 170 209(2.140.040.04 0.04 0.09
terml |[[34] 10 81]|749%487%88%88%492%| 139 144 184| 33 43 241 291037|2.760.040.1§ 0.1 8.48

[averagg] [B3W 729 76%480% 89U |
Table 3: 10% of the gates included in five Black Boxes

circuit

anand or or gate. Then we applied our check to detect errors in the part@ementation.
Note that an error is reported only if there is no implemeatator the Black Boxes such that
the resulting circuit fulfills its specification. (The ongil benchmark circuit is used as the
specification.) Each experiment was repeated for 100 ersariions.

In Table 1 we give the results for the first experiment, whe¥% 1 the gates were included in
one Black Box. In column 1 the name of the benchmark is giveoglumns 2 and 3 the number
of inputs and outputs of the benchmark are given. Column #shtibe number oBDD nodes
needed to represent the specifying benchmark circuit. lumeies 5-9 the error detection ratio
for 100 error insertions (per black box selection) usinfedént equivalence checks is reported.
For comparison Column 5p.”) shows the result of &, 1, X-based non symbolic simulation
with 5000 random patterns. Column 64*) shows the error detection ratio for symbolic-
simulation, column 7 (oc.”) for symbolic Z,—simulation with local equivalence check (see
Section 3.2.1), column 8 §¢”) for symbolic Z;—simulation with the “output exact” check of
Section 3.2.2 and column 9i¢") for symbolic Z;—simulation with the “input exact” check of
Section 3.2.3. Note that in this experiment the check ofiSe& 2.3 is exact, since there is only
one Black Box; i.e., in all cases, when this check does natrtgmy error, there really exists an
implementation, which can compensate the error inserfibe.following columns indicate the
resources needed to achieve the results. Columns 10-1thgiveimbers oBDD nodes which
are needed to represent the implementation. Columns 136 the maximum number of
additionalBDD nodes, which are needed the perform the four different hedlich are based
on symbolic simulation. And finally, columns 17-21 show tha times in CPU seconds for
the random pattern simulation and the four symbolic chedspectively.

Note that the error detection ratios for symbdliesimulation are equal to the error detection
ratios of approach [13]. Although our implementation dif¢usingZ—simulation instead of
signal duplication and conventional symbolic simulaticrjors are reported in the same cases.
Similarly, the error detection ratios for the output exawtck (column 6e”) are the same as in
[12], although the implementation is different (our implemtation does not need a representa-
tion of the overall circuit as a Boolean relation, e.g.).

As a first result we can notice thite 0, 1, X -based simulation with 5000 random patterns can
not compete with the symbolic methodée detection ratios are considerably smaller than for
symbolic Z—simulation (see columns 5 and 6) while the run times arestafgplumns 17 and
18). For the other methods we can really observérgroved error detection accuracy from
method to metho@columns 6-9): With the exception ¢érm3l, which obviously is easy for
Black Box Equivalence Checking, all other examples proditrfra more sophisticated check in

the sense that more, sometimes significantly more erroidetieeted. In particular, we observe,
thatthe application of the input exact check leads to a consioleranprovement compared to
the output exact check in many cases (see e.g. comp, CA®8average numbers given in the
last line of the tables underline our observations maderbefo

The experiments also show that the resources needed torpexfoheck increase with its ac-
curacy. Especially for the output and input exact check tgroved accuracy has to be paid
by an increased memory consumption and by larger run timeseker memory consumption
and run times remain in a reasonable range. The equivalbeck aeeds at most a few seconds
in the worst case.

In a second experiment we varied our method to generatepanpplementations: the number
of gates to be included in a Black Box was changed from 10% %.4Xhe results are given in
Table 2. We can observe that the improvement in accuracyhé&miore exact checks compared
to the less exact checks is slightly larger in this scendfig. for C499the input exact check
beatsZ—simulation in 28% of the cases compared to 21% in the firsex@nt. Memory
consumption and run times stay about in the same range.

In a third experiment we varied the generation of partial lsangentations of our first experi-
ment to obtain 5 different Black Boxes instead of one. Resaié given in Table 3. Memory
consumption and run times are about in the same range codhjmatiee first two experiments
with exception of circuitC880where time and memory consumption for output and input ex-
act checks increase (about 22 minutes for the input exackfheHowever the comparison of
error detection ratios shows an interesting reséilthough the input exact check in this case
is not exact, the advantage of the input exact check compgardte other checks in this case
is even larger(compare e.g. the line giving the average values in the $ablEhis obviously
demonstrates the power of our heuristics.

Taken together, the high number of error detections foryatitsolic checks (even for simple
Z—-simulation) demonstrates the validity of the concept cdodiing partial implementations
already at a stage of the design process where a significerdrpof the design has still to be
performed.

5 Conclusions and future work

Experimental results showed that improving the accuracthefalgorithms for Black Box
Equivalence Checking indeed leads to a significant impr@rdrof the error detection capabil-
ities. We have defined a series of different algorithms wittreéasing accuracy and increasing
consumption of computational resources. This suggestsadhese algorithms as a series of
more and more exact methods to detect errors in partial imgahéations: first use, 1, X—based
simulation with only a few random patterns, then symbdliesimulation,Z;—simulation with
local check, with output exact check and finally with inpuaetxcheck.

In the future we plan to compare oBDD based implementation of the different checks to a
version using SAT-engines. Another interesting quessdmow the methods can be extended
to verify also sequential circuits containing Black Boxes.

References

[1] M. Abramovici, M.A. Breuer, and A.D. FriedmarDigital Systems Testing and Testable DesiGomputer
Science Press, 1990.

[2] S.B. Akers. Binary decision diagramkEEE Trans. on Comp27:509-516, 1978.

2Since in this case of one Black Box the input exact check istexa average df1% detected errors means,
that for the remaining 9% of the cases our circuit modificatlescribed above did not really insert an error into the
partial implementation, i.e. an implementation for thedgi8ox can be found, such that the overallimplementation
fulfills its specification.

3This is due to a peak memory consumption during quantifindti out of 5 different random selections of
Black Boxes.

[3] K.S.Brace, R.L. Rudell, and R.E. Bryant. Efficientimpientation of a BDD package. Design Automation
Conf, pages 4045, 1990.

[4] R.E.Bryant. Graph - based algorithms for Boolean fumttnanipulationlEEE Trans. on Comp35(8):677—
691, 1986.

[5] R.E. Bryant. Symbolic Boolean manipulation with ordeéte#nary decision diagram&CM, Comp. Surveys
24:293-318,1992.

[6] R.E. Bryant and Y.-A. Chen. Verification of arithmeticrfctions with binary moment diagrams. Design
Automation Conf.pages 535-541, 1995.

[7] J.R. Burch, E.M. Clarke, K.L. McMillan, D.L. Dill, and LJ. Hwang. Symbolic model checking?® states
and beyondInformation and Computatiqr98(2):142-170, 1992.

[8] E.M. Clarke, M. Fujita, and X. Zhao. Hybrid decision diags - overcoming the limitations of MTBDDs
and BMDs. Inint'l Conf. on CAD pages 159-163, 1995.

[9] O. Coudert, C. Berthet, and J.C. Madre. Verification afigential machines based on symbolic execution. In
Automatic Verification Methods for Finite State System$;8M07 pages 365-373, 1989.

[10] R. Drechsler, B. Becker, and S. Ruppertz. K*BMDs: A neatalstructure for verification. IEuropean
Design & Test Confpages 2-8, 1996.

[11] E. Goldberg, M. Prasad, and R. Brayton. Using SAT for bomational equivalence checking. Int'l
Workshop on Logic Synttpages 185-191, 2000.

[12] W. Gunther, N. Drechsler, R. Drechsler, and B. BecResrification of designs containing black boxes. In
EUROMICRQ pages 100-105, 2000.

[13] A. Jain, V. Boppana, R. Mukherjee, J. Jain, M. Fujitagl &h. Hsiao. Testing, verification, and diagnosis in
the presence of unknowns. YALSI Test Symppages 263—269, 2000.

[14] A. Kuehlmann and F. Krohm. Equivalence checking usiots@nd heaps. IDesign Automation Conf.
pages 263-268, 1997.

[15] C.Y. Lee. Representation of switching circuits by bindecision diagramsBell System Technical Jour.
38:985-999, 1959.

[16] J. Marquez-Silva and T. Glass. Combinational equivedechecking using satisfiability and recursive learn-
ing. In Design, Automation and Test in Eurqpages 145-149, 1999.

[17] J. Marquez-Silva and K. Sakallah. GRASP — a new seagirigthm for satisfiability. Innt'l Conf. on CAQ
pages 220-227, 1996.

[18] I.-H. Moon, J. Kukula, K. Ravi, and F. Somenzi. To splitto conjoin: The question in image computation.
In Design Automation Confpages 23-28, 2000.

[19] B.M.E. Moret. Decision trees and diagrams.damputing Surveysolume 14, pages 593-623, 1982.

[20] R. Rudell. Dynamic variable ordering for ordered bindecision diagrams. Iimt’l Conf. on CAD pages
42-47,1993.

[21] C. Scholl and B. Becker. Checking equiv-
alence for partial implementations. Technical report, ekti_udwigs-University, Freiburg, October 2000.
URL:http://ira.informatik.uni-freiburg.de/papers/&e2000/SB2000b.ps.gz.

[22] F. SomenziCUDD: CU Decision Diagram Package Release 2.3Jdiversity of Colorado at Boulder, 1998.

[23] P. Tafertshofer, A. Ganz, and M. Henftling. A SAT-bagagblication engine for efficient ATPG, equivalence
checking, and optimization of netlists. Int'l Conf. on CAD pages 648 — 655, 1997.

