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Abstract

We consider the problem of checking whether a partial implementation can (still) be
extended to a complete design which is equivalent to a given full specification.

Several algorithms trading off accuracy and computationalresources are presented:
Starting with a simple 0,1,X-based simulation, which allows approximate solutions, but is
not able to find all errors in the partial implementation, we consider more and more exact
methods finally covering all errors detectable in the partial implementation. The exact
algorithm reports no error if and only if the current partialimplementation conforms to
the specification, i.e. it can be extended to a full implementation which is equivalent to the
specification.

We give a series of experimental results demonstrating the effectiveness and feasibility
of the methods presented.

1 Introduction
Verification, i.e. the check whether a circuit implementation fulfills its specification, is a crucial
task in VLSI CAD. Growing interest in universities and industry has lead to new results and
significant advances concerning topics like property checking, state space traversal and combi-
national equivalence checking [7, 9, 18, 14].
For the purpose of this paper combinational equivalence checking is of particular interest. Here,
the task is to check whether the Boolean functions corresponding to the specification and the
implementation are the same. Besides functional validation by the application of test patterns,
mainly two approaches are used to perform the equivalence check: One possibility is to trans-
late implementation and specification into one Boolean formula which is satisfiable if and only
if implementation and specification realize the same Boolean function [23, 16, 11]. As an alter-
native implementation and specification can be transformedinto a canonical form such that the
equivalence check reduces to a check whether the canonical representations of implementation
and specification are the same.BDDs[4] and Word-level Decision Diagrams like *BMDs[6],
HDDs[8] or K* BMDs[10] are popular choices for such canonical forms.
In this paper we address the problem ofBlack Box Equivalence Checking, which occurs when
the specification is known, but only parts of the implementation are finished or known. (For an
example see Figures 1(a), 1(b).)Black Box Equivalence Checkingenables the use of verification
techniques in early stages of the design. Design errors can be already detected when only a par-
tial implementation is at hand – e.g. due to a distribution ofthe implementation task to several
groups of designers. Parts of the implementation, which arenot yet finished, are combined into
Black Boxes. If the implementation differs from the specificationfor all possible substitutions
of the Black Boxes, a design error is found in the current partial implementation, i.e. to detect
an error in the current partial implementation it is necessary to find an assignment of zeros and



ones to the primary inputs, which produces erroneous valuesat the outputsindependently from
the final implementation of the Black Boxes.
Another application ofBlack Box Equivalence Checkingis the abstraction from “difficult parts”
of an implementation, which would cause a large peak size in memory consumption during the
construction of a canonical form for the implementation. These “difficult parts” of the design
can be put into a Black Box and Black Box Equivalence Checkingis performed. An exact
statement about the correctness of the full implementationis not possible, but it is still possible
to find errors in the partial implementation given to the Black Box Equivalence Checker.
Black Box Equivalence Checkingcan also be used to verify assumptions concerning the location
of errors in implementations, which do not fulfill their specifications: If there is some assump-
tion on the location of errors (produced by an automatic error diagnosis tool or found by hand),
then these regions of the design are cut off and put into BlackBoxes. If Black Box Equivalence
Checking gives the information that no error can be found in the design containing Black Boxes,
we can conclude that the assumptions on the error location were correct, otherwise we know
that there must be errors also in other regions of the design.
The present paper deals with algorithms for equivalence checking of partial implementations
under the assumption that a combinational circuit is given as specification and also all imple-
mentations and Black Boxes are of combinational nature. First methods to handle this problem
have been proposed in [13, 12]. While these papers provide algorithms to find errors, it is not
clear which errors and how many of the potential errors are detected. In this paper we present a
thorough analysis of the problem leading to several algorithms to attack the Black Box Equiv-
alence Checking problem. For the time being, our algorithmsrely on symbolic simulation [5]
by usingBDDs. An implementation using SAT-engines [17] to solve the corresponding Boolean
formula seems feasible, but is not the focus of the current paper. Our algorithms need different
amounts of resources (space and time) and differ from their accurateness: They range from a
simple algorithm using symbolic simulation for an approximation of the solution to an exact
solution of the problem. Thereby the methods given in [13, 12] are classified too. Approximate
solutions are not able to find all errors in the partial implementation, but they are correct in
the sense that they do not report an error if there is still a possibility to implement the Black
Boxes leading to a correct overall implementation. However, if we solve the Black Box Equiv-
alence Checking approximatively, the information, that noerror can be found, can be due to the
approximative character of the approach and does not necessarily imply that there is an imple-
mentation of the Black Boxes leading to a correct overall implementation. E.g. when Black Box
Equivalence Checking is used to verify assumptions on the location of design errors, it can not
be guaranteed that the information, that no error can be found, implies that the error location is
confined to the Black Boxes (since this information can be duethe approximative character of
the approach). We performed several experiments, which showed that improving the accuracy
of the algorithms indeed leads to a significant improvement of the error detection capabilities
(paid with an increase of computational resources).
The paper is structured as follows: In Section 2 we give some preliminaries. Several algorithms
for the Black Box Equivalence Checking problem are presented in Section 3. In Section 4 the
different approaches are compared for numerous partial implementations of benchmark circuits.
The paper ends with some concluding remarks and directions for further research in Section 5.
For shortness of the paper no formal proofs are given. They can be found in [21].
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Figure 1: Specification and partial implementation.
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with respect to all input variables is called acompletecofactor.
Boolean functions can be represented byBDDs [15, 2, 19]. In the restricted form ofROBDDs
they even provide canonical representations for Boolean functions and they allow efficient ma-
nipulations [4]. ROBDDs can be used to check equivalence of Boolean functions by a simple
check for equality. Since we work only withROBDDs in the following we briefly call them
BDDs.
Given a circuit representation of a Boolean function, aBDD for this Boolean function can be
computed bysymbolic simulation[5]. At the beginning of the symbolic simulation each input
of the circuit is associated with a uniqueBDD variable. Then theBDD representations of the
functions computed by the gates of the circuit are computed in topological order starting with
the inputs. TheBDD for the function of a gate can be computed usingBDD operations [4, 3],
when theBDDs for the functions of all its predecessor gates are already computed.

3 Equivalence checking and partial implementations
In this section we provide several algorithms to handle the Black Box Equivalence Checking.
We start with a simple symbolic simulation with respect to the 0,1,X logic (Sec. 3.1). Then
we successively increase the exactness (and the complexity) of the algorithm leading to alocal
check(Sec. 3.2.1), anoutput exact check(Sec. 3.2.2) and aninput exact check(Sec. 3.2.3).
In particular, in Section 3.2.3 we give for the first time anexactcriterion to decide for a given
partial implementation and a specification whether the partial implementation is correct or not.
Unlike previous approaches [13, 12] we can guarantee that there is really an extension of the
partial implementation to a correct complete implementation, if the criterion of Section 3.2.3
reports no error (and of course, vice versa, there is no extension of the partial implementation
to a complete implementation, if it does report an error).
As a running example for the demonstration of our algorithmswe use the specification given in
Figure 1(a). Figure 1(b) shows a partial implementation containing two Black Boxes. Clearly,
after a suitable implementation of the two Black Boxes the final implementation fulfills its
specification.

3.1 SymbolicZ–simulation
A first algorithm for checking partial implementations is based on the usual 0,1,X simulation,
which is well-known in the area of testing [1].
To evaluate a partial implementation for some input vector anew symbolX different from 0 and
1 is introduced. The valueX means an “unknown” value due to the unknown functionality of
the Black Boxes. To simulate a partial implementation withn primary inputs for an input vector
(�

1

; : : : ; �

n

) 2 f0; 1g

n we assign the unknown valueX to all outputs of the Black Boxes. If all
values for the inputs of a gate are inf0; 1g, then the output of the gate is computed according to
the gate function as usual. If some inputs of a gate are set toX, the output is equal toX if and
only if there are two different replacements of theX values at the inputs by 0’s and 1’s, which
lead to different outputs of the gate.
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Figure 2: 0,1,X simulation for partial implementations

As an example Figure 2(a) shows the evaluation of the partialimplementation of Figure 1(b)
with respect to input vector(1; 0; 0; 0; 0; 0; 0; 0). Note that the first output of the partial imple-
mentation is1 independently from the functionality of the Black Boxes.
We can take advantage of this simulation using 0, 1 andX to detect errors in partial imple-
mentations. If the evaluation of the partial implementation results in a value 0 (1) for some
output, this means that the output value is 0 (1) independently from the functionality of the
Black Boxes. If on the other hand the specification produces 1(0) for the same input vector,
then we have found an error in the partial implementation.
Figure 2(b) shows such a situation: When we compare the partial implementation to the spec-
ification of Figure 1(a) applying input vector(1; 0; 0; 0; 0; 0; 0; 0), we see that the first output
of the (partial) implementation is 0 whereas it is 1 for the specification. Generalizing the usual
notion of a distinguishing vector for designs without BlackBoxes to designs containing Black
Boxes we can say that(1; 0; 0; 0; 0; 0; 0; 0) is adistinguishing vectorfor the specification in Fig-
ure 1(a) and the partial implementation in Figure 2(b). Of course, only vectors which produce
0 or 1 (notX) at outputs of the partial implementation can play a role as distinguishing vectors.
Since we do not want to simulate specification and implementation for all 2n input vectors one
after the other to find distinguishing vectors, we make use of“symbolic simulation”. This leads
to our first method for Black Box equivalence checking, whichis similar to [13]. In contrast to
[13] we do not use a two-bit-encoding of 0, 1 andX leading to a duplication of the signals of
the circuit, but we use an additional variableZ to model the new valueX. For an outputi of
a partial implementation our symbolic simulation computesa BDD for a functiong
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To computeBDDs for the functionsg
i

by symbolic simulation the inputs of the circuit are asso-
ciated with uniqueBDD variables as in a conventional symbolic simulation. All output signals
of Black Boxes are associated with the new variableZ. Now BDDs for the functions computed
by the gates of the circuit are built in topological order treating the Black Box outputs (asso-
ciated with variableZ) as inputs of the circuit. The gates of the circuit can be processed in a
manner similar to a conventional symbolic simulation. Since all types of gates can be expressed
using two-inputand

2

gates, two-inputor
2

gates andinv gates, we can assume w.l.o.g. that the
gates have typesand

2

, or
2

or inv. When we process anand
2

(or
2

) gate, we combine theBDDs
for the two predecessor functions by aBDD AND (OR) operation as in the conventional sym-
bolic simulation. For aninv gate we perform aNOT operation on theBDD of the predecessor
function, now followed by a
ompose operation (see e.g. [4]) which composesZ for Z (written
asgj

Z Z

for a composition ofZ for Z in g).
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Figure 3: Motivation for local check and output exact check.

It is easy to see that this procedure leads toBDD representations fulfilling property (1).
We call the procedure described above “symbolicZ-simulation”. After we have obtained func-
tionsg

i

for all outputs of the partial implementation by symbolicZ-simulation and functions
f

i

for all outputs of the specification by a conventional symbolic simulation, the check whether
there is a distinguishing vector between specification and implementation is based on the fol-
lowing lemma, whose correctness follows from the definitions and basic boolean manipulations.
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3.2 SymbolicZ
i

–simulation
A disadvantage of symbolicZ–simulation lies in the fact that not all errors, which are present
in a partial implementation, can be found by the procedure described above.
Figure 3(a) shows an example for such a situation. The partial implementation of Figure 3(a)
does not fulfill the specification of Figure 1(a), i.e. there is no implementation for the Black
Boxes which leads to a correct overall implementation. However the approach of the previous
section always computesX at the output of theexor

2

gate, since both inputs of theexor
2

gate
areX. Therefore the first primary output isX, if x

1

= 0, and 1, ifx
1

= 1. Since the first
output of the specification is 1 as well, ifx

1

= 1, no error can be detected at the first output.
Moreover it is easy to see that the partial implementation ofthe second output is correct (replace
BB

2

by anor
2

gate). So the method of the previous section cannot detect anerror in the partial
implementation.
If we have a closer look at the partial implementation, we cansee, that the first output does
not depend on the output of Black BoxBB

1

: The output of theexor
2

gate whose inputs are
connected to the output ofBB

1

is 0 independently from the output ofBB
1

. Therefore input
vector(0; 0; 0; 1; 1; 0; 0; 0) leads to output(0; 1) which is different from the output(1; 1) of the
specification.
The reason why the error could not be detected byZ–simulation lies in the fact that the values
X at the inputs of theexor

2

gate are not accurately processed: The simpleX–propagation does
not take into account that theX–information comes from the same output of the Black Box
BB

1

(resulting in value0 at the output).
To consider the origin ofX–informations it is not enough to introduce one variableZ for all
Black Box outputs. Instead of that we introducedifferent variablesZ

i

for each Black Box
output i. After the inputs of the circuit have been associated with unique BDD variables a



(conventional) symbolic simulation is performed. The result for primary outputj of the circuit
is a functiong
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3.2.1 Local check

As in the case ofZ–simulation we considercompletecofactors of implementation and spec-
ification with respect to all primary input variables1. If a complete cofactor of some output
function of the partial implementation is 0 (1), this means that the output value is 0 (1) inde-
pendently from the functionality of the Black Boxes. If for the same output function of the
specification this cofactor is 1 (0), then we have found an error in the partial implementation.
The only difference of this method compared toZ–simulation is the fact that the effect of the
unknown values at the outputs of Black Boxes is evaluated more accurately.
A check whether there is such a distinguishing vector for an outputj of partial implementation
and specification can be done according to the following lemma. Again, the correctness of the
lemma follows from definitions and basic boolean manipulations. The check according to the
lemma is called “local check”, since the check is done for each output separately.
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3.2.2 Output exact check

The local check of the previous section based onZ

i

–simulation is more exact thanZ–simulation
(see Fig. 3(a)). However implications between different outputs are not taken into account. We
obtain an even more accurate check, if we use a more “global” viewpoint.
This is illustrated by Figure 3(b). For the first output the only possibility to fulfill the specifi-
cation of Figure 1(a) is to replaceBB

1

by the functionx
4

� x

5

. However for the second output
the only possibility to fulfill the specification is to replaceBB

1

by x
4

� x

5

. This implies that the
partial implementation of Figure 3(b) is incorrect. In spite of that, the error can not be detected
by the “local check” of the previous section, since it is donefor each output separately.
To detect errors of this type we have to compute “local conditions” for each output, which
guarantee correctness for the single outputs, and then, we have to combine the local conditions
to check, if these local conditions can be fulfilled at the same time for all outputs.
The local conditions are computed based on the following considerations: To obtain a correct
implementation, for each primary outputj and each assignment(�
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not be used to obtain a correct final implementation. This leads us to a new, more accurate
check, which we call “output exact”.
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Example 3.2 Consider the partial implementation of Figure 3(b) and the specification of Fig-
ure 1(a). For input(0; 0; 0; 1; 1; 0; 0; 0), output 1 of the implementation equals output 1 of
the specification only if the Black Box output is1 for this input. This implies
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Note that our “output exact” check reports an error in exactly the same cases as the check of
[12]. However it is computed in a different way and does not need a representation of the overall
circuit as a Boolean relation.
It is also easy to see that there is no error in the partial implementation (i.e. we can replace the
Black Boxes to obtain a correct final implementation), if ourcheck reports no error andwe are
allowed to use all primary inputs as inputs of the Black Boxes. The check reports no error iff
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3.2.3 Input exact check

The output exact check is able to find all errors which are already present in the partial imple-
mentation only if we assume that all primary inputs are also inputs of the Black Boxes. But this
is not a realistic assumption. If we have fixed sets of input signals for the Black Boxes (which
may be different from all primary inputs), it is possible that the output exact check does not find
all errors.
Figure 4 shows such a case. It shows a partial implementation(for the specification of Figure
1(a)) with one Black BoxBB
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. If the Black Box is replaced byx
8

� (x

6
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7

) implementation
and specification are equivalent. However the inputs of the Black Box are onlyx
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of BB

1

is 1.

� Output 2 of the specification is 1 forx
4

= x

5

= 0, x
6

= x

7

= 1 andx
8

= 1. There-
foreBB

1

has to be 1 under this input, since output 2 of the implementation would be 0
otherwise.

We can conclude that there is no correct implementation forBB

1

which does not depend on
inputx

8

and so the partial implementation is incorrect.
Now we have to define a check which also reflects this problem. For this check we use (among
others) the condition


ond =

m

^

j=1


ond

j

of the section before.
ond can be interpreted as the characteristic function of a Boolean relation
between assignments(�

1

; : : : ; �

n

) to the primary input variables and assignments(Æ

1

; : : : ; Æ

l

) to
the outputs of the Black Boxes:


ond(�
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1
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if and only if (Æ
1

; : : : ; Æ

l

) is a “legal assignment” to the outputs of the Black Boxes for primary
input vector(�

1

; : : : ; �

n

), i.e. if and only if all output values of the partial implementation with
(�

1

; : : : ; �

n

) assigned to the primary inputs and(Æ
1

; : : : ; Æ

l

) assigned to the Black Box outputs
are identical to the corresponding output values of the specification for assignment(�

1

; : : : ; �

n

)

to the primary inputs.
Now we have to take into account that the inputs of Black Boxescan be internal signals of the
partial implementation and not all primary inputs are connected to the Black Box inputs. In the
following we assume that we haveb Black BoxesBB

1

toBB

b

which can have several outputs
and inputs. The input signals of Black BoxBB

j

are connected to variablesi
j;1

; : : : ; i

j;l

j

and the
output signals are connected to variableso

j;1

; : : : ; o

j;p

j

(
S
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; : : : ; o
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g = fZ
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g).
To simplify the notations we abbreviatei

j;1

; : : : ; i

j;l

j

by I

j

, o
j;1

; : : : ; o

j;p

j

by O

j

and the pri-
mary input variablesx

1

; : : : ; x

n

by X. Moreover8I
j

means8i
j;1

: : :8i

j;l

j

and 8O
j

means
8o
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: : :8o

j;p

j

(accordingly for9).



We assume that the Black BoxesBB
1

to BB

b

are topologically ordered, i.e.BB
1

is the first
Black Box in topological order,BB

b

the last Black Box. Consider the Boolean functions
which compute the assignments of the Black Box inputs. For Black BoxBB

j

there arel
j

such functionshj

1

; : : : ; h

j

l

j

. Because of the topological order of the Black Boxes,h

j

1

; : : : ; h

j

l

j

can depend (at most) on primary input variablesX and the output variablesO
1
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j�1

of
BB

1

; : : : ; BB

j�1

. The characteristic function of the Boolean relation forh
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Based on
ond(X;O

1

; : : : ; O

b

), which is a Boolean relation between primary input assignments
and output assignments of Black Boxes, we compute the characteristic function of a Boolean
relation 
ond0(I

1

; : : : ; I

b

; O

1

; : : : ; O

b

) between input assignments of Black Boxes and output
assignments of Black Boxes.
ond0 is defined as
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; !
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) to the Black Box inputs and outputs
iff for all assignments� to the primary inputs

� � and (�

1

; : : : ; �

b

; !

1

; : : : ; !
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) lead to a signal assignment, which is not consistent with
the circuit of the partial implementation (this is checked by the partH
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(X; I
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) + : : : +
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; : : : ; O
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) of the formula above)
or

� (!

1

; : : : ; !
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) is a “legal output” of the Black Boxes under input�, i.e. � and(!
1

; : : : ; !

b

)

result in correct values at the primary outputs of the partial implementation
(this is checked by the part
ond(X;O

1

; : : : ; O

b

) of the formula above).

I.e. for 
ond0(�
1

; : : : ; �

b

; !

1

; : : : ; !

b

) to be 1,(!
1

; : : : ; !

b

) has to be a “legal output” of the Black
Boxes under input�, whenever� and(�

1

; : : : ; �

b

; !

1

; : : : ; !

b

) lead to a signal assignment, which
is consistent with the circuit of the partial implementation.
It can be shown that there is a replacement of the Black BoxesBB

1

; : : : ; BB

b

by totally speci-
fied Boolean functions with input variablesI

1

; : : : ; I

b

, respectively, leading to a correct overall
implementation if and only if there is a appropriate decomposition of 
ond0 into b Boolean
relations:

Theorem 3.1 (input exact check)Let f
1

; : : : ; f

m

be Boolean functions with input variables
x

1

; : : : ; x

n

, which is used as a specification for a partial implementation with input variables
x

1

; : : : ; x

n

and b Black BoxesBB
1

; : : : ; BB

b

. The input variables ofBB
j

are I

j

, the output
variablesO

j

, the characteristic function
ond0(I
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; O
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) is defined as shown
above. Then there is a replacement ofBB
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with input variablesI
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, respectively, leading to a correct overall implementation if and
only if 
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circuit in out #nodes detected errors #nodes implementation peak during check run time
spec. r:p: Z lo
: oe ie Z lo
:, oe ie Z lo
: oe ie r:p: Z lo
: oe ie

alu4 14 8 389 90%95%95%96%96% 458 455 490 86 88 96 159 1.170.060.06 0.06 0.06
apex7 49 37 314 92%97%97%98%98% 256 258 263 38 41 132 132 0.410.080.08 0.08 0.08
C17 5 2 8 84%88%88%88%96% 6 6 8 5 6 6 7 0.020.010.01 0.01 0.01
C432 36 7 1211 50%62%65%68%80% 796 3705 3725 123 257 5779 38411 3.220.131.77 0.42 0.99
C499 41 32 25866 26%59%59%69%80% 4377 12700 12672 487 496 28562 39142 6.294.465.54 7.19 7.76
C880 60 26 4870 78%87%91%92%92% 2956 5600 5553 247 658105919116561 3.840.751.6237.9449.16
comp 32 3 137 27%63%65%67%90% 82 90 111 39 41 105 124 1.570.040.04 0.04 0.04
term1 34 10 81 92%95%95%95%95% 97 97 108 31 32 34 69 1.440.070.07 0.07 0.07
average 63%81%82%84%91%

Table 1: 10% of the gates included in one Black Box

The proof of Theorem 3.1 is technically complicated and can be found in [21].
Theorem 3.1 gives us a necessary and sufficient condition forthe correctness of the partial
implementation.
However, we can show using a non–trivial reduction from 3SATthat for a numberb � 2 of
Black Boxes the check of Theorem 3.1 isNP -complete, even if the characteristic function for

ond

0 in Theorem 3.1 is given as a function table, which is already exponential in the number
of inputs and outputs of the Black Boxes. For this reason we use for practical application a
modified check which is

� exact forb = 1 (one Black Box) and

� an approximation forb � 2 (more than one Black Box).

Our new check, which reflects that the inputs of the Black Boxes are not necessarily equal to all
primary input signals, reportsno error, if

8I

1

9O

1

8I

2

9O

2

: : :8I

b

9O

b


ond

0

= 1 (4)

The following theorem holds

Theorem 3.2 The check of equation (4) is exact (in the sense that in finds all errors in the par-
tial implementation), ifb = 1, i.e. if there is only one Black Box in the partial implementation.

Proof: The proof follows directly from the fact, that forb = 1 the checks of equation (4) and
of Theorem 3.1 are the same, if we choose�

i

:= 
ond

0 (the truth of part (3) is then trivial).2

In the general case, when more than one Black Box is present, the check of equation 4 is not
exact, i.e. it is not equivalent to the check of Theorem 3.1, but we can formally prove that it is at
least as good as our best check so far (see Section 3.2.2). In Section 4 we present experiments
to demonstrate that it isreally betteralso for examples with several Black Boxes.

4 Experimental results
To evaluate the different equivalence checks for partial implementations we implemented the
described procedures usingCUDD 2.3.0 [22] as the underlyingBDD package. Dynamic re-
ordering [20] was activated during all experiments. The experiments were performed on a
PentiumIII PC with 550 MHz, 1 GB memory, running Linux 6.3.
For our experiments we generated partial implementations from benchmark circuits: For each
benchmark circuit a certain fraction of the gates was included in Black Boxes. In a first experi-
ment we included 10% of the gates in one Black Box (with several outputs). All reported results
are an average on 5 different random selections of Black Boxes.
Then we inserted errors into the partial implementations: We randomly selected a gate, which
did not belong to a Black Box, and inserted an error. The errortype was also selected randomly
between several choices: We added/removed an inverter for an input or output signal of the
gate, changed the type of the gate (and

2

to or

2

or or
2

to and

2

) or removed an input line from



circuit in out #nodes detected errors #nodes implementation peak during check run time
spec. r:p: Z lo
: oe ie Z lo
:, oe ie Z lo
: oe ie r:p: Z lo
: oe ie

alu4 14 8 389 75%81%81%84%90% 393 68005 52619 71 84 821289 800302 2.260.04462.34341.04129.35
apex7 49 37 314 92%97%97%98%98% 284 282 287 38 42 128 127 0.410.06 0.06 0.06 0.06
C17 5 2 8 59%88%88%88%98% 6 6 8 4 6 8 8 0.070.01 0.01 0.01 0.01
C432 36 7 1211 47%60%65%70%80% 579 7186 7034 84 390 12094 603833 3.030.40 3.67 0.94 29.27
C499 41 32 25866 13%38%40%62%66% 3125 14495 14530 298 330 395521224345 6.392.99 3.61 4.92129.98
C880 60 26 4870 78%87%91%92%92% 2941 5557 5527 246 661108383 121482 3.840.47 0.95 25.14 32.08
comp 32 3 137 29%64%66%68%88% 79 91 109 36 38 95 135 1.510.03 0.03 0.03 0.04
term1 34 10 81 92%96%96%96%96% 99 102 106 30 32 34 44 1.390.04 0.05 0.05 0.05
average 61%76%78%82%89%

Table 2: 40% of the gates included in one Black Box
circuit in out #nodes detected errors #nodes implementation peak during check run time

spec. r:p: Z lo
: oe ie Z lo
:, oe ie Z lo
: oe ie r:p: Z lo
: oe ie

alu4 14 8 389 50%92%92%94%94% 346 372 548 83 85 103 419 4.930.080.08 0.08 0.10
apex7 49 37 314 88%96%96%98%98% 235 232 249 28 37 220 720 0.530.100.09 0.11 0.12
C17 5 2 8 84%88%88%88%96% 6 6 7 5 6 6 7 0.030.020.02 0.02 0.02
C432 36 7 1211 34%54%66%72%87% 417 5675 6065 104 463 6577 28471 4.470.181.39 0.61 1.40
C499 41 32 25866 20%44%46%58%75% 1858 8443 9246 199 207 190168 534687 6.753.234.40 41.82 68.52
C880 60 26 4870 61%75%80%82%88% 1276 3851 4055 207 44412498991521876 6.161.221.101140.111369.16
comp 32 3 137 10%43%54%57%83% 46 89 125 29 35 170 209 2.100.040.04 0.04 0.05
term1 34 10 81 74%87%88%88%92% 139 144 184 33 43 241 291037 2.760.040.15 0.15 8.48
average 53%72%76%80%89%

Table 3: 10% of the gates included in five Black Boxes

an and or or gate. Then we applied our check to detect errors in the partial implementation.
Note that an error is reported only if there is no implementation for the Black Boxes such that
the resulting circuit fulfills its specification. (The original benchmark circuit is used as the
specification.) Each experiment was repeated for 100 error insertions.
In Table 1 we give the results for the first experiment, when 10% of the gates were included in
one Black Box. In column 1 the name of the benchmark is given, in columns 2 and 3 the number
of inputs and outputs of the benchmark are given. Column 4 shows the number ofBDD nodes
needed to represent the specifying benchmark circuit. In columns 5–9 the error detection ratio
for 100 error insertions (per black box selection) using different equivalence checks is reported.
For comparison Column 5 (“r:p:”) shows the result of a0; 1; X-based non symbolic simulation
with 5000 random patterns. Column 6 (“Z”) shows the error detection ratio for symbolicZ–
simulation, column 7 (“lo
:”) for symbolic Z

i

–simulation with local equivalence check (see
Section 3.2.1), column 8 (“oe”) for symbolicZ

i

–simulation with the “output exact” check of
Section 3.2.2 and column 9 (“ie”) for symbolicZ

i

–simulation with the “input exact” check of
Section 3.2.3. Note that in this experiment the check of Section 3.2.3 is exact, since there is only
one Black Box; i.e., in all cases, when this check does not report any error, there really exists an
implementation, which can compensate the error insertion.The following columns indicate the
resources needed to achieve the results. Columns 10–12 givethe numbers ofBDD nodes which
are needed to represent the implementation. Columns 13–16 show the maximum number of
additionalBDD nodes, which are needed the perform the four different checks which are based
on symbolic simulation. And finally, columns 17–21 show the run times in CPU seconds for
the random pattern simulation and the four symbolic checks,respectively.
Note that the error detection ratios for symbolicZ–simulation are equal to the error detection
ratios of approach [13]. Although our implementation differs (usingZ–simulation instead of
signal duplication and conventional symbolic simulation), errors are reported in the same cases.
Similarly, the error detection ratios for the output exact check (column “oe”) are the same as in
[12], although the implementation is different (our implementation does not need a representa-
tion of the overall circuit as a Boolean relation, e.g.).
As a first result we can notice thatthe0; 1; X-based simulation with 5000 random patterns can
not compete with the symbolic methods. The detection ratios are considerably smaller than for
symbolicZ–simulation (see columns 5 and 6) while the run times are larger (columns 17 and
18). For the other methods we can really observe animproved error detection accuracy from
method to method(columns 6–9): With the exception ofterm1, which obviously is easy for
Black Box Equivalence Checking, all other examples profit from a more sophisticated check in



the sense that more, sometimes significantly more errors aredetected. In particular, we observe,
that the application of the input exact check leads to a considerable improvement compared to
the output exact check in many cases (see e.g. comp, C499). The average numbers given in the
last line of the tables underline our observations made before2.
The experiments also show that the resources needed to perform a check increase with its ac-
curacy. Especially for the output and input exact check the improved accuracy has to be paid
by an increased memory consumption and by larger run times. However memory consumption
and run times remain in a reasonable range. The equivalence check needs at most a few seconds
in the worst case.
In a second experiment we varied our method to generate partial implementations: the number
of gates to be included in a Black Box was changed from 10% to 40%. The results are given in
Table 2. We can observe that the improvement in accuracy for the more exact checks compared
to the less exact checks is slightly larger in this scenario.E.g. forC499the input exact check
beatsZ–simulation in 28% of the cases compared to 21% in the first experiment. Memory
consumption and run times stay about in the same range.
In a third experiment we varied the generation of partial implementations of our first experi-
ment to obtain 5 different Black Boxes instead of one. Results are given in Table 3. Memory
consumption and run times are about in the same range compared to the first two experiments
with exception of circuitC880where time and memory consumption for output and input ex-
act checks increase (about 22 minutes for the input exact check)3. However the comparison of
error detection ratios shows an interesting result:Although the input exact check in this case
is not exact, the advantage of the input exact check comparedto the other checks in this case
is even larger(compare e.g. the line giving the average values in the tables). This obviously
demonstrates the power of our heuristics.
Taken together, the high number of error detections for all symbolic checks (even for simple
Z–simulation) demonstrates the validity of the concept of checking partial implementations
already at a stage of the design process where a significant portion of the design has still to be
performed.

5 Conclusions and future work
Experimental results showed that improving the accuracy ofthe algorithms for Black Box
Equivalence Checking indeed leads to a significant improvement of the error detection capabil-
ities. We have defined a series of different algorithms with increasing accuracy and increasing
consumption of computational resources. This suggests to use these algorithms as a series of
more and more exact methods to detect errors in partial implementations: first use0; 1; X–based
simulation with only a few random patterns, then symbolicZ–simulation,Z

i

–simulation with
local check, with output exact check and finally with input exact check.
In the future we plan to compare ourBDD based implementation of the different checks to a
version using SAT–engines. Another interesting question is how the methods can be extended
to verify also sequential circuits containing Black Boxes.

References
[1] M. Abramovici, M.A. Breuer, and A.D. Friedman.Digital Systems Testing and Testable Design. Computer

Science Press, 1990.

[2] S.B. Akers. Binary decision diagrams.IEEE Trans. on Comp., 27:509–516, 1978.

2Since in this case of one Black Box the input exact check is exact, an average of91% detected errors means,
that for the remaining 9% of the cases our circuit modification described above did not really insert an error into the
partial implementation, i.e. an implementation for the Black Box can be found, such that the overall implementation
fulfills its specification.

3This is due to a peak memory consumption during quantification in 3 out of 5 different random selections of
Black Boxes.



[3] K.S. Brace, R.L. Rudell, and R.E. Bryant. Efficient implementation of a BDD package. InDesign Automation
Conf., pages 40–45, 1990.

[4] R.E. Bryant. Graph - based algorithms for Boolean function manipulation.IEEE Trans. on Comp., 35(8):677–
691, 1986.

[5] R.E. Bryant. Symbolic Boolean manipulation with ordered binary decision diagrams.ACM, Comp. Surveys,
24:293–318, 1992.

[6] R.E. Bryant and Y.-A. Chen. Verification of arithmetic functions with binary moment diagrams. InDesign
Automation Conf., pages 535–541, 1995.

[7] J.R. Burch, E.M. Clarke, K.L. McMillan, D.L. Dill, and L.J. Hwang. Symbolic model checking:1020 states
and beyond.Information and Computation, 98(2):142–170, 1992.

[8] E.M. Clarke, M. Fujita, and X. Zhao. Hybrid decision diagrams - overcoming the limitations of MTBDDs
and BMDs. InInt’l Conf. on CAD, pages 159–163, 1995.

[9] O. Coudert, C. Berthet, and J.C. Madre. Verification of sequential machines based on symbolic execution. In
Automatic Verification Methods for Finite State Systems, LNCS 407, pages 365–373, 1989.

[10] R. Drechsler, B. Becker, and S. Ruppertz. K*BMDs: A new data structure for verification. InEuropean
Design & Test Conf., pages 2–8, 1996.

[11] E. Goldberg, M. Prasad, and R. Brayton. Using SAT for combinational equivalence checking. InInt’l
Workshop on Logic Synth., pages 185–191, 2000.

[12] W. Günther, N. Drechsler, R. Drechsler, and B. Becker.Verification of designs containing black boxes. In
EUROMICRO, pages 100–105, 2000.

[13] A. Jain, V. Boppana, R. Mukherjee, J. Jain, M. Fujita, and M. Hsiao. Testing, verification, and diagnosis in
the presence of unknowns. InVLSI Test Symp., pages 263–269, 2000.

[14] A. Kuehlmann and F. Krohm. Equivalence checking using cuts and heaps. InDesign Automation Conf.,
pages 263–268, 1997.

[15] C.Y. Lee. Representation of switching circuits by binary decision diagrams.Bell System Technical Jour.,
38:985–999, 1959.

[16] J. Marquez-Silva and T. Glass. Combinational equivalence checking using satisfiability and recursive learn-
ing. In Design, Automation and Test in Europe, pages 145–149, 1999.

[17] J. Marquez-Silva and K. Sakallah. GRASP – a new search algorithm for satisfiability. InInt’l Conf. on CAD,
pages 220–227, 1996.

[18] I.-H. Moon, J. Kukula, K. Ravi, and F. Somenzi. To split or to conjoin: The question in image computation.
In Design Automation Conf., pages 23–28, 2000.

[19] B.M.E. Moret. Decision trees and diagrams. InComputing Surveys, volume 14, pages 593–623, 1982.

[20] R. Rudell. Dynamic variable ordering for ordered binary decision diagrams. InInt’l Conf. on CAD, pages
42–47, 1993.

[21] C. Scholl and B. Becker. Checking equiv-
alence for partial implementations. Technical report, Albert-Ludwigs-University, Freiburg, October 2000.
URL:http://ira.informatik.uni-freiburg.de/papers/Year 2000/SB2000b.ps.gz.

[22] F. Somenzi.CUDD: CU Decision Diagram Package Release 2.3.0. University of Colorado at Boulder, 1998.

[23] P. Tafertshofer, A. Ganz, and M. Henftling. A SAT-basedimplication engine for efficient ATPG, equivalence
checking, and optimization of netlists. InInt’l Conf. on CAD, pages 648 – 655, 1997.


