Preprint from Proceedings of the Asia and South Pacific Design Automation Conference,

Makuhari, Japan, January 2001

The Multiple Variable Order Problem for Binary Decision Diagrams:
Theory and Practical Application

Christoph Scholl

Bernd Becker

Andreas Brogle

Institute of Computer Science
Albert—Ludwigs—University

D 79110 Freiburg im

Breisgau, Germany

email: <name>@informatik.uni-freiburg.de

Abstract

Reduced Ordered Binary Decision DiagramgogDDs) gained
widespread use in logic design verification, test genematfault
simulation, and logic synthesis [17, 7]. Since the size ok@BDD
heavily depends on the variable order used, there is a straagl

to find variable orders that minimize the number of nodes in an
ROBDD. In certain applications we have to cope withBDDs with
different variable orders, whereas further manipulatiafsthese
ROBDDS require common variable orders. In this paper we give
a theoretical background for this “Multiple Variable Orderob-
lem”. Moreover, we solve the problem to transforoBDDs with
different variable orders into a good common variable ordsing
dynamic variable ordering techniques.

1 Introduction

Binary Decision Diagramss(Ds) as a data structure for represen-
tation of Boolean functions were first introduced by Lee [a6H
further popularized by Akers [1] and Moret [19]. In the réstd
form of ROBDDs they gained widespread use, becarsBDDs are

a canonical representation and allow efficient manipuhatif6].
Some fields of application are logic design verificationt tgn-
eration, fault simulation, and logic synthesis [17, 7]. Mo&the
algorithms usinqRoBDDs have run time polynomial in the size of
the ROBDDs. The sizes themselves depend on the variable order
used. Thus, there is a need to find a variable order that ngesni
the number of nodes in ewDBDD.

The existing heuristic methods for finding good variableeosd
can be classified into two categories: initial heuristicsohtderive
an order by inspection of a logic circuit [17, 13, 14, 12] and d
namic reordering heuristics which try to improve on a giveteo
[15, 21, 11, 3, 10]. Sifting introduced by Rudell [21] has egesl
so far as the most successful algorithm for dynamic reandeof
variables. This algorithm is based on finding the local optim
position of a variable, assuming all other variables renfiied.
The position of a variable in the order is determined by mgtre
variable to all possible positions while keeping the othamiables
fixed.

In this paper we deal with the fact that certain applicatiosmge
to cope withROBDDs represented with different variable orders.
Then we have to solve the problem to transfatosDDs with dif-
ferent variable orders into a common variable order. Thidjem
is calledmultiple variable ordemproblem in [9].

One application of this type is reachability analysis and fo
mal verification using partitionedoBsDDs [20]: ROBDDS are par-
titioned, i.e. decomposed into sBEBDDS. In this way the ap-
plication can deal with eackoBDD separately and optimize their

sizes independently. For image computation however Baabga
erations foroBDDs represented with different variable orders have
to be performed. Thus, at first they are transformed into dmees
variable order.

Moreover, it has been suggested [8] tRatBDDs are used to
communicate between different synthesis and verificatamist
ROBDDs are dumped to files by one tool and undumped by other
tools. If theroBDDs originate from different tools, it is clear that
they can have different variable orders.

Another application for the multiple variable order prahlec-
curs in connection with functional simulation [2, 18, 23]ngsbi-
nary decision diagrams. In these approackesDDs for circuits
are computed and then used for compiler-driven simulatida.
control theROBDD sizes intermediate variables are introduced as
cut points based on size limits for tlRBDD sizes. The result of
this process is a partition of the circuit into clusters. Ppeed up
cycle based functional simulation for the output functiofishese
clusters (primary outputs or cut points) tResbDDs of the corre-
sponding characteristic functionsare computedx((z1, - .., in,
01,...,0m) = \iL,(0i = fi(i1,...,in)), wheref; are the out-
put functions an@; are corresponding output variables). Then the
characteristic functions of the clusters are evaluatedpolbgical
order.

In the partitioning approach of [23] variable reorderingiged
to minimize the sizes of the characteristic functions satedy. How-
ever, to minimize the evaluation time the number of clustexs
to be minimized, i.e. it is checked whether pairs of clustzas
be merged into one. To do so, tR®BDDs for the characteristic
functions are transformed into the same variable orderstlaem
an AND operation is applied to theoBDDs. The merging is ac-
cepted, when the result is smaller than a certain size lifimtthis
special application the fact, that it is not possible to $farm the
ROBDDs for the characteristic functions into a common variable or
der within a certain node limit for theoBDDs, can be accepted,
since the algorithm still works although the quality of thesult
might decrease.) For reasons of run time efficiency it canemak
sense to decide early, if the transformation into a commoiabie
order works or should be aborted.

In [9] the problem to transform tw&oOBDDS into a common
variable order is solved by inspection of the two variabldeos,
computation of an intermediate variable order based orethes
variable orders and a transformation of the tRoBDDs into the
intermediate variable order by level exchanges. In contoaghis
approach we use dynamic reordering techniques [21] toftrems
the twoROBDDS into a common variable order and thereby dynam-
ically adapt the ordering to the resulting newBDDs. Experimen-
tal results demonstrate that in our approach time can bedraft
for quality of the result by allowing reordering for adaptiof the
ordering more frequently. Compared to [9], we significarithy

prove the size of the finatoBDDs within a reasonable amount of
runtime.

The paper is structured as follows: In Section 2 we give & brie
review ofBDDS. In Section 3 we give a theoretical background and
we present our heuristic to transform tR@BDDS into a common
variable order, in Section 4 we show some experimental teantl
Section 5 concludes the paper.

2 Preliminaries

BDDS are representations of Boolean functions. In the resttict
form of ROBDDs they even provide canonical representations. As
defined in [6],ROBDDs are ordered, i.e. on each path from their
root to a terminal node each input variable occurs only omzk a
on each path the input variables occur in the same order. elf th
input variables arer.,...,z,, this variable order is given by a
mapping~w : {1,...,n} = {z1,...,z,}. Since we work only
with ROBDDs in the following we briefly call thersDDs.

Given a variable order for the input variables of functiotf
there is a uniqueDD using variable ordetr, which is denoted by
BDD(f) inthis paper. It is well known that the size oBaD is
largely influenced by the choice of the variable ordering [6]

Dynamic reordering [21] allowsDDs to adapt to the changing
functions as computation proceeds. Wisem sizes grow too large
during the computation of a Boolean operation, the comjmutas
aborted, allBDDs computed so far are minimized by a transfor-
mation to another order using a dynamic reordering heasiditke
sifting and the operation is tried again. The operation isrisal,
when the node number would exceed some reordering limit- Usu
ally, the reordering limit is initialized to some smallember to re-
order alsaBDDs at the beginning of a series BbD computations,
which are typically smaller, and is increased step by steipgihe
computation until it reaches an absolute node limit [24].

3 The Multiple Variable Order Problem

Suppose we have two Boolean functighandg, which are repre-
sented byspbs BD D, (f) and BDDr,(g), respectively. Then
the solution of theMultiple Variable Orderproblem (MVO) for
BDDx,(f) andBDDr,(g) means the following:

Find a variable ordetty,,, such that the sizes @ D Dx, , (f)
andBD D, (g) assharedspp [5] are minimized.

3.1 Theoretical background

From the NP completeness of the variable ordering problem fo
single BDDs [25, 4] we can easily conclude that the task to solve
MVO exactly is a hard problem.

Theorem 1 MVO is an NP complete problem.

Proof: To transform an arbitrary instance of the variable ordering
problem for singlesDDs into a corresponding instance of MVO in
polynomial time, we simply add thebp for the constant 1 func-
tion, which does not depend on the variable order, to tharaig
(single)BDD. A solution of MVO for this problem also solves the
original problem. a

Furthermore it can be shown that there are pairs of Boolean
functions, where a blow up of thebD sizes compared to treDD
sizes of the singleDbDs can not be avoided, since it is not possible
to find an efficienttommonvariable order for the tw@DDs. The
following theorem gives an example for such a case.

Theorem2 Let f = \/?_, i1 Tij andg = ?:1 N zij.
There are variable orders; and m; such thatBDD-,(f) and

BDD-,(g) have (optimal) sizea® + 2, respectively, but for all
variable orderst BDD.(f) or BDD.(g) has a size of at least

2%,

l.e. f andg in Theorem 2 can be represented efficiently, when
different orders forf and g are allowed, but there is no common
variable order, which leads to efficient representatiomsbfih f
andg.

The lower bound for the size @D D (f) or BDDx(g) can
be proved using communication complexity arguments; tlefor
can be found in Appendix A.

If we find such a case, where a transformation into a common
variable order will definitely lead to a blow-up of tlEpD sizes,
the transformation should be aborted as early as possilteuti
wasting space and time.

3.2 Solution of MVO

Here we present a heuristic to solve MVO approximately.

The same problem was already studied by Cabodi et al. in [9].
They solve the problem by computation of an intermediaté var
able orderrs,, based onry andm,. Then a transformation of
BDDx,(f) and BDD=x(g) to 74 by level exchanges is per-
formed. In contrast to this approach we use dynamic reargeri
techniques [21] to transform the tvBmDs into a common variable
ordermy 4 which thereby is dynamically adapted to the currently
involvedBDDS.

First of all, we choose one of the tvemDs to start with (e.g. the
larger one). W.l.o.g. we start witB D D, (f). Now we transform
cofactorsof g step by step to the order of tle®D for f.

More precisely, we traversBD D, (g) in a depth first man-
ner and transform cofactors @f which correspond to nodes in
BDD,(g) into the order of thesbp for f. Suppose the cur-

rent order of thesDD BDD,s14 (f) for f is 7¢¢ and suppose we

have reached nodeof BDD;, , (g) labeled by variable:;. Since
we traverseBD D, (g) depth first, we have already computed for
low—son low(v) and high—-sonhigh(v) BDDﬂ;ld(glow(U)) and

BDDN?M(ghigh(,,)), which have the same variable order as
BDD,.a(f). Now we simply compute in variable order;'?
the if-then—else operatiatie(z;, BDD,,},M (Grow()), BDD"?M (
Ghigh(v)))- Note that variable:; will probably have another posi-

tion in variable ordem;’cld than in orderry. The result is a repre-
sentation for the functiop, represented at nodeof BD D, (g),
now in same variable order as thep for f.

During the computation of the newpp for g, by ite(z;,
BDDW?M(glow(v)),BDDW},M(gh,-gh(U))), we usedynamic reor-

dering If the reordering limitis exceeded during this computatio
dynamic reordering (sifting) is applied to simultaneousiynimize
the BDDs for f and allBDDs computed in variable order?* so
far. If dynamic reordering does not give up, after the calbbpéra-
tion ite we havesDDs for f, g, and other functions for nodes gf
visited so far in a (possibly new) variable ordef**.

In this way we compute step by step variable orders, which are
good both forf and cofactors of and finally we have a variable
order, which is also good far. The adaption of the variable orders
for theBDDS for f andg proceeds step by step during the compu-
tation of thesDD for g based on cofactors gf

Figure 1 illustrates the overall algorithm. For illustaatia set
f-order-BDDsis used.f-order-BDDscontains allBDDs which cur-
rently have the order of, i.e. it contains a&DD for f andBDDS
for cofactors ofg which were already transformed into the order of

BDD function transforn(BoD BD Dy, (g))
Il Letw be the root ofBD D, (g), v labeled byz;
BDD,r} (G1ow(v)) = transform(low(v));

BDD,r}, (9nigh(v)) = transform(high(v));

Il (BD D ,(g) is never changed)

BDDW}” (g) = ite(miv BDDW}’ (glow(v))v BDDW}’ (ghigh(v)))
10 f-order-BDDs:= f-order-BDDsU {BDDW}H (9)}

11 // The order ofspDs inf-order-BDDsis nOWTr;(”

12 return BDDW}H (9);

© 0o N O U A WN PP

I The order of--order-BDDshas been changed iﬁf duringtransformandBDD,,} (910w (v)) € f-order-BDDs

/I The order off-order-BDDshas been changed #d duringtransformandBDD,,y (9nigh(v)) € f-order-BDDs
/I ite—operation is started with ordet/, but dynamic reordering durinite can change order}’ of BDDs inf-order-BDDsinto 7r;(”

Figure 1: Pseudo code ftnansform

f. The recursive proceduteansformis called at the top level by
transforn(BD D=, (g)) with f-order-BDDs= {BD D, (f)}.

There still remains one point: In many applications dynamic
reordering produces good results, but tends to slow dowrpaem
tation times by frequent reorderings.

For this reason we restrict dynamic reordering here. We-ntr
duce an upper limit for the number of reordering steps. Weatou
the number of reorderings during the adaption of the vaziaiot
ders forf andg and if this limit is reached, dynamic reordering is
turned off. Now an operation fails, when it exceeds the altsol
node limit without reordering. This decision is motivateg dur
clustering approach for functional simulation [23]: We du want
to spend too much time on the computation of a common variable
order for two clusters, which is likely to fail in the end or poo-
duce hugeDDs. Moreover, itis clear, that the introduction of such
a limit for the number of reorderings defines a trade-off feetv
run time and the quality of the result in this application.

Finally, we have to adjust the initial reordering limit, ifewre-
strict the number of reorderings. If we have chosen only alsma
number of reorderings, we do not want to waste the limitediremm
of reordering steps by too early reorderings, which areqoeréd
for smallBDDs and which are not yet absolutely necessary. There-
fore we choose the higher initial reordering limit the sreathe
allowed number of reorderings is. The initial reorderingitiis
chosen based on the allowed number of reorderingsreorder
and on the sizes of thepDs for which a common variable or-

has to be solved. (Note that tBeDs represent not the output func-
tions, but the characteristic functions for the cluster€9lumns
dyn<n> show the results for our approach withas the maxi-
mum number of reorderings. dynO, e.g., is the algorithm, whe
absolutely no reordering is allowed and the secBnd is simply
transformed to the order of the fiebD. dynco is the algorithm,
when the number of reorderings is not restricted at dlhe results
are compared to the “greedy gradual” heuristic and the ‘tyres
once” heuristic from [9] (columns gradual and atonce). Fache
example there are four lines in the table. The first line gites
size of the result as a share®D. The second line gives the run
time for the algorithm (in format hours:minutes:secontt, third
line gives theBDD sizes after a final sifting step (if the algorithm
does not fail due to “space out” or “time out”) and the fouritiel
gives the total run time including sifting.

The “greedy at once” heuristic gives the smallest run tinifes (
successful), but has a tendency to exceed the node limitddfas
finish, theBDD sizes are relatively large. In contrast, the “greedy
gradual” heuristic is slow (there are many time outs). A&en in
the cases, when it does finipD sizes are relatively large com-
pared to our dyrn> approach even for smaller valuesraf The
dyn<n> approach is able to provide a good trade—off between run
time and quality. While for smaller values afthe run times are
smaller, there are still cases, when the computation daoefinigh.
Forn equal to seven or larger all problems could be solved with a
reasonable amount of runtime.

To confirm this analysis we summarize the results at the tyotto

der has to be computed. For our practical experiments we use©f Table 1. We compare dyn3 and dyn7 to the “greedy gradual”

(size(BDDx;(g))
maxreorder-+1

size(BDDx,(f)) + as initial reordering limit.

4 Experimental Results

To evaluate our heuristic for the MVO problem, we integrated
heuristic in the CUDD package [24]. In a first experiment we us
data originating from our approach for functional simwat{23]
for larger circuits. We selected the last tries for clusterging for
different circuits (successful or not in our original alglom), since
at the end of the algorithm clusters are getting larger aacketbre
harder problems must be solved.

The experiments were performed on a SPARC Ultra 2 (256MB
memory). The CPU time was limited to 2 hours and the node limit
for theBDD package was 2000000.

We tried several choices for the maximum number of reorder-
ings during the computation of common variable orders. Tge-a
rithm of Section 3 was started with the larger one of the Bams.
The results are summarized in Table 1. In the second column th
sizes of the tw®DDs (number of nodes) are given for which MVO

heuristic and the “greedy at once” heuristic. In lines 1-4give

the sums of the finaBDD sizes, the run time®DD sizes after sift-
ing and total run times including sifting for all examplest Which

both compared algorithms do not fail.

However, since both the “greedy gradual” heuristic and the
“greedy at once” heuristic fail for 8 out of 14 examples, waser
dyna3 fails only for 3 examples and dyn7 does not fail for angrex
ple, we conclude that — in contrast to our gym> heuristic — both
the “greedy gradual” heuristic and the “greedy at once” tstiar
seem not to be suitable for this set of examples.

For a second experiment we have chosen pairs of benchmark
circuits, for whichBbDs were constructed and optimized sepa-
rately. After that we transformed tB®Ds into a common variable
order. We used all those pairs of circuits from [9] which watreur
disposal. Table 2 shows the results. As in Table 1, for eattopa
circuits the first line gives the size of the result as a sharal the
second line gives the run time for the algorithm, the thing Igives
theBDD sizes after a final sifting step, and the fourth line gives the
total run time including sifting.

! dynoo corresponds to the commaiddbdd Transfein [24].

[[sizes] dyn0 | dynl | dyn2 | dyn3 | dyn5] dyn7] dyni0] dynl5[dyn20 [dynoo [[gradual[atonce]
C2670.ex1|| 104992 | spaceout| 145586 122765 125226 125226 | 125226 | 125226 | 125226 | 125226 | 125226 || time out | space out
912 0:09:00 0:16:03 0:25:34 0:25:54 | 0:25:50 | 0:26:00 | 0:25:50 | 0:26:32 | 0:25:55
118451 109654 101180 101180 | 101180 | 101180 | 101180 | 101180 | 101180
0:14:33 0:20:35 0:29:39 0:29:58 | 0:29:54 | 0:30:07 | 0:29:53 | 0:30:35 | 0:30:00
C2670.ex2 4127 | space out| space out| 119610 108120 37060 15383 | 15383 15383 15383 | 15383 || time out | space out
244 0:00:57 0:01:23 0:02:36 | 0:03:42 | 0:03:44 | 0:03:44 | 0:03:43 | 0:03:41

15198 15177 23709 10639 10639 10639 10639 10639
0:02:05 0:02:31 0:03:29 | 0:04:12 | 0:04:14 | 0:04:14 | 0:04:13 | 0:04:11
C3540.ex1 196 57001 57001 57001 60722 60722 60722 60722 60722 60722 60722 70090 64530
52756 0:00:30 0:00:30 0:00:29 0:00:29 0:00:30 | 0:00:30 | 0:00:30 | 0:00:30 | 0:00:29 | 0:00:30 || 0:00:36 0:00:03

55004 55004 55004 55051 55051 55051 55051 55051 55051 55051 57563 55086
0:01:01 0:01:00 0:01:00 0:01:02 0:01:03 | 0:01:03 | 0:01:04 | 0:01:03 | 0:01:02 | 0:01:03 0:01:08 0:00:36
C3540.ex2 84388 286704 314854 72498 71873 72680 73624 73564 78076 78076 | 110920 || 205749 110615
21688 0:01:13 0:02:50 0:04:20 0:04:09 0:04:16 | 0:04:00 | 0:03:56 | 0:03:56 | 0:03:53 | 0:04:12 || 0:27:55 0:00:31
236898 98558 58936 54264 60122 61009 61009 63175 63175 74605 49920 71662
0:05:01 0:05:13 0:05:01 0:04:47 0:04:57 | 0:04:42 | 0:04:38 | 0:04:39 | 0:04:37 | 0:05:14 0:29:04 0:01:38
C3540.ex3 98156 447188 239800 163033 155520 155148 | 155148 | 155432 | 155148 | 153823 | 167706 192355 204761
21668 0:01:35 0:03:16 0:05:39 0:05:57 0:05:43 | 0:05:35 | 0:05:39 | 0:05:31 | 0:05:36 | 0:04:57 || 0:36:23 0:00:21
145923 144122 147264 148754 143755 | 143755 | 143832 | 143755 | 146977 | 141155 157765 144447
0:04:25 0:05:29 0:07:40 0:08:10 0:07:53 | 0:07:44 | 0:07:47 | 0:07:43 | 0:07:47 | 0:06:54 0:38:53 0:02:32
C5315.ex1|| 188920 | spaceout| 220903 203993 201828 201735 | 202288 | 202288 | 230055 | 204426 | 302024 || 458547 | space out
11751 0:09:28 0:15:11 0:15:31 0:15:44 | 0:15:30 | 0:15:33 | 0:09:37 | 0:15:36 | 0:35:30 1:01:19
200839 199912 199598 199760 | 199797 | 199797 | 202378 | 199444 | 212236 || 232780
0:14:31 0:19:57 0:20:12 0:20:23 | 0:20:13 | 0:20:16 | 0:14:46 | 0:20:25 | 0:42:24 1:08:11
C5315.ex2|| 188920 | spaceout| 716291 376732 376732 376732 | 376732 | 365118 | 361214 | 361214 | 313966 || time out | space out
35516 0:12:24 0:24:40 0:24:30 0:24:33 | 0:24:26 | 0:23:06 | 0:23:03 | 0:23:15 | 0:28:47
273153 276196 276196 276196 | 276196 | 258027 | 256603 | 256603 | 235789
0:22:44 0:35:26 0:35:16 0:35:24 | 0:35:19 | 0:32:19 | 0:32:24 | 0:32:23 | 0:36:46
C5315.ex3 18097 | space out| space out| spaceout| space out| 286943 | 182825| 182745 | 156600 | 168679 | 192163 || time out 560943

35516 0:10:43 | 0:18:21 | 0:18:56 | 0:20:24 | 0:22:09 | 0:20:49 0:00:21

153997 | 151126 | 151332 | 138037 | 145901 | 154399 180645

0:15:05 | 0:22:33 | 0:23:13 | 0:23:54 | 0:26:08 | 0:25:11 0:07:00

C5315.ex4 8637 | space out| space out| 370998 155056 155408 | 156389 | 161587 | 157407 | 157403 | 161820 || time out | space out
35516 0:03:38 0:06:12 0:06:12 | 0:06:07 | 0:05:40 | 0:06:02 | 0:06:01 | 0:07:10

131756 133691 133886 | 132412 | 133563 | 132418 | 132418 | 132699
0:07:01 0:09:02 0:09:06 | 0:09:01 | 0:08:30 | 0:08:56 | 0:08:54 | 0:09:59
C5315.ex5 2398 | space out| space out| space out| space out| 443812 | 184731 | 96672 | 190164 | 102216 | 102216 || time out | space out
35516 0:13:54 | 0:24:01 | 0:26:55 | 0:18:26 | 0:22:43 | 0:22:38
109155 | 90581 | 84482 90468 76107 | 76107
0:17:36 | 0:26:21 | 0:29:00 | 0:21:08 | 0:24:22 | 0:24:17
C5315.ex6 18097 | space out| 135979 58591 32701 33151 32050 | 33150 | 33150 33150 | 32099 || 489577 | space out
8637 0:00:45 0:01:09 0:01:46 0:01:48 | 0:01:47 | 0:01:45| 0:01:44 | 0:01:45| 0:02:17 || 1:02:44

32278 28495 29022 29022 27537 | 29021 29021 29021 | 28382 42425
0:01:51 0:01:51 0:02:18 0:02:21 | 0:02:19 | 0:02:18 | 0:02:17 | 0:02:18 | 0:02:51 1:05:08
C5315.ex7 2398 | space out| space out| space out| space out| space out| 347442 | 275216 | 364031 | 364031 | 364031 || time out | space out
18097 0:27:21 | 0:47:13 | 0:54:44 | 0:54:12 | 0:54:24
205731 | 216581 | 187474 | 187474 | 187474
0:34:07 | 0:53:25 | 1:00:44 | 1:00:11 | 1:00:16
C5315.ex8 11751 68902 56510 51201 51443 52836 52845 | 52811 52795 52771 | 55921 637479 224196
35516 0:00:34 0:01:18 0:02:36 0:02:34 0:01:15 | 0:01:16 | 0:01:15 | 0:01:14 | 0:01:14 | 0:03:02 || 1:46:13 0:00:19

49954 49145 49031 49337 49417 | 49415 49395 | 49395 | 49395| 48749 71209 85068
0:01:34 0:02:10 0:03:27 0:03:26 0:02:05 | 0:02:07 | 0:02:06 | 0:02:05 | 0:02:05 | 0:03:55 1:50:57 0:03:31
C5315.ex9 11751 44267 32877 33783 34041 33782 33783 | 33783 33807 33807 | 35197 || time out 127274

18097 0:00:21 0:00:46 0:01:16 0:01:18 0:01:16 | 0:01:17 | 0:01:14 | 0:01:15 | 0:01:16 | 0:02:53 0:00:07
32221 32032 33388 33414 33387 33388 | 33388 33388 33388 | 32102 44089
0:00:54 0:01:17 0:01:48 0:01:50 0:01:48 | 0:01:49 | 0:01:46 | 0:01:47 | 0:01:48 | 0:03:26 0:01:31
dyn3 dyn7
dyn3-gradual dyn3-atonce dyn7-gradual dyn7-atonce
dyn3 gradual | ratio dyn3 atonce | ratio dyn7 gradual | ratio dyn7 atonce | ratio
size 574087 | 2053797 | 0.28 || 373599 | 731376 | 0.51 || 576677 | 2053797 | 0.28 || 558947 | 1292319| 0.43
run time 0:30:26 | 4:55:10 | 0.10 || 0:14:27 | 0:01:21 | 10.70 || 0:28:38 | 4:55:10 | 0.10 || 0:30:59 | 0:01:42| 18.23
size (a.s.) 536026 | 611662 | 0.88 || 340820 | 400352 | 0.85 || 536564 | 611662 | 0.88 || 493744 | 580997 | 0.85
run time (w.s.) || 0:39:55 | 5:13:21 | 0.13 || 0:19:15 | 0:09:48 1.96 || 0:38:08 5:13:21 | 0.12 || 0:39:58 0:16:48 2.38

Table 1: Experimental results for different solution stgies for MVO (characteristic functions of circuit clustdor functional simulation).

[[dyn0O] dyn1] dyn2[dyn3] dyn5] dyn7 | dynl0O] dyni5] dyn20 [dynoo [[gradual| atonce]
C1355/C3540|| 214548 | 174106 | 153335 | 158287 | 147200 | 138944 | 139500 | 154401 | 141189 | 152268 || 389563 | 809263
0:01:07 | 0:01:30 | 0:02:40 | 0:02:32 | 0:04:25 | 0:03:20 | 0:03:20 | 0:03:14 | 0:03:19 | 0:03:26 || 0:18:40 | 0:00:46
155391 | 144242 | 144856 | 145780 | 145260 | 131953 | 131427 | 150047 | 130955 | 143502 || 168145 | 159984
0:03:48 | 0:03:36 | 0:04:40 | 0:04:35 | 0:06:22 | 0:05:05| 0:05:04 | 0:05:23 | 0:05:09 | 0:05:31 || 0:21:39 | 0:06:02
C499/C1355 385108 | 217017 | 203498 | 171798 | 151366 | 154988 | 157947 | 165170 | 154553 | 145010 || 232696 | 483845
0:02:05 | 0:01:45 | 0:02:26 | 0:03:02 | 0:03:16 | 0:05:09 | 0:04:48 | 0:04:42 | 0:05:10 | 0:05:44 || 0:16:44 | 0:00:45
186691 | 174452 | 153742 | 145406 | 146239 | 139940 | 133187 | 143963 | 149848 | 140344 || 161276 | 225308
0:05:26 | 0:04:36 | 0:05:04 | 0:05:06 | 0:05:27 | 0:07:07 | 0:06:42 | 0:06:45 | 0:07:32 | 0:07:53 || 0:19:40 | 0:04:54
i8/k2 3729 3781 4096 4356 3661 3646 3579 3615 4158 3690 5636 4646
0:00:03 | 0:00:02 | 0:00:02 | 0:00:02 | 0:00:05 | 0:00:05| 0:00:05 | 0:00:05 | 0:00:02 | 0:00:04 || 0:01:22 | 0:00:00
3609 3592 3638 3616 3617 3578 3507 3556 3557 3530 3508 3350
0:00:06 | 0:00:05 | 0:00:05 | 0:00:05 | 0:00:08 | 0:00:08 | 0:00:08 | 0:00:08 | 0:00:05 | 0:00:07 || 0:01:25 | 0:00:03
too_large/vda 1170 1182 1060 1060 1141 1141 1141 1141 1141 1141 7423 1509
0:00:01 | 0:00:01 | 0:00:01 | 0:00:01 | 0:00:01 | 0:00:01 | 0:00:01 | 0:00:01 | 0:00:01 | 0:00:01 || 0:00:10 | 0:00:00
1067 1067 1025 1025 1064 1064 1064 1064 1064 1064 1067 1097
0:00:02 | 0:00:02 | 0:00:02 | 0:00:02 | 0:00:02 | 0:00:02 | 0:00:02 | 0:00:02 | 0:00:02 | 0:00:02 || 0:00:11 | 0:00:01
vda/alu4 1107 1104 1125 1115 1106 1106 1150 1104 1104 1089 1418 1394
0:00:00 | 0:00:00 | 0:00:00 | 0:00:00 | 0:00:00 | 0:00:00 | 0:00:00 | 0:00:00 | 0:00:00 | 0:00:00 || 0:00:01 | 0:00:00
1092 1092 1092 1087 1097 1097 1104 1096 1096 1087 1235 1093
0:00:00 | 0:00:00 | 0:00:00 [0:00:00 | 0:00:00 | 0:00:00 | 0:00:00 | 0:00:00 | 0:00:00 | 0:00:00 || 0:00:01 | 0:00:00

dyn3-gradual| dyn3-atonce| dyn7-gradual| dyn7-atonce

dyn3 dyn7 gradual | atonce ratio ratio ratio ratio

size 336616 | 299825 | 636736 | 1300657 0.53 0.26 0.47 0.23

run time 0:05:37 | 0:08:35 | 0:36:57 | 0:01:31 0.15 3.70 0.23 5.66

size (a.s.) 296914 | 277632 | 335231 | 390832 0.89 0.76 0.83 0.71

run time (w.s.) [| 0:09:48 | 0:12:22 | 0:42:56 | 0:11:00 0.23 0.89 0.29 1.12

Table 2: Experimental results for different solution stgies for MVO (pairs of circuits).

Here all algorithms could finish all examples. Again, at tbe b
tom of the table the results are summarized. The first linegjilie
sum of theBDD sizes, the second the sum of run times, the third
line gives the sum oBDD sizes after sifting and, finally, the last
line the sum of the total run times including sifting. In colsi 2-5
these sums are given for dyn3, dyn7, “greedy gradual”’ ane&ty
atonce?. In columns 6-9 we give the ratios dyn3 to “greedy grad-
ual”, dyn3 to “greedy at once”, dyn7 to “greedy gradual” ayad
to “greedy at once”. dyn3 and dyn7 provide considerable avgr
ments both concerning size and run time compared to the dgree
gradual” heuristic. The “greedy at once” heuristic gives best
run times, but this is acheived at the cost of much laspeps. If
we apply a final sifting step to optimize the variable ordefrthe
results, the advantage of “greedy at once” with respectrdime
is lost, because larg@&DDs have to be sifted.

If we have a closer look at Table 2 we can observe again that
the dyn<n> is able to provide a good trade—off between run time
and quality.

For completeness we repeated the experiments from Table
and Table 2 starting the algorithm of Section 3 with the senall
one of the twoBDDs. The results are comparable to the results of
Tables 1 and 2 (see [22]). However, since the number of reiogle
steps, which we have to allow if we require the transfornmaiito
a common variable order to be successful, has a slight tegden
increase in this case, we could conclude that our decisiatait
with the largemBDD is confirmed.

5 Conclusions

We presented a heuristic to solve the multiple variable ropdeb-

lem (MVO) for binary decision diagrams. In contrast to [9] de

not precompute a common variable order and transform the two
BDDSs into this variable order afterwards, rather we make usg-of d
namic reordering techniques. The adaption of the variatilers

for the twoBDDs proceeds step by step during the computation of
the secon@®DD based on its cofactors. Experimental results prove
our approach to be successful in solving the MVO problem.yThe
also prove, that our approach defines a good trade—off batmee

2The differences of sizes compared to [9] are apparently duifferent initial
variable orders for the circuits.

time and quality of the result. In particular our heuristimetn>
with small values fom can also be used for a fast check if it makes
sense to transform tweDDs into the same variable order or not.

A Proof of Theorem 2

Proof: To prove the lower bound for the size &D D, (f) or

BDD,(g) we introduce a cut line after the fir@f variables and
prove that forBDD.(f) or BDD-(g) the number of nodes im-
mediately below this cut line (i.e. nodes below the cut liwhjch
are connected by an edge to the upper part oBthe) is at least
2%,

To do so we define two sets of input variables:

1(the first input variables in the order) and

R={r(7 +1),...,7(n’)}

(the last input variables in the order). Then we define a sebef
factors of f (or g) with respect to variables frorh. Cofactors with
respect to variables froni correspond to nodes in trepD im-
mediately below the cut line after the variabled/irand if we can
prove that there arg> differentcofactors with respect to variables
from L, it is easy to see that there are (at least)different nodes
immediately below this cut line.

To define the set of cofactors mentioned above we need the sets

L_rows = {i | Vj zi; € L} and

mized_rows = {1 | 35,k with z;; € L andz;, € R}
Now we consider two cases:

Casel L.roys = 0.
Since|L| = %&- input variables, it is clear that

‘ n
mr := |mized_rows| > 5

We consider aset @™ > 2% cofactors off. For(e1,...,emr) €
{0,1}™" coff ... isdefined as
f _
COJer,eemnr = n2.. With
f 1y e€mr f"(l)vaz(w(l))m"(%)vaz(ﬂ(

_ | e&,if 7(k) = zij with i € mized_rows (1)
val(n(k)) _{ 0, otherwise (2)

It remains to show that

cofl emn #coff s,

Assume w..0.g¢; ;. =1, iy, = 0.
We give an assignment to the remainiﬁé variables, which

shows thatofe1 andcof‘;‘1 o, are different:

if (€1y...,€mr) # (01,-+-,0mr).

E€mr

<k<n?

1,if m(k = Tigeed 3
wal(n() = { 3 b=

0, otherwise

For all =~

Now we have

f
co =1
(fsl,...,Smr>1r(n)val(,,()) .n.(n2)val(7r(n2)) 9

because in (coff ...)

n(n2)va.l(‘l\'()) "(nZ)val(W(nz))

Tig s (1 < J < n)aresetto 1 bylines (1) and (3) and

) =0,

co
(f51 Sm (%)vaz(w(" N (n2)vel(x(n2)

r

because for all; there is aj, such thatxm is set to0 in

(Cof(sly)"(%)val(ﬂ-(&5))..."(nZ)val(w(nz))
if i =daiff 3j with Tigppq SEL t_oél:diff = 0 because of line (1),
if i # iqiff,1 € mized_rows: 3j with z;; set to0 because of line

4),
if @ # iaisf,0 ¢ mized_rows: z;; setto0 foralll < j < n
because of line (4).

This proves the fact that

f f
cofel,...,emr 7é C0f61,...,5m7"

such that we have defined a set8f" > 2% different cofactors of
f with respect tal..

Case2: L_rows # 0.
Then we can conclude that the set

mized_columns = {j | 34, k with z;; € L andz;; € R}

has a cardinality

me := |mized_columns| > g

and with analogous arguments as in Case 1 we can define a set of

2™ > 2% different cofactors of, which correspond to different
nodes inBD D (g) below a cut line after the variablesin O

References
[1] S.B. Akers. Binary decision diagramsIlEEE Trans. on Comp.
27:509-516, 1978.

[2] P. Ashar and S. Malik. Fast functional simulation usimarithing
programs. Irint’l Conf. on CAD pages 408-412, 1995.

[3] B. Bollig, M. Lobbing, and I. Wegener. Simulated anrieglto im-
prove variable orderings for OBDDs. Iimt'l Workshop on Logic
Synth, pages 5b:5.1-5.10, 1995.

[4] B. Bollig and I. Wegener. Improving the variable ordeyiaf OBDDs
is NP-completelEEE Trans. on Comp45(9):993—-1002, 1996.

[5] K.S. Brace, R.L. Rudell, and R.E. Bryant. Efficient impientation
of a BDD package. IlDesign Automation Confpages 40-45, 1990.

[6] R.E.Bryant. Graph - based algorithms for Boolean functinanipu-
lation. IEEE Trans. on Comp35(8):677—691, 1986.

[7] R.E. Bryant. Symbolic Boolean manipulation with ordgreinary
decision diagramsACM, Comp. Survey24:293-318, 1992.

[8] G. Cabodi, P. Camurati, and S. Quer. Improved reachmglaalysis
of large finite state machines. Int'l Conf. on CAD pages 354-360,
1996.

[9] G. Cabodi, S. Quer, C. Meinel, Harald Sack, A. Slobodosad
C. Stangier. Binary decision diagrams and the multiplealde order
problem. Inint'l Workshop on Logic Synthpages 346—352, 1998.

[10] R. Drechsler, B. Becker, and N. Gockel. A genetic altpon for vari-
able ordering of OBDDs. Iint'l Workshop on Logic Synthpages
5¢:5.55-5.64, 1995.

[11] E.Felt, G York, R. Brayton, and A. Sangiovanni-Vinoellit Dynamic
Variable Reordering for BDD Minimization. IEuropean Design Au-
tomation Conf.pages 130-135, 1993.

[12] H. Fujii, G. Ootomo, and C. Hori. Interleaving basediahte ordering
methods for ordered binary decision diagramsintti Conf. on CAD
pages 38-41, 1993.

[13] M. Fujita, H. Fujisawa, and N. Kawato. Evaluation angimvements
of Boolean comparison method based on binary decisionatagrin
Int'l Conf. on CAD pages 2-5, 1988.

[14] M. Fujita, Y. Matsunaga, and T. Kakuda. On variable oimg of
binary decision diagrams for the application of multi-lesgnthesis.
In European Conf. on Design Automatjgrages 50-54, 1991.

[15] N. Ishiura, H. Sawada, and S. Yajima. Minimization ofdiy deci-
sion diagrams based on exchange of variablesntlhConf. on CADQ
pages 472-475, 1991.

[16] C.Y. Lee. Representation of switching circuits by bindecision di-
agrams.Bell System Technical Jou88:985-999, 1959.

[17] S. Malik, A.R. Wang, R.K. Brayton, and A.L. Sangiovanni
Vincentelli. Logic verification using binary decision drags in a
logic synthesis environment. Int'l Conf. on CAD pages 6-9, 1988.

[18] P.C. McGeer, K.L. McMillan, A. Saldanha, A.L. Sangiova-
Vincentelli, and P. Scaglia. Fast discrete function ew@dnausing
decision diagrams. Int'l Conf. on CAD pages 402—-407, 1995.

[19] B.M.E. Moret. Decision trees and diagrams. Gomputing Surveys
volume 14, pages 593-623, 1982.

[20] A. Narayan, A. Isles, J. Jain, R.K. Brayton, and A.L. §awanni-
Vincentelli. Reachability analysis using partitioneddds. Inint'l
Conf. on CAD pages 388-393, 1997.

[21] R. Rudell. Dynamic variable ordering for ordered binatecision
diagrams. Innt'| Conf. on CAD pages 42—-47, 1993.

[22] C. Scholl, B. Becker, and A. Brogle. Solving the muléiplariable or-
der problem for binary decision diagrams by use of dynanocder-
ing techniques. Technical Report 130, Albert-Ludwigsugnsity,
Freiburg, September 1999.

23] C. Scholl, R. Drechsler, and B. Becker. Functional datian using
binary decision diagrams. Int'l Conf. on CAD pages 8-12, 1997.

[24] F. Somenzi.CUDD: CU Decision Diagram Package Release 2.3.0
University of Colorado at Boulder, 1998.

[25] S. Tani, K. Hamaguchi, and S. Yajim&he Complexity of the Opti-
mal Variable Ordering Problem of Shared Binary Decision griams
volume 762 ofLNCS Proc. ISAAC’'93, 1993.

