
Exploiting Don't Cares

to Minimize *BMDs

Christoph S
holl

Mar
 Herbstritt

Bernd Be
ker

Institute of Computer S
ien
e

Albert-Ludwigs-University

Georges-K�ohler-Allee 51

79110 Freiburg im Breisgau, Germany

Report 141, September 2000

Exploiting Don't Cares to Minimize *BMDs

Christoph S
holl Mar
 Herbstritt Bernd Be
ker

Institute of Computer S
ien
e, Albert{Ludwigs{University,

D 79110 Freiburg im Breisgau, Germany

email: <s
holl/herbstri/be
ker>�informatik.uni-freiburg.de

Abstra
t

We present for the �rst time methods to minimize *bmds exploiting don't
are
onditions. These minimiza-

tion methods
an be used during the veri�
ation of
ir
uits by *bmds. By
hanging fun
tion values for input

ve
tors, whi
h are in the don't
are set, smaller *bmds
an be
omputed to keep peak memory
onsumption during

*bmd
onstru
tion as low as possible. We determine the
omplexity of the problem of don't
are minimization

for *bmds and thus justify the use of heuristi
s to approximate the solution. Preliminary experimental results

prove our heurist
s to be very e�e
tive in minimizing *bmd sizes.

1 Introdu
tion

One of the most important tasks during the design of Integrated Cir
uits is the veri�
ation of an implemented

ir
uit, i.e., the
he
k whether the implementation ful�lls its spe
i�
ation.

In the last few years several methods based on De
ision Diagrams (DDs) have been proposed [16, 4, 15℄ to perform

veri�
ation. The idea is to transform both implementation and spe
i�
ation of a
ombinational
ir
uit into a DD.

Then, due to the
anoni
ity of the DD representation, the equivalen
e
he
k for spe
i�
ation and implementation

redu
es to the
he
k whether the
orresponding DDs are identi
al.

The most popular data stru
ture in this
ontext were Binary De
ision Diagrams (bdds) [3℄. They were applied

su

essfully e.g. to the veri�
ation of
ontrol logi
 and integer adders. But there are fun
tions of high pra
ti
al

relevan
e (e.g. integer multipliers), whi
h
annot be represented eÆ
iently by bdds. To over
ome the limitations

of bdds other types of DDs were de�ned, e.g. Binary Moment Diagrams (bmds) and Multipli
ative bmds (*bmds)

[5℄, whi
h are able to represent integer{valued pseudo Boolean fun
tions f : f0; 1g

n

! Z and whi
h are espe
ially

suited for arithmeti
 fun
tions.

When a
ir
uit
onsists of several modules or sub
ir
uits, existing methods to
ompute the *bmd representing the

overall
ir
uit
ompute *bmds for the modules and
ombine these *bmds to a *bmd for the overall
ir
uit by *bmd

operations [7℄. Other methods use ba
kward
onstru
tion [10, 14℄ from the
ir
uit outputs towards the inputs and

ompose step by step the *bmd for a gate of the
urrent
ut front into the *bmd for the intermediate result.

A potential, whi
h has not been used in this pro
ess so far, is the knowledge that
ertain input
ombinations

annot be applied to sub
ir
uits/modules. Input
ombinations, whi
h
annot be applied to sub
ir
uits,
an be

given as don't
are informations in the
ir
uit spe
i�
ation or
an be
omputed as satis�ability don't
ares by

image
omputations [1℄. These don't
ares
an be used to minimize *bmds { either before
ombining the *bmds

for submodules by *bmd operations or in the ba
kward
onstru
tion method when the pro
essing of a submodule,

for whi
h don't
are informations are at hand, is �nished. In this
ontext the minimization of *bmds by exploiting

don't
are informations aims at redu
ing the *bmd sizes to keep peak memory
onsumption as low as possible.

The problem we have to solve is to minimize a *bmd B for a fun
tion f

B

under don't
are
onditions given by a

hara
teristi
 fun
tion d
 (d
(x) = 1, if x is a don't
are ve
tor, i.e. x
annot be applied to the sub
ir
uit realizing

f

B

). Sin
e d
 is a Boolean fun
tion, we assume that it is represented by a bdd. Our task is to
ompute a *bmd B

0

realizing a fun
tion f

B

0

, su
h that f

B

(x) = f

B

0

(x) for all x with d
(x) = 0 and B

0

has a (nearly) minimum number

of nodes among all *bmds ful�lling this property.

To the best of our knowledge the heuristi
s presented in this paper are the �rst solution to this problem. For the

minimization of bdds under don't
are
onditions there is a number of methods in the literature, e.g. [9, 8, 6, 20,

19, 12℄. However for *bmds the problem seems to be more diÆ
ult, sin
e due to the Davio de
omposition in *bmds

a
hange of the fun
tion value for a single input ve
tor (exploiting a don't
are for this input ve
tor) has not only

a \lo
al e�e
t" in the De
ision Diagram, but
an a�e
t larger parts of the *bmd (see Se
tion 2). A paper whi
h

has some relations to our work in this sense is [22℄. In that work fdds [13℄ are minimized (whi
h are also based on

Davio de
ompositions). In fa
t our �rst method

1

to minimize *bmds (whi
h are representations of integer{valued

fun
tions) is somewhat similar to the minimization of fdds in [22℄ (fdds are representations of Boolean fun
tions).

Another related paper is [21℄, whi
h minimizes Reed{Muller forms. However the method from [21℄, whi
h de
ides,

whether to
ip the value for a subset of
oeÆ
ients in the Reed{Muller spe
trum from 0 to 1 (1 to 0) or not, with

the goal to maximize the number of zeros in the Reed{Muller spe
trum, is not appli
able when the values are

integers as for fun
tions represented by *bmds.

We developed two di�erent methods for the minimization of *bmds under don't
are
onditions. After Se
tion 2,

whi
h gives some basi
 de�nitions and notations, we determine the
omplexity of the problem and present our two

heuristi
 methods in Se
tion 3. In Se
tion 4 we give preliminary experimental results to evaluate the approa
hes.

The minimization results are very promising. The �rst method was able to redu
e *bmd sizes by 75% on the

average, the se
ond even by 79%. Finally, Se
tion 5
on
ludes the paper and gives dire
tions for future resear
h.

2 Preliminaries

In this se
tion we give a brief review of bdds [3℄, bmds and *bmds [5℄. bdds are used to represent Boolean fun
tions

f : f0; 1g

n

! f0; 1g, and both bmds and *bmds represent integer{valued pseudo Boolean fun
tions f : f0; 1g

n

! Z.

A bdd is a rooted dire
ted a
y
li
 graph G = (V;E) with non empty node set V
ontaining two types of nodes,

non-terminal and terminal nodes. A non-terminal node v has as label a variable index(v) 2 fx

1

; : : : ; x

n

g and two

hildren low(v); high(v) 2 V . We
all low(v) also 0{su

essor(v) and high(v) 1{su

essor(v). The edge leading

to low(v) (high(v)) is
alled low (high) edge of v. bdds are ordered [3℄. A terminal node v is labeled with a value

value(v) 2 f0; 1g and has no outgoing edges. The Boolean fun
tion f

v

: f0; 1g

n

! f0; 1g de�ned by a bdd node

v is de�ned re
ursively: If v is a terminal node with value(v) =
 2 f0; 1g, then f

v

(x

1

; : : : ; x

n

) =
 and if v is

a non-terminal node with index(v) = x

i

, then f

v

(x

1

; : : : ; x

n

) = x

i

� f

low(v)

(x

1

; : : : ; x

n

) + x

i

� f

high(v)

(x

1

; : : : ; x

n

).

(bdds use the so-
alled Shannon de
omposition.) The fun
tion represented by a bdd B is equal to the fun
tion

represented by its root node v

root

.

Like bdds bmds are based on a rooted dire
ted a
y
li
 graph. In
ontrast to bdds the terminal nodes v are labeled

with values value(v) 2 Z. The re
ursive de�nition of the pseudo Boolean fun
tion f

v

: f0; 1g

n

! Z represented

by a bmd node v di�ers from bdds: If v is a terminal node with value(v) =
 2 Z, then f

v

(x

1

; : : : ; x

n

) =
 and if

v is a non-terminal node with index(v) = x

i

, then f

v

(x

1

; : : : ; x

n

) = f

low(v)

(x

1

; : : : ; x

n

) + x

i

� f

high(v)

(x

1

; : : : ; x

n

).

bmds use the so-
alled positive Davio de
omposition. It follows from this re
ursive de�nition that the fun
tion

represented by low(v) is equal to f

v

j

x

i

=0

y

, but in
ontrast to Shannon de
omposition the fun
tion represented by

high(v) is

f

v

j

x

i

=1

� f

v

j

x

i

=0

: (1)

Sin
e bmds use another de
omposition type than bdds (positive Davio de
omposition instead of Shannon de
om-

position), the redu
tion rules to redu
e the bmd sizes and to make bmds a
anoni
al data stru
ture have to be

hanged
ompared to bdds: As in the
ase of bdds, if for terminal nodes v and v

0

2 V value(v) = value(v

0

) or

if for non-terminal nodes v and v

0

index(v) = index(v

0

), low(v) = low(v

0

) and high(v) = high(v

0

) then v = v

0

.

However due to the Davio de
omposition we have the redu
tion rule that in a redu
ed bmd there is no node v 2 V

with high(v) = t, t terminal node with value(t) = 0.

For simpli
ity we assume in the following that the variables o

ur in the �xed order x

1

; : : : ; x

n

.

1

see Se
tion 3

y

For a fun
tion, f : f0; 1g

n

! Zf

x

i

=0

(f

x

i

=1

) is the fun
tion whi
h results from a substitution of x

i

by
onstant 0 (1) and is
alled

negative (positive)
ofa
tor of f with respe
t to x

i

.

2

x1

x2

1 5 4

10

10

(a) redu
ed

x1

1

x2

10

0

x2

1 5 04

0 1

(b) non-redu
ed

Figure 1: Example for a bmd.

To give a relation between nodes of a bmd B and
ofa
tors of the fun
tion f

B

represented by B, we de�ne \the

node whi
h is rea
hed by (�

1

; : : : ; �

l

) 2 f0; 1g

l

(l � n)":

To determine the node rea
hed by (�

1

; : : : ; �

l

) we start at the root node and follow the edges a

ording to (�

1

; : : : ; �

l

).

If we are at a node v labeled with x

i

and �

i

= 0, then we follow the edge to low(v) and if �

i

= 1, we go to high(v).

Spe
ial attention has to be paid to the
ase, when �

i

{su

essor(v) has not label x

i+1

. If in this
ase �

i

{su

essor(v)

is a non{terminal,
hoose k with x

k

= index(�

i

{su

essor(v)) and if �

i

{su

essor(v) is a terminal
hoose k = n+1.

Then we have to take into a

ount, that in an non{redu
ed version of the bmd the edge leading to �

i

{su

essor(v)

would be repla
ed by a path of nodes leading to �

i

{su

essor(v) where the labels are x

i+1

; : : : ; x

k�1

and the high

edges lead to the
onstant 0, respe
tively. Therefore we go to �

i

{su

essor(v) only if �

i+1

= : : : = �

k�1

= 0,

otherwise we say that the terminal 0 is rea
hed by (�

1

; : : : ; �

l

) (sin
e 0 would be rea
hed in a non{redu
ed version

of the bmd). We
all the node rea
hed by (�

1

; : : : ; �

l

) also (�

1

; : : : ; �

l

){node and the fun
tion represented by this

node f

(�

1

;:::;�

l

)

B

.

Example 2.1 Figure 1(a) shows an example of a bmd for fun
tion f with f(0; 0) = 1, f(0; 1) = 6, f(1; 0) = 5

and f(1; 1) = 10. The (0; 0){node is the terminal 1, the (0; 1){node is terminal 5, the (1; 0){node is terminal 4, but

the (1; 1){node is terminal 0, sin
e the high edge starting from the root leads to a terminal and not to a node with

label x

2

and { as shown in Figure 1(b) { in the non{redu
ed bmd ve
tor (1; 1) leads to terminal 0.

Using (1) we
an
on
lude the following lemma by indu
tion:

Lemma 2.1 Let B be a bmd representing a fun
tion f

B

: f0; 1g

n

! Z and let v be the (�

1

; : : : ; �

l

){node (l � n).

Then the fun
tion f

(�

1

;:::;�

l

)

B

represented by v is equal to

f

(�

1

;:::;�

l

)

B

=

X

(Æ

1

;:::;Æ

l

)�(�

1

;:::;�

l

)

(�1)

P

l

i=1

(�

i

�Æ

i

)

f

B

j

x

1

=Æ

1

;:::;x

l

=Æ

l

: (2)

(For Æ; � 2 f0; 1g

l

: Æ � � i� Æ

i

� �

i

81 � i � l.)

Lemma 2.1 shows that the
hange of the fun
tion f

B

for a single input ve
tor �, i.e. the
hange of
ofa
tor f

B

j

x=�

,

has not only a \lo
al e�e
t" in the De
ision Diagram, but a�e
ts all
{nodes with � �
.

*bmds were de�ned in [5℄ to further redu
e the size of bmds by in
reasing the amount of subgraph sharing. In

*bmds ea
h edge has an additional multipli
ative edge weightm 2 Z, su
h that an edge with edge weightm leading

to a node v represents a fun
tion m � f

v

. Redu
tion rules guarantee that fun
tions

1

� g and

2

� g (

1

;

2

2 Zn f0g)

are represented by the same node (but by di�erent edges).

3 Don't
are assignment

In the following we present a solution to the problem to minimize a *bmd by assigning values to don't
ares. We

have to solve the following problem DC*BMD:

3

x1

1st dc

2nd dc

1

x2

10

0

x2

1 4 83

0 5 74

0 5 04

0 1
x1

x2

0 5 4

10

10

(a) min polynomial

x1

1

x2

10

0

x2

1 4 83

4 1 00

0 1 x2

4 1

10

(b) independent dfs

Figure 2: Example: bmd minimization.

Given: A *bmd B representing a fun
tion f : f0; 1g

n

! Z and a bdd C representing a fun
tion
 : f0; 1g

n

! f0; 1g.

Find: A *bmd B

0

representing a fun
tion f

0

: f0; 1g

n

! Z, su
h that f �
 = f

0

�
 and B

0

has the minimum number

of nodes among all *bmds ful�lling the same property (and respe
ting the same variable order).

The
orresponding problem for bmds instead of *bmds is
alled DCBMD.

DC*BMD and DCBMD are hard problems, more pre
isely we
an prove the following theorem:

Theorem 3.1 DC*BMD and DCBMD are NP
omplete.

Proof: The proof that DC*BMD and DCBMD are NP{hard is done by a redu
tion from the graph
olorability

problem. DC*BMD, DCBMD 2 NP is shown using wl
ds [18℄. For details see Appendix A. 2

Be
ause of this
omplexity result we are looking for a heuristi
 solution of DC*BMD in the following.

3.1 Method min polynomial

Our �rst method min polynomial is motivated by the relationship between bmds over variables x

1

; : : : ; x

n

and poly-

nomials over x

1

; : : : ; x

n

: The rule to evaluate bmds dire
tly implies a method to derive the polynomial representing

the same fun
tion as the bmd. E.g. the fun
tion from Figure 1(a) is equal to (1 + x

2

� 5) + x

1

� 4 = 1 + 5x

2

+ 4x

1

.

In general the polynomial
ontains the term
 � x

�

1

1

� : : : � x

�

n

n

(x

1

i

= x

i

and x

0

i

= 1) if and only if the node rea
hed

by (�

1

; : : : ; �

n

) is terminal
 6= 0.

It is easy to see that the size of the bmd B representing fun
tion f

B

is always less or equal to the size of the

polynomial

3

representing f

B

. Sin
e *bmds
an be obtained from bmds by redu
tion, this is
learly also true for

*bmds.

Our �rst method
onsists in a (heuristi
) minimization of the size of this polynomial, whi
h is an upper bound

on the bmd and the *bmd size. For ve
tors (�

1

; : : : ; �

n

), su
h that the terminal rea
hed by (�

1

; : : : ; �

n

) is
 6= 0,

we try to use don't
ares to
hange the value of the terminal to zero. If (�

1

; : : : ; �

n

) is a don't
are ve
tor, i.e.

d
(�

1

; : : : ; �

n

) = 1, we
hange the fun
tion value f

B

(�

1

; : : : ; �

n

) su
h that the terminal rea
hed by (�

1

; : : : ; �

n

) will

be 0. Using the formula of Lemma 2.1 it is
lear that we just have to set for the
hanged fun
tion f

B

0

f

B

0

(�

1

; : : : ; �

n

) = f

B

(�

1

; : : : ; �

n

)�

to a
hieve this goal. After that we must not forget to adjust the values of other terminals a

ording to this
hange

of f

B

(�

1

; : : : ; �

n

), sin
e the value of f

B

(�

1

; : : : ; �

n

) has an impa
t on all terminals, whi
h are rea
hed by ve
tors

 � �.

The main idea of our method min polynomial is illustrated in Figure 2(a). Figure 2(a) shows a bmd for the fun
tion

f : f0; 1g

2

! Z with polynomial 1 + 4x

2

+ 3x

1

+ 8x

1

x

2

. There are two don't
are ve
tors: d
(0; 0) = d
(1; 1) = 1.

3

The size of a polynomial is de�ned as the number of
onstants, variable names and operators + and � in the polynomial.

4

1 *bmd fun
tion min polynomial(*bmd B;bdd DC)

2 if DC = 1 then return 0 �;

3 if DC = 0 then return B �

4 if B =
onstant then return B �

5 if
omputed table
ontains entry result for (B;DC) then return result �

6 Let v be top variable of B and DC;

7 B

low

= Bj

v=0

; B

high

= Bj

v=1

�Bj

v=0

;

8 DC

low

= DCj

v=0

; DC

high

= DCj

v=1

9 B

0

low

:= min polynomial(B

low

; DC

low

)

10 B

0

high

:= min polynomial(B

high

+ (B

low

�B

0

low

); DC

high

)

11 B

0

= B

0

low

+ v �B

0

high

12 if size(B

0

) � size(B) then B

0

= B �

13 insert entry B

0

for (B;DC) in
omputed table

14 return B

0

Figure 3: Pseudo
ode for min polynomial.

The don't
are values for (0; 0) and (1; 1) are represented in the bmd by the shaded boxes of terminals 1 and 8. At

�rst, we set terminal 1, whi
h is rea
hed by (0; 0) to 0. To a
hieve this we make use of the don't
are ve
tor (0; 0)

and
hange f(0; 0) by adding �1. Then we have to propagate the
hange to all terminals whi
h are rea
hed by

ve
tors > (0; 0). A

ording to the formula of Lemma 2.1 we have to
hange terminal 4 by adding 1, terminal 3 by

adding 1 and terminal 8 by adding �1. The resulting values for the terminals are given in Figure 2(a) in the row

1st d
 below the original terminals. Finally we make use of the don't
are (1; 1) by adding -7 to f(1; 1) resulting in

a 0{terminal rea
hed by (1; 1). Sin
e there is no ve
tor greater than (1; 1), we do not have to propagate the
hange

in this
ase and the resulting terminals are shown in the se
ond row 2nd d
 below the original terminals. Finally,

we obtain a
hanged fun
tion with polynomial 5x

2

+ 4x

1

. The redu
ed version of the resulting bmd is shown on

the right hand side of Figure 2(a).

The order of pro
essing the di�erent don't
are values in the example was not arbitrary: Sin
e we pro
ess the

terminals from left to right the propagation of
hanges due to other don't
are assignments
annot destroy the

zeros we have already set. For this reason our re
ursive pro
edure pro
esses the *bmd in a depth{�rst manner

following low edges before high edges. Pseudo
ode of the resulting re
ursive pro
edure min polynomial to minimize

a *bmd B using don't
ares spe
i�ed by a bdd DC is given in Figure 3. Note that in line 10 the propagation of

the
hanges made to B

low

is performed by adding B

low

�B

0

low

to B

high

before applying min polynomial to B

high

.

3.2 Method independent dfs

The se
ond method is motivated by the \mat
hing siblings" heuristi
s from [20℄. This heuristi
s was introdu
ed

to minimize bdds in a re
ursive pro
edure. When the pro
edure pro
esses a bdd node v, it tries to assign don't

ares in su
h a way that low(v) and high(v) be
ome identi
al. If this is possible, we have to keep this subgraph

only on
e and additionally { be
ause of the bdd redu
tion rules { node v
an be removed, be
ause the subfun
tion

is now independent from variable index(v).

Sin
e bmds use positive Davio de
omposition instead of Shannon de
omposition, the fun
tion represented by a node

v
annot be made independent from variable index(v) by
hanging low(v) and high(v) to make them identi
al.

Here we try to make use of don't
ares to
hange high(v), su
h that it be
omes 0. Then, the fun
tion represented

by v is independent from index(v) and we
an delete high(v) and (a

ording to bmd redu
tion rules) also node v.

5

1 *bmd fun
tion independent dfs(*bmd B;bdd DC)

2 if DC = 1 then return 0 �;

3 if DC = 0 then return B �

4 if B =
onstant then return B �

5 if
omputed table
ontains entry result for (B;DC) then return result �

6 Let v be top variable of B and DC;

7 B

low

= Bj

v=0

; B

high

= Bj

v=1

�Bj

v=0

;

8 DC

low

= DCj

v=0

; DC

high

= DCj

v=1

9 (su

ess;B

low;diff

) :=
he
k zero(B

high

; DC

low

; DC

high

)

10 if su

ess then

11 B

0

= independent dfs(B

low

+B

low;diff

; DC

low

�DC

high

)

12 else

13 B

0

low

:= independent dfs(B

low

; DC

low

)

14 B

0

high

:= independent dfs(B

high

+ (B

low

�B

0

low

); DC

high

)

15 B

0

= B

0

low

+ v � B

0

high

16 �

17 if size(B

0

) � size(B) then B

0

= B �

18 insert entry B

0

for (B;DC) in
omputed table

19 return B

0

Figure 4: Pseudo
ode for independent dfs.

Thus, we have to
he
k for a node v, whi
h is rea
hed by (�

1

; : : : ; �

l

), whether the node fun
tion
an be made

independent from variable x

l+1

by exploiting don't
ares from d
j

x

1

=�

1

;:::;x

l

=�

l

. Figure 2(b) illustrates the method

using the same example as in Figure 2(a). At the beginning we
he
k whether the root node v
an be made

independent from x

1

by using don't
ares, whi
h is equivalent to the question, if we
an set high(v) to zero. To do

this we
an exploit don't
ares both from d
j

x

1

=0

and from d
j

x

1

=1

, i.e. both the don't
ares at (0; 0) and (1; 1) in

this example. The terminal rea
hed by (1; 0)
annot be set to 0 using don't
ares from d
j

x

1

=1

, but it is possible to

use don't
are (0; 0) (adding 3 to f(0; 0)) to set this terminal to 0. Then we use don't
are (1; 1) to set the terminal

rea
hed by (1; 1) to 0 and in fa
t, it is possible to make the root node independent from x

1

. The
hanged values

for the terminals are given in Figure 2(b) in the row below the original terminals. The redu
ed bmd is given on

the right hand side of Figure 2(b). It is easy to see that it is not possible to make the remaining node independent

from x

2

, sin
e there are no don't
ares whi
h
ould be exploited. (Note that also the don't
are (0; 0) must not be

used in the minimization of this node, sin
e it was already used to make the root fun
tion independent from x

1

.

Exploitation of don't
are (0; 0)
ould make the fun
tion depend on x

1

again.)

The
he
k, whether a fun
tion of a node v, whi
h is rea
hed by (�

1

; : : : ; �

l

),
an be made independent from variable

x

l+1

using d
j

x

1

=�

1

;:::;x

l

=�

l

an be formulated as a re
ursive pro
edure, whi
h
he
ks �rst if the low son
an be set

to 0 and then if the high son
an be set to 0. This
he
k is used in a depth{�rst traversal of the *bmd. Whenever

we rea
h a node whi
h
an be made independent from its top variable, we perform the modi�
ation and the e�e
t

of the
hange is propagated similar to pro
edure min polynomial.

Pseudo
ode for pro
edure independent dfs, whi
h minimizes a *bmd B using a don't
are set given by DC, is

shown in Figure 4. In line 9 the algorithm
he
ks whether the high son B

high

of a node labeled by variable v
an be

set to 0 or not. For this
he
k don't
ares from two sets
an be used: One set is represented by DC

high

= DCj

v=1

and the other set is represented by DC

low

= DCj

v=0

(see also example from Figure 2(b)). The
he
k is done by

a pro
edure
he
k zero.
he
k zero returns a Boolean variable su

ess, whi
h indi
ates, whether the
he
k was

6

1 (boolean; *bmd) fun
tion
he
k zero(*bmd B

H

;bdd DC

L

;bdd DC

H

)

2 if B

H

= 0 or DC

H

= 1 then return (1; 0) �

3 if B

H

=
onstant and DC

H

= 0 and DC

L

= 1 then return (1; B

H

) �

4 if DC

H

= 0 and DC

L

= 0 then return (0; 0) �

5 if
omputed table
ontains entry result for (B

H

; DC

L

; DC

H

) then return result �

6 Let v be top variable of B

H

, DC

L

and DC

H

;

7 B

H;low

= B

H

j

v=0

; B

H;high

= B

H

j

v=1

�B

H

j

v=0

;

8 DC

L;low

= DC

L

j

v=0

; DC

L;high

= DC

L

j

v=1

; DC

H;low

= DC

H

j

v=0

; DC

H;high

= DC

H

j

v=1

9 (su

ess;B

L diff;low

) :=
he
k zero(B

H;low

; DC

L;low

; DC

H;low

)

10 if su

ess = 0 then return (0; 0) �

11 (su

ess;B

L diff;high

) :=
he
k zero(B

H;high

+B

H;low

; DC

L;high

; DC

H;high

)

12 if su

ess = 0 then return (0; 0) �

13 B

L diff

= (1� v) �B

L diff;low

+ v �B

L diff;high

14 insert entry (1; B

L diff

) for (B

H

; DC

L

; DC

H

) in
omputed table

15 return (1; B

L diff

)

Figure 5: Pseudo
ode for
he
k zero.

su

essful or not, and a *bmd B

low;diff

. If the
he
k is not su

essful (su

ess = 0 in line 10) the algorithm

pro
eeds like pro
edure min polynomial. If the
he
k is su

essful, i.e. if B

high

an be set to 0, the exploitation

of don't
ares from DC

low

has to be taken into a

ount: Exploiting don't
ares from DC

low

means
hanging the

negative
ofa
tor to set B

high

to 0. These
hanges are returned as a *bmd B

low;diff

by the pro
edure
he
k zero.

Thus we have to minimize B

low

+ B

low;diff

instead of B

low

in line 11. The don't
ares, whi
h we are allowed to

use in line 11, are not given by DC

low

, but only by DC

low

�DC

high

, sin
e we have to keep the result B

0

in line 11

independent from variable v.

For
ompleteness, pseudo
ode for the pro
edure
he
k zero whi
h
he
ks, whether don't
ares
an be used to set

the fun
tion of a node to 0,
an be found in Figure 5.

4 Experimental results

We implemented the two methods for *bmd minimization based on wld, an experimental Word-Level DD pa
kage

developed at University of Freiburg [11℄ and performed experiments to
ompare the di�erent approa
hes. The

experiments were performed using a SPARC UltraII with a memory limit of 400 MB.

To generate in
ompletely spe
i�ed fun
tions from
ompletely spe
i�ed fun
tions, we used a method proposed in

[6℄: After
ollapsing ea
h ben
hmark
ir
uit to two level form, we randomly sele
ted
ubes in the on-set with a

probability of 40% to be in
luded into the don't
are set. The
ubes whi
h were not sele
ted to be in
luded in

the don't
are set were used to
onstru
t a *bmd to represent a weighted sum of the output fun
tions (output i

weighted by 2

i

). For the don't
are set a bdd was
omputed. As variable order we used the initial order given in

the ben
hmark spe
i�
ation. The results are summarized in Table 1. In the �rst
olumn the ben
hmark
ir
uit

is given, in the se
ond
olumn the number of primary inputs and in the third
olumn the number of primary

outputs. Column 4 shows the number of bdd nodes needed to represent the don't
are set and
olumn 5 the

number of nodes needed to represent the initial *bmd. Columns 6{8 give the *bmd sizes after minimization. Three

di�erent methods are
ompared: For
omparison we give in
olumn az the simple method to set all don't
are

input ve
tors to fun
tion value 0, whi
h
an be done by
omputing f

B

� d
. Column mp gives the results for our

pro
edure min polynomial and
olumn dfs the results for our pro
edure independent dfs. Columns 9{11 give the

7

j�bmd

min

j ratio

j�bmd

min

j

j�bmdj

Time

Cir
uit #PI #PO jDCj j�bmdj

az mp dfs az mp dfs az mp dfs

5xp1 7 10 15 76 19 12 3 0.250 0.157 0.039 0:00 0:00 0:00

9symml 9 1 97 223 242 183 182 1.085 0.820 0.816 0:09 0:00 0:00

alu2 10 6 91 401 372 139 147 0.927 0.346 0.366 0:30 0:01 0:01

apex7 49 37 120 1390 2305 118 49 1.658 0.084 0.035 0:08 1:28 3:27

8 28 18 126 346 336 17 13 0.971 0.049 0.037 0:02 1:23 0:02

mux 21 1 5798 60 47 34 34 0.783 0.566 0.566 0:00 0:06 0:18

p
ler8 27 17 34 44 61 32 21 1.386 0.727 0.477 0:01 0:00 0:09

rd73 7 3 36 89 87 43 36 0.977 0.483 0.404 0:02 0:00 0:00

rd84 8 4 65 196 200 114 81 1.020 0.581 0.413 0:15 0:00 0:00

sao2 10 4 52 128 96 47 37 0.750 0.367 0.289 0:01 0:00 0:00

z4ml 7 4 30 69 87 30 26 1.260 0.434 0.376 0:00 0:00 0:00

P

3022 3852 769 629 1.247 0.254 0.208

Table 1: Results for don't
are minimization.

ratios \size of minimized *bmd divided by size of initial *bmd", again for the three di�erent methods. Finally the

orresponding CPU times are given in
olumns 12{14 in format minutes:se
onds, rounded to se
onds.

The results show that setting all don't
ares to 0 (
olumns az) is not a su

essful method. On the average the

sizes even in
rease by 24.7%. In
ontrast, our two methods for don't
are minimization are both very e�e
tive in

minimizing the *bmd sizes: Method min polynomial (
olumns mp) is able to redu
e *bmd sizes by 74.6% on the

average and method independent dfs (
olumns dfs) redu
es the sizes even by 79.2%. Columns 13 and 14 show that

these results
an be a
hieved within a small amount of run time.

5 Con
lusions and future work

We presented two heuristi
 methods for don't
are minimization of *bmds. Experimental results proved them to

be very e�e
tive in redu
ing *bmd sizes within a small amount of CPU time.

At the moment we are working on a modi�ed version of method independent dfs, whi
h is based on the observation

that in
ontrast to bdds [20℄ for *bmds the order in whi
h we pro
ess the nodes
an in
uen
e the quality of the

result due to the propagation of the
hange. Setting the high son of a node v to 0
an destroy the possibility to set

the high son of another node v

0

to 0. Sin
e the subgraph of the high son of a node at a higher level in the *bmd

will be larger on the average, we expe
t that the gain of setting the high son of su
h a node to 0 is also larger.

Therefore nodes at higher levels should be pro
essed �rst leading to a breadth-�rst traversal of the *bmd instead

of a depth-�rst traversal.

Moreover, we are working on an appli
ation of our *bmd minimization in the veri�
ation of Pentium style integer

dividers to keep peak memory
onsumption small during ba
kward
onstru
tion [10℄. Don't
ares are
omputed

by an iterative image
omputation for the di�erent add&shift stages.

A Proof of Theorem 3.1

We prove Theorem 3.1 for the de
ision problem versions DCBMD

0

and DC*BMD

0

of DCBMD and DC*BMD.

DCBMD

0

: Given a bmd B representing a fun
tion f : f0; 1g

n

! Z, a bdd C representing a fun
tion
 : f0; 1g

n

!

f0; 1g and a
onstant s 2 IN . Is there a bmd B

0

of size � s (with the same variable order) representing a

fun
tion f

0

: f0; 1g

n

! Z, su
h that f �
 = f

0

�
?

DC*BMD

0

: Given a *bmd B representing a fun
tion f : f0; 1g

n

! Z, a bdd C representing a fun
tion
 : f0; 1g

n

! f0; 1g and a
onstant s 2 IN . Is there a *bmd B

0

of size � s (with the same variable order) representing

a fun
tion f

0

: f0; 1g

n

! Z, su
h that f �
 = f

0

�
?

8

xnxnxnxn

xn-1

B1 B2 BnBn-1

x2

x3x3

x1

x2

0

0

0 00 0

0

0 1

0
1

0
1

0
1

0
1

0
1

0
1

0 1

0 1

0

1

(a) Top part of B

znznznzn

zn-1

y2

ai1
on ai2

on ain
onai,n-1

on ai,n+1
on

ym

z2

z3z3

z1

z2

y1

0

0

0

0

0 0 0

0

0

0 1

0 1

0 1

0
1

0
1

0
1

0
1

0
1

0
1

0 1

0 1

0 1

0 1

(b) Stru
ture of sub{bmds B

i

Figure 6: De�nition of bmd B.

At �rst, we prove the theorem for problem DCBMD

0

.

Proof: The �rst part is to prove that DCBMD

0

is NP-hard. The proof uses ideas and proof te
hniques from [17℄

and [2℄. In [17℄ Sauerho� and Wegener prove that minimizing the bdd size of in
ompletely spe
i�ed fun
tions is

NP-hard and in [2℄ Bollig, L�obbing, Sauerho� and Wegener prove that the same problem is NP-hard for fdds.

Sin
e fdds also use the positive Davio de
omposition, the proof
an be adapted to bmds.

Similar to [2℄ and [17℄ we
onstru
t a redu
tion from the well-known graph
olorability problem (GC) to DCBMD

0

.

An instan
e of GC is a
onne
ted undire
ted graph G = (V;E) with the property that E does not
ontain any

edges fv; vg, v 2 V , and a number k. The problem is to de
ide whether G has a k-
oloring, i.e. whether there is

a fun
tion � : V ! f1; : : : ; kg, su
h that the endpoints of the edges are
olored di�erently (�(v) 6= �(w) for all

fv; wg 2 E.

Let G = (V = fv

1

; : : : ; v

n

g; E) and k be the given instan
e for GC. The
orresponding instan
e for DCBMD

0

onsists of a bmd B, a bdd C and a size bound s.

For the bmd and the bdd we use the following variables (where m is a parameter de�ned later on in the proof);

the variables are to be tested in the given order:

x

1

; : : : ; x

n

; y

1

; : : : ; y

m

; z

1

; : : : ; z

n

:

We �rst des
ribe the bmd B. This bmd realizes almost the same fun
tion as in the proof of [2℄. The fun
tion

values are only 0 and 1, but we have to take into a

ount that we have to
onstru
t a bmd, i.e. a word{level data

stru
ture. We use a substru
ture depending on the x{variables at the top of B as a swit
h to
hoose exa
tly one

of the sub{bmds B

1

; : : : ; B

n

of B (see Figure 6(a)). These sub{bmds will
orrespond to the verti
es of the graph

G. Let f be the fun
tion
omputed by B and let f

i

be the fun
tion
omputed by the sub{bmd B

i

.

All the sub{bmds B

i

for i = 1; : : : ; n have the stru
ture shown in Figure 6(b). The number m of y{nodes will be

needed to adjust the graph size of the sub{bmds B

i

. The part
ontaining the z{variables again is a swit
h. This

time, one of the
onstants a

on

ij

(j 2 f1; : : : ; ng) des
ribing the neighborhood of vertex v

i

in G is
hosen by the

swit
h. We de�ne for j 2 f1; : : : ; ng

a

on

ij

:=

�

1; if fv

i

; v

j

g 2 E;

0; otherwise.

Note that espe
ially a

on

ii

= 0 for 1 � i � n.

The value of a

on

i;n+1

is set to (�1) �

P

n

j=1

a

on

ij

, su
h that the sum of all values a

on

ij

equals zero.

9

xnxnxnxn

xn-1

C1 C2 CnCn-1

x2

x3x3

x1

x2

1

1

1 01 1

1

0 1

0
1

0
1

0
1

0
1

0
1

0
1

0 1

0 1

0

1

(a) Top part of C

znznznzn

zn-1

y2

ai1
care ai2

care ain
careai,n-1

care

ym

z2

z3z3

z1

z2

y1

1

1

1

1

1 1 1 1

1

1

0 1

0 1

0 1

0
1

0
1

0
1

0
1

0
1

0
1

0 1

0 1

0

1

0 1

(b) Stru
ture of sub{bdds C

i

Figure 7: De�nition of bdd C.

We have to �nd out now whi
h fun
tion is represented by the thus
onstru
ted bmd. Let b

r

i

denote an input ve
tor

of length r, whi
h has a zero at the i{th position and ones everywhere else. Examining the
onstru
tion of B, we

�nd out that

f j

x=�

:=

8

<

:

f

i

; if � = b

n

i

;

P

n

i=1

f

i

; if � = (1; : : : ; 1);

0 ; if � 2 f0; 1g

n

n fb

n

1

; : : : ; b

n

n

; (1; : : : ; 1)g:

A sub{bmd B

i

obviously
omputes zero, if at least one of the y{variables is zero. The part
ontaining the z{variables

has the same stru
ture as the top part of B, so it is easy to see that for 1 � i � n, � 2 f0; 1g

m

,
 2 f0; 1g

n

f

i

(�;
) :=

�

a

on

i;j

; if � = (1; : : : ; 1) and
 = b

n

j

;

0 ; otherwise.

Note that for � = (1; : : : ; 1) and
 = (1; : : : ; 1) the de�nition a

on

i;n+1

= (�1) �

P

n

j=1

a

on

ij

guarantees that f

i

(�;
) = 0.

The
are set for fun
tion f has to be spe
i�ed by a bdd C. Before we
onstru
t a bdd C to represent a
hara
teristi

fun
tion
 of the
are set, we de�ne values a

are

ij

as follows (1 � i; j � n):

a

are

ij

:=

�

1; if j = i _ fv

i

; v

j

g 2 E;

0; otherwise.

The underlying graph of the bdd is similar to the bmd. The top part of the graph is given by Figure 7(a). It

di�ers from the graph in Figure 6(a) from the fa
t, that terminals 0 are repla
ed by terminals 1 (ex
ept the last

0), for 1 � i � n B

i

is repla
ed by C

i

.

The graphs for the sub{bdds C

i

(1 � i � n) are given by Figure 7(b). Again, the di�eren
e to the graph in Figure

6(b) lies in the fa
t, that terminals 0 are repla
ed by terminals 1, a

on

ij

are repla
ed by a

are

ij

(1 � j � n) and a

on

i;n+1

is repla
ed by 1.

Let
 be the fun
tion
omputed by C, then it is easy to see that for �;
 2 f0; 1g

n

and for � 2 f0; 1g

m

(�; �;
) :=

8

<

:

a

are

ij

; if � = b

n

i

; � = (1; : : : ; 1);
 = b

n

j

; (i; j 2 f1; : : : ; ng);

0 ; if � = (1; : : : ; 1);

1 ; otherwise.

10

Like for f

i

and B

i

we use in the following the notion

i

for the fun
tion represented by C

i

;

i

=

x=b

n

i

.

Finally, we
hoose s := k(m + n(n + 1)=2) + n(n + 1)=2 + 2 for the bmd size in the instan
e of DCBMD

0

. Both

onstru
ted graphs B and C have size O(nm+n

3

). We will �x m to n(n+1)

2

=2+2 below, so that these sizes are

polynomial in n. Note that stri
tly speaking B and C are not a bmd and a bdd, sin
e it is possible that redu
tion

rules are appli
able to B and C to redu
e the graph size. However the redu
tion of B to a bmd and of C to a bdd

an easily be done in polynomial time and it
an only redu
e the size. All in all we
an say that the size of the

onstru
ted instan
e of DCBMD

0

is polynomial in n and
an be
omputed in polynomial time.

We have to show that

(G; k) 2 GC () (B;C; s) 2 DCBMD

0

:

=): Let a k{
oloring of G be given. We have to
onstru
t a bmd B

0

whi
h
omputes a fun
tion f

0

su
h that

f �
 = f

0

�
 and whose size is bounded by s. For B

0

we use the same graph stru
ture as for B.

Let f

0

be the fun
tion represented by the bmd B

0

and let f

0

i

be the fun
tion of the subgraph B

0

i

de�ned in

the same way as in the
onstru
tion of B.

For 1 � i; j � n we repla
e a

on

ij

by

a

0

ij

:=

�

0; if v

i

and v

j

have the same
olor;

1; otherwise.

The value of a

0

i;n+1

is set to (�1) �

P

n

j=1

a

0

i;j

, su
h that also in B

0

the sum of all values a

0

ij

equals zero.

We �rst verify that indeed f �
 = f

0

�
. Let � = b

n

i

, � = (1; : : : ; 1) and
 = b

n

j

, i.e. an input where

(�; �;
) = a

are

ij

and f

0

(�; �;
) = a

0

ij

. If a

are

ij

= 0 then (f �
)(�; �;
) = (f

0

�
)(�; �;
) = 0. If a

are

ij

= 1,

then j = i or fv

i

; v

j

g 2 E. If j = i, then f(�; �;
) = a

on

ii

= 0 and f

0

(�; �;
) = a

0

ii

= 0. If fv

i

; v

j

g 2 E,

f(�; �;
) = a

on

ij

= 1 and f

0

(�; �;
) = a

0

ij

= 1, sin
e in this
ase, v

i

and v

j

must have di�erent
olors.

If � = (1; : : : ; 1), then
(�; �;
) = 0.

For all other
hoi
es of �, � and
, we get f

0

(�; �;
) = f(�; �;
) = 0.

Now we will show that after applying the bmd redu
tion rules B

0

will have at most s nodes. It is easy to

see that f

0

i

= f

0

j

, if the verti
es v

i

and v

j

belong to the same
olor
lass. Thus all fun
tions f

0

i

belonging to

verti
es in the same
olor
lass
an be represented by the same subgraph of B

0

. Thus the subgraphs B

0

1

: : : B

0

n

an be merged to at most k di�erent subgraphs. The resulting redu
ed bmd has at most k(m+n(n+1)=2)+

n(n+ 1)=2 + 2 = s nodes.

(=: Now let a bmd B

0

for f

0

with f �
 = f

0

�
 be given for whi
h jB

0

j � s. Let f

0

i

:= f

0

j

x=b

n

i

. We de�ne a

oloring of G as follows.

Two verti
es v

i

, v

j

from G obtain the same
olor, i� f

0

i

= f

0

j

. It is easy to verify that this is a legal

oloring. We have to show that from f

0

i

= f

0

j

it follows that fv

i

; v

j

g =2 E. First, let us
onsider the
ase that

j

(b; b

n

i

) = a

are

ji

= 1, where b = (1; : : : ; 1). Then f

0

j

(b; b

n

i

) = f

j

(b; b

n

i

) = a

on

ji

and, sin
e

i

(b; b

n

i

) = a

are

ii

= 1,

f

0

i

(b; b

n

i

) = f

i

(b; b

n

i

) = a

on

ii

= 0. Thus f

0

i

= f

0

j

implies a

on

ji

= f

0

j

(b; b

n

i

) = f

0

i

(b; b

n

i

) = 0 and fv

i

; v

j

g =2 E. If

j

(b; b

n

i

) = a

are

ji

= 0, fv

i

; v

j

g =2 E follows dire
tly from the de�nition of a

are

ji

.

Now we have to show that our
oloring does not use too many
olors (at most k). We
laim that jB

0

j �

d(m+1), if there are at least d pairwise di�erent fun
tions f

0

i

with i 2 f1; : : : ; ng. For the proof of this
laim

we
onsider
ofa
tors h

ir

:= f

0

i

j

y

1

=1;:::;y

r

=1

of f

0

, where i 2 f1; : : : ; ng and r 2 f0; : : : ;mg (we let h

i0

:= f

0

i

).

We show that these
ofa
tors are represented in B

0

and that enough
ofa
tors are pairwise di�erent, su
h

that they are represented by di�erent nodes.

First we show that the
ofa
tor fun
tions h

ir

are represented by nodes of B

0

. We
onsider the node, whi
h is

rea
hed by the path (b

n

i

; b)

4

with b = (1; : : : ; 1) 2 f0; 1g

r

, and show that this node represents h

ir

. A

ording

to Lemma 2.1 the node rea
hed by (b

n

i

; b) represents the fun
tion

X

(�;�)�(b

n

i

;b)

(�1)

P

n

j=1

((b

n

i

)

j

��

j

)+

P

r

j=1

(b

j

��

j

)

f

0

x

1

=�

1

;:::;x

n

=�

n

;y

1

=�

1

;:::;y

r

=�

r

4

As de�ned in Se
tion 2.

11

Sin
e
j

x

1

=�

1

;:::;x

n

=�

n

� 1; f j

x

1

=�

1

;:::;x

n

=�

n

� 0 for � < b

n

i

and also

i

j

y

1

=1;:::;y

j�1

=1;y

j

=0

� 1; f

i

j

y

1

=1;:::;y

j�1

=1;y

j

=0

� 0; we have

f

0

j

x

1

=�

1

;:::;x

n

=�

n

� 0 for � < b

n

i

and f

0

i

j

y

1

=1;:::;y

j�1

=1;y

j

=0

� 0:

Therefore

X

(�;�)<(b

n

i

;b)

(�1)

P

n

j=1

((b

n

i

)

j

��

j

)+

P

r

j=1

(b

j

��

j

)

f

0

x

1

=�

1

;:::;x

n

=�

n

;y

1

=�

1

;:::;y

r

=�

r

� 0

and the node rea
hed by (b

n

i

; b) represents exa
tly h

ir

.

Now we
onsider a subset I � f1; : : : ; ng of indi
es with jI j = d, su
h that for all i 6= j 2 I f

0

i

6= f

0

j

. We show

that for all i 2 I , r 2 f0; : : : ;mg the
ofa
tors h

ir

are di�erent. For r

1

6= r

2

2 f0; : : : ;mg
ofa
tors h

ir

1

and

h

jr

2

are di�erent, sin
e for r 2 f0; : : : ;m�1g h

ir

depends on y

r+1

: h

ir

j

y

r+1

=0

= f

0

i

j

y

1

=1;:::;y

r

=1;y

r+1

=0

� 0 as al-

ready shown above and h

ir

j

y

r+1

=1

6� 0, sin
e h

ir

j

y

r+1

=1;:::;y

m

=1

=

f

0

i

j

y

1

=1;:::;y

m

=1

is not
onstant 0 (this follows from the fa
t that there is at least one outgoing edge fv

i

; v

j

g of

node v

i

in G and therefore f

0

i

j

y

1

=1;:::;y

m

=1

(b

n

j

) = a

on

ij

= 1).

Next we show that for i 6= j 2 I the fun
tions h

ir

and h

jr

are di�erent. For r = 0 h

i0

= f

0

i

6= f

0

j

= h

j0

.

Sin
e h

ir

j

y

r+1

=0

= h

jr

j

y

r+1

=0

� 0 (as shown above) h

ir

6= h

jr

implies h

i;r+1

6= h

j;r+1

and h

ir

6= h

jr

for all

r 2 f0; : : : ;mg follows by indu
tion.

We have de�ned jI j �(m+1) = d �(m+1) pairwise di�erent fun
tions, whi
h are not
onstant 0 and whi
h have

to be represented by nodes of B

0

. Sin
e no node
an represent two di�erent fun
tions, we have jB

0

j � d(m+1).

We are now able to
omplete the proof for \(=". Let d be the number of equivalen
e
lasses of equal

f

0

i

and thus the number of
olors of our
oloring. We know that jB

0

j � d(m + 1) and that jB

0

j � s =

k(m+ n(n+ 1)=2) + n(n+ 1)=2 + 2. Together with the fa
t that k � n, we obtain

d < k +

(k + 1)n(n+ 1)=2 + 2

m+ 1

� k +

n(n+ 1)

2

=2 + 2

m+ 1

and setting m := n(n+ 1)

2

=2 + 2 �nally d � k, i.e. we use at most k
olors.

It remains to prove that DCBMD

0

is in NP . It is possible to guess a bmd B

0

of size s. We have to prove that for

the fun
tion f

0

realized by B

0

the
he
k f �
 = f

0

�

an be done in polynomial time. To prove this, we use wl
ds

[18℄. A

ording to [18℄ B,
 and B

0

an be translated into wl
ds in linear time. Then we have to
he
k whether

(f � f

0

) �
 � 0. Subtra
tion of two wl
ds B and B

0

an be done in linear time and multipli
ation in quadrati

time. The better worst
ase
omplexity of operations for wl
ds has to be paid by a more
ompli
ated equivalen
e

he
k, but the
he
k is still polynomial. Although wl
ds are not a
anoni
al data stru
ture, the redu
tion of

a wl
d to a wl
d representing the same fun
tion with a minimal number of nodes
an be done in polynomial

time by Gaussian eliminations whi
h are performed level by level. Sin
e there is only one wl
d representing the

0{fun
tion, namely the empty wl
d
ontaining no nodes at all, we simply have to
he
k, whether the redu
ed

wl
d has zero nodes or not. This proves that the
he
k f �
 = f

0

�

an be done in polynomial time.

2

The proof for problem DC*BMD

0

an be done in a similar way by having a
lose look at the proof for DCBMD

0

.

Proof: (Sket
h)

We
onstru
t the same fun
tions f and
 as in the proof for bmds. To obtain a *bmd from the
onstru
ted graph

B we just have to apply additional redu
tion rules, whi
h
an further redu
e the graph size
ompared to bmds,

but it is
lear that the
onstru
tion
an also be performed in polynomial time.

In the \=)"{part of the proof for DCBMD

0

we
onstru
ted from a k{
oloring a bmd B of size � s. Here we

onstru
t the same graph and the additional *bmd redu
tion rules
an make the graph only smaller.

In the \(="{part we
onstru
ted a
oloring with d � k
olors from a bmd with at most s nodes. Due to additional

*bmd redu
tion rules this
onstru
tion has to be
hanged slightly for *bmds. Like in the proof for bmds we
onsider

fun
tions h

ir

, i 2 f1; : : : ; ng, r 2 f0; : : : ;mg. Fun
tions h

ir

are represented by nodes in the *bmd.

5

Now two verti
es

5

Here we use for fun
tions g 6� 0 the notion \g is represented by *bmd node v" i� g = k � f

v

for k 2 Zn f0g. Note that in a *bmd

there
annot be two nodes whi
h represent the same fun
tion in this sense.

12

v

i

; v

j

from G obtain the same
olor, i� h

i0

and h

j0

are represented by the same *bmd node. As in the bmd proof

we have to prove that this is a legal
oloring. We have to show that from the fa
t that h

i0

and h

j0

are represented

by the same *bmd node, i.e.

1

k

i

� h

i0

=

1

k

j

� h

j0

, k

j

� h

i0

= k

i

� h

j0

for k

i

; k

j

2 Zn f0g, it follows that fv

i

; v

j

g =2 E.

Again the �rst
ase is

j

(b; b

n

i

) = a

are

ji

= 1. Then h

j0

(b; b

n

i

) = f

j

(b; b

n

i

) = a

on

ji

and, sin
e

i

(b; b

n

i

) = a

are

ii

= 1,

h

i0

(b; b

n

i

) = f

i

(b; b

n

i

) = a

on

ii

= 0. Thus k

j

� h

i0

= k

i

� h

j0

implies k

i

� a

on

ji

= k

i

� h

j0

(b; b

n

i

) = k

j

� h

i0

(b; b

n

i

) = k

j

� 0 = 0.

Thus a

on

ji

= 0, sin
e k

i

6= 0 and therefore fv

i

; v

j

g =2 E. If

j

(b; b

n

i

) = a

are

ji

= 0, fv

i

; v

j

g =2 E follows from de�nition.

To prove that d � k we have to prove for the *bmd B

0

that jB

0

j � d(m+1). Again, this is proven by the fa
t, that

in the *bmd d(m + 1) di�erent fun
tions h

ir

6� 0 are represented by di�erent nodes. As in the
ase of bmds we

on
lude that fun
tions h

ir

and h

jr

0

with r 6= r

0

are represented by di�erent nodes, sin
e the fun
tions essentially

depend on a di�erent set of variables. Again we
onsider a subset I � f1; : : : ; ng of indi
es with jI j = d, su
h

that for all i 6= j 2 I h

i0

and h

j0

are represented by di�erent nodes, i.e. there exist no k

i

; k

j

2 Z n f0g with

k

j

�h

i0

= k

i

�h

j0

. We show that for i 6= j 2 I the fun
tions h

ir

and h

jr

(r 2 f0; : : : ;mg) are represented by di�erent

nodes. Sin
e h

ir

j

y

r+1

=0

= h

jr

j

y

r+1

=0

� 0, 9k

i

; k

j

2 Znf0gwith k

j

�h

i;r+1

= k

i

�h

j;r+1

would imply k

j

�h

ir

= k

i

�h

jr

and by indu
tion k

j

� h

i0

= k

i

� h

j0

, whi
h is a
ontradi
tion. From jB

0

j � d(m+ 1) we
on
lude again d � k.

The proof, that DC*BMD

0

is in NP ,
an be done in a
ompletely analogeous manner: Also *bmds
an be

transformed to wl
ds in linear time and the remaining arguments are the same.

2

Referen
es

[1℄ K. Bartlett, R. K. Brayton, G. Ha
htel, R. M. Ja
oby, C. R. Morrison, R. Rudell, A. L. Sangiovanni-Vin
entelli,

and A. R. Wang. Multilevel logi
 minimization using impli
it don't
ares. IEEE Trans. on CAD, 7(6):723{740,

1988.

[2℄ B. Bollig, M. L�obbing, M. Sauerho�, and I. Wegener. Complexity theoreti
al aspe
ts of OFDDs. IFIP WG

10.5 Workshop on Appli
ations of the Reed-Muller Expansion in Cir
uit Design, pages 198{205, 1995.

[3℄ R.E. Bryant. Graph - based algorithms for Boolean fun
tion manipulation. IEEE Trans. on Comp., 35(8):677{

691, 1986.

[4℄ R.E. Bryant. Binary de
ision diagrams and beyond: Enabeling te
hniques for formal veri�
ation. In Int'l

Conf. on CAD, pages 236{243, 1995.

[5℄ R.E. Bryant and Y.-A. Chen. Veri�
ation of arithmeti
 fun
tions with binary moment diagrams. In Design

Automation Conf., pages 535{541, 1995.

[6℄ S. Chang, D. Cheng, and M. Marek-Sadowska. Minimizing ROBDD size of in
ompletely spe
i�ed multiple

output fun
tions. In European Design & Test Conf., pages 620{624, 1994.

[7℄ Y.-A. Chen and R.E. Bryant. ACV: an arithmeti

ir
uit veri�er. In Int'l Conf. on CAD, pages 361{365,

1996.

[8℄ O. Coudert, C. Berthet, and J.C. Madre. Veri�
ation of sequential ma
hines based on symboli
 exe
ution. In

Automati
 Veri�
ation Methods for Finite State Systems, LNCS 407, pages 365{373, 1989.

[9℄ O. Coudert, C. Berthet, and J.C. Madre. Veri�
ation of sequential ma
hines using Boolean fun
tional ve
tors.

In Pro
eedings IFIP International Workshop on Applied Formal Methods for Corre
t VLSI Design, pages

111{128, 1989.

[10℄ K. Hamagu
hi, A. Morita, and S. Yajima. EÆ
ient
onstru
tion of binary moment diagrams for verifying

arithmeti

ir
uits. In Int'l Conf. on CAD, pages 78{82, 1995.

[11℄ M. Herbstritt. Erf�ullbarkeitsprobleme bei Word-Level De
ision Diagrams. Master's thesis, University Freiburg,

April 2000.

13

[12℄ Y. Hong, P.A. Beerel, J.R. Bur
h, and K.L. M
Millan. Safe BDD minimization using don't
ares. In Design

Automation Conf., pages 208{213, 1997.

[13℄ U. Kebs
hull, E. S
hubert, and W. Rosenstiel. Multilevel logi
 synthesis based on fun
tional de
ision diagrams.

In European Conf. on Design Automation, pages 43{47, 1992.

[14℄ M. Keim, M. Martin, B. Be
ker, R. Dre
hsler, and P. Molitor. Polynomial formal veri�
ation of multipliers.

In VLSI Test Symp., pages 150{155, 1997.

[15℄ A. Kuehlmann and F. Krohm. Equivalen
e
he
king using
uts and heaps. In Design Automation Conf., pages

263{268, 1997.

[16℄ S. Malik, A.R. Wang, R.K. Brayton, and A.L. Sangiovanni-Vin
entelli. Logi
 veri�
ation using binary de
ision

diagrams in a logi
 synthesis environment. In Int'l Conf. on CAD, pages 6{9, 1988.

[17℄ M. Sauerho� and I. Wegener. On the
omplexity of minimizing the OBDD size for in
ompletely spe
i�ed

fun
tions. IEEE Trans. on CAD, 15(11):1435{1437, 1996.

[18℄ C. S
holl, B. Be
ker, and T.M. Weis. Word-level de
ision diagrams, WLCDs and division. In Int'l Conf. on

CAD, pages 672{677, 1998.

[19℄ C. S
holl, S. Mel
hior, G. Hotz, and P. Molitor. Minimizing ROBDD sizes of in
ompletely spe
i�ed fun
tions

by exploiting strong symmetries. In European Design & Test Conf., pages 229{234, 1997.

[20℄ T.R. Shiple, R. Hojati, A.L. Sangiovanni-Vin
entelli, and R.K. Brayton. Heuristi
 minimization of BDDs

using don't
ares. In Design Automation Conf., pages 225{231, 1994.

[21℄ D. Varma and E.A. Tra
htenberg. Computation of Reed{Muller expansions of in
ompletely spe
i�ed boolean

fun
tions from redu
ed representations. IEE Pro
eedings, 138(2):85{92, 1991.

[22℄ Z. Zili
 and K. Rade
ka. Don't
are FDD minimization by interpolation. In Int'l Workshop on Logi
 Synth.,

pages 353{356, 1998.

14

