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Abstrat

We present for the �rst time methods to minimize *bmds exploiting don't are onditions. These minimiza-

tion methods an be used during the veri�ation of iruits by *bmds. By hanging funtion values for input

vetors, whih are in the don't are set, smaller *bmds an be omputed to keep peak memory onsumption during

*bmd onstrution as low as possible. We determine the omplexity of the problem of don't are minimization

for *bmds and thus justify the use of heuristis to approximate the solution. Preliminary experimental results

prove our heurists to be very e�etive in minimizing *bmd sizes.

1 Introdution

One of the most important tasks during the design of Integrated Ciruits is the veri�ation of an implemented

iruit, i.e., the hek whether the implementation ful�lls its spei�ation.

In the last few years several methods based on Deision Diagrams (DDs) have been proposed [16, 4, 15℄ to perform

veri�ation. The idea is to transform both implementation and spei�ation of a ombinational iruit into a DD.

Then, due to the anoniity of the DD representation, the equivalene hek for spei�ation and implementation

redues to the hek whether the orresponding DDs are idential.

The most popular data struture in this ontext were Binary Deision Diagrams (bdds) [3℄. They were applied

suessfully e.g. to the veri�ation of ontrol logi and integer adders. But there are funtions of high pratial

relevane (e.g. integer multipliers), whih annot be represented eÆiently by bdds. To overome the limitations

of bdds other types of DDs were de�ned, e.g. Binary Moment Diagrams (bmds) and Multipliative bmds (*bmds)

[5℄, whih are able to represent integer{valued pseudo Boolean funtions f : f0; 1g

n

! Z and whih are espeially

suited for arithmeti funtions.

When a iruit onsists of several modules or subiruits, existing methods to ompute the *bmd representing the

overall iruit ompute *bmds for the modules and ombine these *bmds to a *bmd for the overall iruit by *bmd

operations [7℄. Other methods use bakward onstrution [10, 14℄ from the iruit outputs towards the inputs and

ompose step by step the *bmd for a gate of the urrent ut front into the *bmd for the intermediate result.

A potential, whih has not been used in this proess so far, is the knowledge that ertain input ombinations

annot be applied to subiruits/modules. Input ombinations, whih annot be applied to subiruits, an be

given as don't are informations in the iruit spei�ation or an be omputed as satis�ability don't ares by

image omputations [1℄. These don't ares an be used to minimize *bmds { either before ombining the *bmds

for submodules by *bmd operations or in the bakward onstrution method when the proessing of a submodule,

for whih don't are informations are at hand, is �nished. In this ontext the minimization of *bmds by exploiting

don't are informations aims at reduing the *bmd sizes to keep peak memory onsumption as low as possible.

The problem we have to solve is to minimize a *bmd B for a funtion f

B

under don't are onditions given by a

harateristi funtion d (d(x) = 1, if x is a don't are vetor, i.e. x annot be applied to the subiruit realizing

f

B

). Sine d is a Boolean funtion, we assume that it is represented by a bdd. Our task is to ompute a *bmd B

0

realizing a funtion f

B

0

, suh that f

B

(x) = f

B

0

(x) for all x with d(x) = 0 and B

0

has a (nearly) minimum number

of nodes among all *bmds ful�lling this property.



To the best of our knowledge the heuristis presented in this paper are the �rst solution to this problem. For the

minimization of bdds under don't are onditions there is a number of methods in the literature, e.g. [9, 8, 6, 20,

19, 12℄. However for *bmds the problem seems to be more diÆult, sine due to the Davio deomposition in *bmds

a hange of the funtion value for a single input vetor (exploiting a don't are for this input vetor) has not only

a \loal e�et" in the Deision Diagram, but an a�et larger parts of the *bmd (see Setion 2). A paper whih

has some relations to our work in this sense is [22℄. In that work fdds [13℄ are minimized (whih are also based on

Davio deompositions). In fat our �rst method

1

to minimize *bmds (whih are representations of integer{valued

funtions) is somewhat similar to the minimization of fdds in [22℄ (fdds are representations of Boolean funtions).

Another related paper is [21℄, whih minimizes Reed{Muller forms. However the method from [21℄, whih deides,

whether to ip the value for a subset of oeÆients in the Reed{Muller spetrum from 0 to 1 (1 to 0) or not, with

the goal to maximize the number of zeros in the Reed{Muller spetrum, is not appliable when the values are

integers as for funtions represented by *bmds.

We developed two di�erent methods for the minimization of *bmds under don't are onditions. After Setion 2,

whih gives some basi de�nitions and notations, we determine the omplexity of the problem and present our two

heuristi methods in Setion 3. In Setion 4 we give preliminary experimental results to evaluate the approahes.

The minimization results are very promising. The �rst method was able to redue *bmd sizes by 75% on the

average, the seond even by 79%. Finally, Setion 5 onludes the paper and gives diretions for future researh.

2 Preliminaries

In this setion we give a brief review of bdds [3℄, bmds and *bmds [5℄. bdds are used to represent Boolean funtions

f : f0; 1g

n

! f0; 1g, and both bmds and *bmds represent integer{valued pseudo Boolean funtions f : f0; 1g

n

! Z.

A bdd is a rooted direted ayli graph G = (V;E) with non empty node set V ontaining two types of nodes,

non-terminal and terminal nodes. A non-terminal node v has as label a variable index(v) 2 fx

1

; : : : ; x

n

g and two

hildren low(v); high(v) 2 V . We all low(v) also 0{suessor(v) and high(v) 1{suessor( v). The edge leading

to low(v) (high(v)) is alled low (high) edge of v. bdds are ordered [3℄. A terminal node v is labeled with a value

value(v) 2 f0; 1g and has no outgoing edges. The Boolean funtion f

v

: f0; 1g

n

! f0; 1g de�ned by a bdd node

v is de�ned reursively: If v is a terminal node with value(v) =  2 f0; 1g, then f

v

(x

1

; : : : ; x

n

) =  and if v is

a non-terminal node with index(v) = x

i

, then f

v

(x

1

; : : : ; x

n

) = x

i

� f

low(v)

(x

1

; : : : ; x

n

) + x

i

� f

high(v)

(x

1

; : : : ; x

n

).

(bdds use the so-alled Shannon deomposition.) The funtion represented by a bdd B is equal to the funtion

represented by its root node v

root

.

Like bdds bmds are based on a rooted direted ayli graph. In ontrast to bdds the terminal nodes v are labeled

with values value(v) 2 Z. The reursive de�nition of the pseudo Boolean funtion f

v

: f0; 1g

n

! Z represented

by a bmd node v di�ers from bdds: If v is a terminal node with value(v) =  2 Z, then f

v

(x

1

; : : : ; x

n

) =  and if

v is a non-terminal node with index(v) = x

i

, then f

v

(x

1

; : : : ; x

n

) = f

low(v)

(x

1

; : : : ; x

n

) + x

i

� f

high(v)

(x

1

; : : : ; x

n

).

bmds use the so-alled positive Davio deomposition. It follows from this reursive de�nition that the funtion

represented by low(v) is equal to f

v

j

x

i

=0

y

, but in ontrast to Shannon deomposition the funtion represented by

high(v) is

f

v

j

x

i

=1

� f

v

j

x

i

=0

: (1)

Sine bmds use another deomposition type than bdds (positive Davio deomposition instead of Shannon deom-

position), the redution rules to redue the bmd sizes and to make bmds a anonial data struture have to be

hanged ompared to bdds: As in the ase of bdds, if for terminal nodes v and v

0

2 V value(v) = value(v

0

) or

if for non-terminal nodes v and v

0

index(v) = index(v

0

), low(v) = low(v

0

) and high(v) = high(v

0

) then v = v

0

.

However due to the Davio deomposition we have the redution rule that in a redued bmd there is no node v 2 V

with high(v) = t, t terminal node with value(t) = 0.

For simpliity we assume in the following that the variables our in the �xed order x

1

; : : : ; x

n

.

1

see Setion 3

y

For a funtion, f : f0; 1g

n

! Zf

x

i

=0

(f

x

i

=1

) is the funtion whih results from a substitution of x

i

by onstant 0 (1) and is alled

negative (positive) ofator of f with respet to x

i

.
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Figure 1: Example for a bmd.

To give a relation between nodes of a bmd B and ofators of the funtion f

B

represented by B, we de�ne \the

node whih is reahed by (�

1

; : : : ; �

l

) 2 f0; 1g

l

(l � n)":

To determine the node reahed by (�

1

; : : : ; �

l

) we start at the root node and follow the edges aording to (�

1

; : : : ; �

l

).

If we are at a node v labeled with x

i

and �

i

= 0, then we follow the edge to low(v) and if �

i

= 1, we go to high(v).

Speial attention has to be paid to the ase, when �

i

{suessor(v) has not label x

i+1

. If in this ase �

i

{suessor(v)

is a non{terminal, hoose k with x

k

= index(�

i

{suessor(v)) and if �

i

{suessor(v) is a terminal hoose k = n+1.

Then we have to take into aount, that in an non{redued version of the bmd the edge leading to �

i

{suessor(v)

would be replaed by a path of nodes leading to �

i

{suessor(v) where the labels are x

i+1

; : : : ; x

k�1

and the high

edges lead to the onstant 0, respetively. Therefore we go to �

i

{suessor(v) only if �

i+1

= : : : = �

k�1

= 0,

otherwise we say that the terminal 0 is reahed by (�

1

; : : : ; �

l

) (sine 0 would be reahed in a non{redued version

of the bmd). We all the node reahed by (�

1

; : : : ; �

l

) also (�

1

; : : : ; �

l

){node and the funtion represented by this

node f

(�

1

;:::;�

l

)

B

.

Example 2.1 Figure 1(a) shows an example of a bmd for funtion f with f(0; 0) = 1, f(0; 1) = 6, f(1; 0) = 5

and f(1; 1) = 10. The (0; 0){node is the terminal 1, the (0; 1){node is terminal 5, the (1; 0){node is terminal 4, but

the (1; 1){node is terminal 0, sine the high edge starting from the root leads to a terminal and not to a node with

label x

2

and { as shown in Figure 1(b) { in the non{redued bmd vetor (1; 1) leads to terminal 0.

Using (1) we an onlude the following lemma by indution:

Lemma 2.1 Let B be a bmd representing a funtion f

B

: f0; 1g

n

! Z and let v be the (�

1

; : : : ; �

l

){node (l � n).

Then the funtion f

(�

1

;:::;�

l

)

B

represented by v is equal to

f

(�

1

;:::;�

l

)

B

=

X

(Æ

1

;:::;Æ

l

)�(�

1

;:::;�

l

)

(�1)

P

l

i=1

(�

i

�Æ

i

)

f

B

j

x

1

=Æ

1

;:::;x

l

=Æ

l

: (2)

(For Æ; � 2 f0; 1g

l

: Æ � � i� Æ

i

� �

i

81 � i � l.)

Lemma 2.1 shows that the hange of the funtion f

B

for a single input vetor �, i.e. the hange of ofator f

B

j

x=�

,

has not only a \loal e�et" in the Deision Diagram, but a�ets all {nodes with � � .

*bmds were de�ned in [5℄ to further redue the size of bmds by inreasing the amount of subgraph sharing. In

*bmds eah edge has an additional multipliative edge weightm 2 Z, suh that an edge with edge weightm leading

to a node v represents a funtion m � f

v

. Redution rules guarantee that funtions 

1

� g and 

2

� g (

1

; 

2

2 Zn f0g)

are represented by the same node (but by di�erent edges).

3 Don't are assignment

In the following we present a solution to the problem to minimize a *bmd by assigning values to don't ares. We

have to solve the following problem DC*BMD:

3
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Figure 2: Example: bmd minimization.

Given: A *bmd B representing a funtion f : f0; 1g

n

! Z and a bdd C representing a funtion  : f0; 1g

n

! f0; 1g.

Find: A *bmd B

0

representing a funtion f

0

: f0; 1g

n

! Z, suh that f �  = f

0

�  and B

0

has the minimum number

of nodes among all *bmds ful�lling the same property (and respeting the same variable order).

The orresponding problem for bmds instead of *bmds is alled DCBMD.

DC*BMD and DCBMD are hard problems, more preisely we an prove the following theorem:

Theorem 3.1 DC*BMD and DCBMD are NP omplete.

Proof: The proof that DC*BMD and DCBMD are NP{hard is done by a redution from the graph olorability

problem. DC*BMD, DCBMD 2 NP is shown using wlds [18℄. For details see Appendix A. 2

Beause of this omplexity result we are looking for a heuristi solution of DC*BMD in the following.

3.1 Method min polynomial

Our �rst method min polynomial is motivated by the relationship between bmds over variables x

1

; : : : ; x

n

and poly-

nomials over x

1

; : : : ; x

n

: The rule to evaluate bmds diretly implies a method to derive the polynomial representing

the same funtion as the bmd. E.g. the funtion from Figure 1(a) is equal to (1 + x

2

� 5) + x

1

� 4 = 1 + 5x

2

+ 4x

1

.

In general the polynomial ontains the term  � x

�

1

1

� : : : � x

�

n

n

(x

1

i

= x

i

and x

0

i

= 1) if and only if the node reahed

by (�

1

; : : : ; �

n

) is terminal  6= 0.

It is easy to see that the size of the bmd B representing funtion f

B

is always less or equal to the size of the

polynomial

3

representing f

B

. Sine *bmds an be obtained from bmds by redution, this is learly also true for

*bmds.

Our �rst method onsists in a (heuristi) minimization of the size of this polynomial, whih is an upper bound

on the bmd and the *bmd size. For vetors (�

1

; : : : ; �

n

), suh that the terminal reahed by (�

1

; : : : ; �

n

) is  6= 0,

we try to use don't ares to hange the value of the terminal to zero. If (�

1

; : : : ; �

n

) is a don't are vetor, i.e.

d(�

1

; : : : ; �

n

) = 1, we hange the funtion value f

B

(�

1

; : : : ; �

n

) suh that the terminal reahed by (�

1

; : : : ; �

n

) will

be 0. Using the formula of Lemma 2.1 it is lear that we just have to set for the hanged funtion f

B

0

f

B

0

(�

1

; : : : ; �

n

) = f

B

(�

1

; : : : ; �

n

)� 

to ahieve this goal. After that we must not forget to adjust the values of other terminals aording to this hange

of f

B

(�

1

; : : : ; �

n

), sine the value of f

B

(�

1

; : : : ; �

n

) has an impat on all terminals, whih are reahed by vetors

 � �.

The main idea of our method min polynomial is illustrated in Figure 2(a). Figure 2(a) shows a bmd for the funtion

f : f0; 1g

2

! Z with polynomial 1 + 4x

2

+ 3x

1

+ 8x

1

x

2

. There are two don't are vetors: d(0; 0) = d(1; 1) = 1.

3

The size of a polynomial is de�ned as the number of onstants, variable names and operators + and � in the polynomial.
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1 *bmd funtion min polynomial(*bmd B;bdd DC)

2 if DC = 1 then return 0 �;

3 if DC = 0 then return B �

4 if B = onstant then return B �

5 if omputed table ontains entry result for (B;DC) then return result �

6 Let v be top variable of B and DC;

7 B

low

= Bj

v=0

; B

high

= Bj

v=1

�Bj

v=0

;

8 DC

low

= DCj

v=0

; DC

high

= DCj

v=1

9 B

0

low

:= min polynomial(B

low

; DC

low

)

10 B

0

high

:= min polynomial(B

high

+ (B

low

�B

0

low

); DC

high

)

11 B

0

= B

0

low

+ v �B

0

high

12 if size(B

0

) � size(B) then B

0

= B �

13 insert entry B

0

for (B;DC) in omputed table

14 return B

0

Figure 3: Pseudo ode for min polynomial.

The don't are values for (0; 0) and (1; 1) are represented in the bmd by the shaded boxes of terminals 1 and 8. At

�rst, we set terminal 1, whih is reahed by (0; 0) to 0. To ahieve this we make use of the don't are vetor (0; 0)

and hange f(0; 0) by adding �1. Then we have to propagate the hange to all terminals whih are reahed by

vetors > (0; 0). Aording to the formula of Lemma 2.1 we have to hange terminal 4 by adding 1, terminal 3 by

adding 1 and terminal 8 by adding �1. The resulting values for the terminals are given in Figure 2(a) in the row

1st d below the original terminals. Finally we make use of the don't are (1; 1) by adding -7 to f(1; 1) resulting in

a 0{terminal reahed by (1; 1). Sine there is no vetor greater than (1; 1), we do not have to propagate the hange

in this ase and the resulting terminals are shown in the seond row 2nd d below the original terminals. Finally,

we obtain a hanged funtion with polynomial 5x

2

+ 4x

1

. The redued version of the resulting bmd is shown on

the right hand side of Figure 2(a).

The order of proessing the di�erent don't are values in the example was not arbitrary: Sine we proess the

terminals from left to right the propagation of hanges due to other don't are assignments annot destroy the

zeros we have already set. For this reason our reursive proedure proesses the *bmd in a depth{�rst manner

following low edges before high edges. Pseudo ode of the resulting reursive proedure min polynomial to minimize

a *bmd B using don't ares spei�ed by a bdd DC is given in Figure 3. Note that in line 10 the propagation of

the hanges made to B

low

is performed by adding B

low

�B

0

low

to B

high

before applying min polynomial to B

high

.

3.2 Method independent dfs

The seond method is motivated by the \mathing siblings" heuristis from [20℄. This heuristis was introdued

to minimize bdds in a reursive proedure. When the proedure proesses a bdd node v, it tries to assign don't

ares in suh a way that low(v) and high(v) beome idential. If this is possible, we have to keep this subgraph

only one and additionally { beause of the bdd redution rules { node v an be removed, beause the subfuntion

is now independent from variable index(v).

Sine bmds use positive Davio deomposition instead of Shannon deomposition, the funtion represented by a node

v annot be made independent from variable index(v) by hanging low(v) and high(v) to make them idential.

Here we try to make use of don't ares to hange high(v), suh that it beomes 0. Then, the funtion represented

by v is independent from index(v) and we an delete high(v) and (aording to bmd redution rules) also node v.

5



1 *bmd funtion independent dfs(*bmd B;bdd DC)

2 if DC = 1 then return 0 �;

3 if DC = 0 then return B �

4 if B = onstant then return B �

5 if omputed table ontains entry result for (B;DC) then return result �

6 Let v be top variable of B and DC;

7 B

low

= Bj

v=0

; B

high

= Bj

v=1

�Bj

v=0

;

8 DC

low

= DCj

v=0

; DC

high

= DCj

v=1

9 (suess;B

low;diff

) := hek zero(B

high

; DC

low

; DC

high

)

10 if suess then

11 B

0

= independent dfs(B

low

+B

low;diff

; DC

low

�DC

high

)

12 else

13 B

0

low

:= independent dfs(B

low

; DC

low

)

14 B

0

high

:= independent dfs(B

high

+ (B

low

�B

0

low

); DC

high

)

15 B

0

= B

0

low

+ v � B

0

high

16 �

17 if size(B

0

) � size(B) then B

0

= B �

18 insert entry B

0

for (B;DC) in omputed table

19 return B

0

Figure 4: Pseudo ode for independent dfs.

Thus, we have to hek for a node v, whih is reahed by (�

1

; : : : ; �

l

), whether the node funtion an be made

independent from variable x

l+1

by exploiting don't ares from dj

x

1

=�

1

;:::;x

l

=�

l

. Figure 2(b) illustrates the method

using the same example as in Figure 2(a). At the beginning we hek whether the root node v an be made

independent from x

1

by using don't ares, whih is equivalent to the question, if we an set high(v) to zero. To do

this we an exploit don't ares both from dj

x

1

=0

and from dj

x

1

=1

, i.e. both the don't ares at (0; 0) and (1; 1) in

this example. The terminal reahed by (1; 0) annot be set to 0 using don't ares from dj

x

1

=1

, but it is possible to

use don't are (0; 0) (adding 3 to f(0; 0)) to set this terminal to 0. Then we use don't are (1; 1) to set the terminal

reahed by (1; 1) to 0 and in fat, it is possible to make the root node independent from x

1

. The hanged values

for the terminals are given in Figure 2(b) in the row below the original terminals. The redued bmd is given on

the right hand side of Figure 2(b). It is easy to see that it is not possible to make the remaining node independent

from x

2

, sine there are no don't ares whih ould be exploited. (Note that also the don't are (0; 0) must not be

used in the minimization of this node, sine it was already used to make the root funtion independent from x

1

.

Exploitation of don't are (0; 0) ould make the funtion depend on x

1

again.)

The hek, whether a funtion of a node v, whih is reahed by (�

1

; : : : ; �

l

), an be made independent from variable

x

l+1

using dj

x

1

=�

1

;:::;x

l

=�

l

an be formulated as a reursive proedure, whih heks �rst if the low son an be set

to 0 and then if the high son an be set to 0. This hek is used in a depth{�rst traversal of the *bmd. Whenever

we reah a node whih an be made independent from its top variable, we perform the modi�ation and the e�et

of the hange is propagated similar to proedure min polynomial.

Pseudo ode for proedure independent dfs, whih minimizes a *bmd B using a don't are set given by DC, is

shown in Figure 4. In line 9 the algorithm heks whether the high son B

high

of a node labeled by variable v an be

set to 0 or not. For this hek don't ares from two sets an be used: One set is represented by DC

high

= DCj

v=1

and the other set is represented by DC

low

= DCj

v=0

(see also example from Figure 2(b)). The hek is done by

a proedure hek zero. hek zero returns a Boolean variable suess, whih indiates, whether the hek was

6



1 (boolean; *bmd) funtion hek zero(*bmd B

H

;bdd DC

L

;bdd DC

H

)

2 if B

H

= 0 or DC

H

= 1 then return (1; 0 ) �

3 if B

H

= onstant and DC

H

= 0 and DC

L

= 1 then return (1; B

H

) �

4 if DC

H

= 0 and DC

L

= 0 then return (0; 0 ) �

5 if omputed table ontains entry result for (B

H

; DC

L

; DC

H

) then return result �

6 Let v be top variable of B

H

, DC

L

and DC

H

;

7 B

H;low

= B

H

j

v=0

; B

H;high

= B

H

j

v=1

�B

H

j

v=0

;

8 DC

L;low

= DC

L

j

v=0

; DC

L;high

= DC

L

j

v=1

; DC

H;low

= DC

H

j

v=0

; DC

H;high

= DC

H

j

v=1

9 (suess;B

L diff;low

) := hek zero(B

H;low

; DC

L;low

; DC

H;low

)

10 if suess = 0 then return (0; 0 ) �

11 (suess;B

L diff;high

) := hek zero(B

H;high

+B

H;low

; DC

L;high

; DC

H;high

)

12 if suess = 0 then return (0; 0 ) �

13 B

L diff

= (1� v) �B

L diff;low

+ v �B

L diff;high

14 insert entry (1; B

L diff

) for (B

H

; DC

L

; DC

H

) in omputed table

15 return (1; B

L diff

)

Figure 5: Pseudo ode for hek zero.

suessful or not, and a *bmd B

low;diff

. If the hek is not suessful (suess = 0 in line 10) the algorithm

proeeds like proedure min polynomial. If the hek is suessful, i.e. if B

high

an be set to 0, the exploitation

of don't ares from DC

low

has to be taken into aount: Exploiting don't ares from DC

low

means hanging the

negative ofator to set B

high

to 0. These hanges are returned as a *bmd B

low;diff

by the proedure hek zero.

Thus we have to minimize B

low

+ B

low;diff

instead of B

low

in line 11. The don't ares, whih we are allowed to

use in line 11, are not given by DC

low

, but only by DC

low

�DC

high

, sine we have to keep the result B

0

in line 11

independent from variable v.

For ompleteness, pseudo ode for the proedure hek zero whih heks, whether don't ares an be used to set

the funtion of a node to 0, an be found in Figure 5.

4 Experimental results

We implemented the two methods for *bmd minimization based on wld, an experimental Word-Level DD pakage

developed at University of Freiburg [11℄ and performed experiments to ompare the di�erent approahes. The

experiments were performed using a SPARC UltraII with a memory limit of 400 MB.

To generate inompletely spei�ed funtions from ompletely spei�ed funtions, we used a method proposed in

[6℄: After ollapsing eah benhmark iruit to two level form, we randomly seleted ubes in the on-set with a

probability of 40% to be inluded into the don't are set. The ubes whih were not seleted to be inluded in

the don't are set were used to onstrut a *bmd to represent a weighted sum of the output funtions (output i

weighted by 2

i

). For the don't are set a bdd was omputed. As variable order we used the initial order given in

the benhmark spei�ation. The results are summarized in Table 1. In the �rst olumn the benhmark iruit

is given, in the seond olumn the number of primary inputs and in the third olumn the number of primary

outputs. Column 4 shows the number of bdd nodes needed to represent the don't are set and olumn 5 the

number of nodes needed to represent the initial *bmd. Columns 6{8 give the *bmd sizes after minimization. Three

di�erent methods are ompared: For omparison we give in olumn az the simple method to set all don't are

input vetors to funtion value 0, whih an be done by omputing f

B

� d. Column mp gives the results for our

proedure min polynomial and olumn dfs the results for our proedure independent dfs. Columns 9{11 give the

7



j�bmd

min

j ratio

j�bmd

min

j

j�bmdj

Time

Ciruit #PI #PO jDCj j�bmdj

az mp dfs az mp dfs az mp dfs

5xp1 7 10 15 76 19 12 3 0.250 0.157 0.039 0:00 0:00 0:00

9symml 9 1 97 223 242 183 182 1.085 0.820 0.816 0:09 0:00 0:00

alu2 10 6 91 401 372 139 147 0.927 0.346 0.366 0:30 0:01 0:01

apex7 49 37 120 1390 2305 118 49 1.658 0.084 0.035 0:08 1:28 3:27

8 28 18 126 346 336 17 13 0.971 0.049 0.037 0:02 1:23 0:02

mux 21 1 5798 60 47 34 34 0.783 0.566 0.566 0:00 0:06 0:18

pler8 27 17 34 44 61 32 21 1.386 0.727 0.477 0:01 0:00 0:09

rd73 7 3 36 89 87 43 36 0.977 0.483 0.404 0:02 0:00 0:00

rd84 8 4 65 196 200 114 81 1.020 0.581 0.413 0:15 0:00 0:00

sao2 10 4 52 128 96 47 37 0.750 0.367 0.289 0:01 0:00 0:00

z4ml 7 4 30 69 87 30 26 1.260 0.434 0.376 0:00 0:00 0:00

P

3022 3852 769 629 1.247 0.254 0.208

Table 1: Results for don't are minimization.

ratios \size of minimized *bmd divided by size of initial *bmd", again for the three di�erent methods. Finally the

orresponding CPU times are given in olumns 12{14 in format minutes:seonds, rounded to seonds.

The results show that setting all don't ares to 0 (olumns az) is not a suessful method. On the average the

sizes even inrease by 24.7%. In ontrast, our two methods for don't are minimization are both very e�etive in

minimizing the *bmd sizes: Method min polynomial (olumns mp) is able to redue *bmd sizes by 74.6% on the

average and method independent dfs (olumns dfs) redues the sizes even by 79.2%. Columns 13 and 14 show that

these results an be ahieved within a small amount of run time.

5 Conlusions and future work

We presented two heuristi methods for don't are minimization of *bmds. Experimental results proved them to

be very e�etive in reduing *bmd sizes within a small amount of CPU time.

At the moment we are working on a modi�ed version of method independent dfs, whih is based on the observation

that in ontrast to bdds [20℄ for *bmds the order in whih we proess the nodes an inuene the quality of the

result due to the propagation of the hange. Setting the high son of a node v to 0 an destroy the possibility to set

the high son of another node v

0

to 0. Sine the subgraph of the high son of a node at a higher level in the *bmd

will be larger on the average, we expet that the gain of setting the high son of suh a node to 0 is also larger.

Therefore nodes at higher levels should be proessed �rst leading to a breadth-�rst traversal of the *bmd instead

of a depth-�rst traversal.

Moreover, we are working on an appliation of our *bmd minimization in the veri�ation of Pentium style integer

dividers to keep peak memory onsumption small during bakward onstrution [10℄. Don't ares are omputed

by an iterative image omputation for the di�erent add&shift stages.

A Proof of Theorem 3.1

We prove Theorem 3.1 for the deision problem versions DCBMD

0

and DC*BMD

0

of DCBMD and DC*BMD.

DCBMD

0

: Given a bmd B representing a funtion f : f0; 1g

n

! Z, a bdd C representing a funtion  : f0; 1g

n

!

f0; 1g and a onstant s 2 IN . Is there a bmd B

0

of size � s (with the same variable order) representing a

funtion f

0

: f0; 1g

n

! Z, suh that f �  = f

0

� ?

DC*BMD

0

: Given a *bmd B representing a funtion f : f0; 1g

n

! Z, a bdd C representing a funtion  : f0; 1g

n

! f0; 1g and a onstant s 2 IN . Is there a *bmd B

0

of size � s (with the same variable order) representing

a funtion f

0

: f0; 1g

n

! Z, suh that f �  = f

0

� ?
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Figure 6: De�nition of bmd B.

At �rst, we prove the theorem for problem DCBMD

0

.

Proof: The �rst part is to prove that DCBMD

0

is NP-hard. The proof uses ideas and proof tehniques from [17℄

and [2℄. In [17℄ Sauerho� and Wegener prove that minimizing the bdd size of inompletely spei�ed funtions is

NP-hard and in [2℄ Bollig, L�obbing, Sauerho� and Wegener prove that the same problem is NP-hard for fdds.

Sine fdds also use the positive Davio deomposition, the proof an be adapted to bmds.

Similar to [2℄ and [17℄ we onstrut a redution from the well-known graph olorability problem (GC) to DCBMD

0

.

An instane of GC is a onneted undireted graph G = (V;E) with the property that E does not ontain any

edges fv; vg, v 2 V , and a number k. The problem is to deide whether G has a k-oloring, i.e. whether there is

a funtion � : V ! f1; : : : ; kg, suh that the endpoints of the edges are olored di�erently (�(v) 6= �(w) for all

fv; wg 2 E.

Let G = (V = fv

1

; : : : ; v

n

g; E) and k be the given instane for GC. The orresponding instane for DCBMD

0

onsists of a bmd B, a bdd C and a size bound s.

For the bmd and the bdd we use the following variables (where m is a parameter de�ned later on in the proof);

the variables are to be tested in the given order:

x

1

; : : : ; x

n

; y

1

; : : : ; y

m

; z

1

; : : : ; z

n

:

We �rst desribe the bmd B. This bmd realizes almost the same funtion as in the proof of [2℄. The funtion

values are only 0 and 1, but we have to take into aount that we have to onstrut a bmd, i.e. a word{level data

struture. We use a substruture depending on the x{variables at the top of B as a swith to hoose exatly one

of the sub{bmds B

1

; : : : ; B

n

of B (see Figure 6(a)). These sub{bmds will orrespond to the verties of the graph

G. Let f be the funtion omputed by B and let f

i

be the funtion omputed by the sub{bmd B

i

.

All the sub{bmds B

i

for i = 1; : : : ; n have the struture shown in Figure 6(b). The number m of y{nodes will be

needed to adjust the graph size of the sub{bmds B

i

. The part ontaining the z{variables again is a swith. This

time, one of the onstants a

on

ij

(j 2 f1; : : : ; ng) desribing the neighborhood of vertex v

i

in G is hosen by the

swith. We de�ne for j 2 f1; : : : ; ng

a

on

ij

:=

�

1; if fv

i

; v

j

g 2 E;

0; otherwise.

Note that espeially a

on

ii

= 0 for 1 � i � n.

The value of a

on

i;n+1

is set to (�1) �

P

n

j=1

a

on

ij

, suh that the sum of all values a

on

ij

equals zero.
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Figure 7: De�nition of bdd C.

We have to �nd out now whih funtion is represented by the thus onstruted bmd. Let b

r

i

denote an input vetor

of length r, whih has a zero at the i{th position and ones everywhere else. Examining the onstrution of B, we

�nd out that

f j

x=�

:=

8

<

:

f

i

; if � = b

n

i

;

P

n

i=1

f

i

; if � = (1; : : : ; 1);

0 ; if � 2 f0; 1g

n

n fb

n

1

; : : : ; b

n

n

; (1; : : : ; 1)g:

A sub{bmd B

i

obviously omputes zero, if at least one of the y{variables is zero. The part ontaining the z{variables

has the same struture as the top part of B, so it is easy to see that for 1 � i � n, � 2 f0; 1g

m

,  2 f0; 1g

n

f

i

(�; ) :=

�

a

on

i;j

; if � = (1; : : : ; 1) and  = b

n

j

;

0 ; otherwise.

Note that for � = (1; : : : ; 1) and  = (1; : : : ; 1) the de�nition a

on

i;n+1

= (�1) �

P

n

j=1

a

on

ij

guarantees that f

i

(�; ) = 0.

The are set for funtion f has to be spei�ed by a bdd C. Before we onstrut a bdd C to represent a harateristi

funtion  of the are set, we de�ne values a

are

ij

as follows (1 � i; j � n):

a

are

ij

:=

�

1; if j = i _ fv

i

; v

j

g 2 E;

0; otherwise.

The underlying graph of the bdd is similar to the bmd. The top part of the graph is given by Figure 7(a). It

di�ers from the graph in Figure 6(a) from the fat, that terminals 0 are replaed by terminals 1 (exept the last

0), for 1 � i � n B

i

is replaed by C

i

.

The graphs for the sub{bdds C

i

(1 � i � n) are given by Figure 7(b). Again, the di�erene to the graph in Figure

6(b) lies in the fat, that terminals 0 are replaed by terminals 1, a

on

ij

are replaed by a

are

ij

(1 � j � n) and a

on

i;n+1

is replaed by 1.

Let  be the funtion omputed by C, then it is easy to see that for �;  2 f0; 1g

n

and for � 2 f0; 1g

m

(�; �; ) :=

8

<

:

a

are

ij

; if � = b

n

i

; � = (1; : : : ; 1);  = b

n

j

; (i; j 2 f1; : : : ; ng);

0 ; if � = (1; : : : ; 1);

1 ; otherwise.
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Like for f

i

and B

i

we use in the following the notion 

i

for the funtion represented by C

i

; 

i

= 

x=b

n

i

.

Finally, we hoose s := k(m + n(n + 1)=2) + n(n + 1)=2 + 2 for the bmd size in the instane of DCBMD

0

. Both

onstruted graphs B and C have size O(nm+n

3

). We will �x m to n(n+1)

2

=2+2 below, so that these sizes are

polynomial in n. Note that stritly speaking B and C are not a bmd and a bdd, sine it is possible that redution

rules are appliable to B and C to redue the graph size. However the redution of B to a bmd and of C to a bdd

an easily be done in polynomial time and it an only redue the size. All in all we an say that the size of the

onstruted instane of DCBMD

0

is polynomial in n and an be omputed in polynomial time.

We have to show that

(G; k) 2 GC () (B;C; s) 2 DCBMD

0

:

=): Let a k{oloring of G be given. We have to onstrut a bmd B

0

whih omputes a funtion f

0

suh that

f �  = f

0

�  and whose size is bounded by s. For B

0

we use the same graph struture as for B.

Let f

0

be the funtion represented by the bmd B

0

and let f

0

i

be the funtion of the subgraph B

0

i

de�ned in

the same way as in the onstrution of B.

For 1 � i; j � n we replae a

on

ij

by

a

0

ij

:=

�

0; if v

i

and v

j

have the same olor;

1; otherwise.

The value of a

0

i;n+1

is set to (�1) �

P

n

j=1

a

0

i;j

, suh that also in B

0

the sum of all values a

0

ij

equals zero.

We �rst verify that indeed f �  = f

0

� . Let � = b

n

i

, � = (1; : : : ; 1) and  = b

n

j

, i.e. an input where

(�; �; ) = a

are

ij

and f

0

(�; �; ) = a

0

ij

. If a

are

ij

= 0 then (f � )(�; �; ) = (f

0

� )(�; �; ) = 0. If a

are

ij

= 1,

then j = i or fv

i

; v

j

g 2 E. If j = i, then f(�; �; ) = a

on

ii

= 0 and f

0

(�; �; ) = a

0

ii

= 0. If fv

i

; v

j

g 2 E,

f(�; �; ) = a

on

ij

= 1 and f

0

(�; �; ) = a

0

ij

= 1, sine in this ase, v

i

and v

j

must have di�erent olors.

If � = (1; : : : ; 1), then (�; �; ) = 0.

For all other hoies of �, � and , we get f

0

(�; �; ) = f(�; �; ) = 0.

Now we will show that after applying the bmd redution rules B

0

will have at most s nodes. It is easy to

see that f

0

i

= f

0

j

, if the verties v

i

and v

j

belong to the same olor lass. Thus all funtions f

0

i

belonging to

verties in the same olor lass an be represented by the same subgraph of B

0

. Thus the subgraphs B

0

1

: : : B

0

n

an be merged to at most k di�erent subgraphs. The resulting redued bmd has at most k(m+n(n+1)=2)+

n(n+ 1)=2 + 2 = s nodes.

(=: Now let a bmd B

0

for f

0

with f �  = f

0

�  be given for whih jB

0

j � s. Let f

0

i

:= f

0

j

x=b

n

i

. We de�ne a

oloring of G as follows.

Two verties v

i

, v

j

from G obtain the same olor, i� f

0

i

= f

0

j

. It is easy to verify that this is a legal

oloring. We have to show that from f

0

i

= f

0

j

it follows that fv

i

; v

j

g =2 E. First, let us onsider the ase that



j

(b; b

n

i

) = a

are

ji

= 1, where b = (1; : : : ; 1). Then f

0

j

(b; b

n

i

) = f

j

(b; b

n

i

) = a

on

ji

and, sine 

i

(b; b

n

i

) = a

are

ii

= 1,

f

0

i

(b; b

n

i

) = f

i

(b; b

n

i

) = a

on

ii

= 0. Thus f

0

i

= f

0

j

implies a

on

ji

= f

0

j

(b; b

n

i

) = f

0

i

(b; b

n

i

) = 0 and fv

i

; v

j

g =2 E. If



j

(b; b

n

i

) = a

are

ji

= 0, fv

i

; v

j

g =2 E follows diretly from the de�nition of a

are

ji

.

Now we have to show that our oloring does not use too many olors (at most k). We laim that jB

0

j �

d(m+1), if there are at least d pairwise di�erent funtions f

0

i

with i 2 f1; : : : ; ng. For the proof of this laim

we onsider ofators h

ir

:= f

0

i

j

y

1

=1;:::;y

r

=1

of f

0

, where i 2 f1; : : : ; ng and r 2 f0; : : : ;mg (we let h

i0

:= f

0

i

).

We show that these ofators are represented in B

0

and that enough ofators are pairwise di�erent, suh

that they are represented by di�erent nodes.

First we show that the ofator funtions h

ir

are represented by nodes of B

0

. We onsider the node, whih is

reahed by the path (b

n

i

; b)

4

with b = (1; : : : ; 1) 2 f0; 1g

r

, and show that this node represents h

ir

. Aording

to Lemma 2.1 the node reahed by (b

n

i

; b) represents the funtion

X

(�;�)�(b

n

i

;b)

(�1)

P

n

j=1

((b

n

i

)

j

��

j

)+

P

r

j=1

(b

j

��

j

)

f

0

x

1

=�

1

;:::;x

n

=�

n

;y

1

=�

1

;:::;y

r

=�

r

4

As de�ned in Setion 2.
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Sine j

x

1

=�

1

;:::;x

n

=�

n

� 1; f j

x

1

=�

1

;:::;x

n

=�

n

� 0 for � < b

n

i

and also



i

j

y

1

=1;:::;y

j�1

=1;y

j

=0

� 1; f

i

j

y

1

=1;:::;y

j�1

=1;y

j

=0

� 0; we have

f

0

j

x

1

=�

1

;:::;x

n

=�

n

� 0 for � < b

n

i

and f

0

i

j

y

1

=1;:::;y

j�1

=1;y

j

=0

� 0:

Therefore

X

(�;�)<(b

n

i

;b)

(�1)

P

n

j=1

((b

n

i

)

j

��

j

)+

P

r

j=1

(b

j

��

j

)

f

0

x

1

=�

1

;:::;x

n

=�

n

;y

1

=�

1

;:::;y

r

=�

r

� 0

and the node reahed by (b

n

i

; b) represents exatly h

ir

.

Now we onsider a subset I � f1; : : : ; ng of indies with jI j = d, suh that for all i 6= j 2 I f

0

i

6= f

0

j

. We show

that for all i 2 I , r 2 f0; : : : ;mg the ofators h

ir

are di�erent. For r

1

6= r

2

2 f0; : : : ;mg ofators h

ir

1

and

h

jr

2

are di�erent, sine for r 2 f0; : : : ;m�1g h

ir

depends on y

r+1

: h

ir

j

y

r+1

=0

= f

0

i

j

y

1

=1;:::;y

r

=1;y

r+1

=0

� 0 as al-

ready shown above and h

ir

j

y

r+1

=1

6� 0, sine h

ir

j

y

r+1

=1;:::;y

m

=1

=

f

0

i

j

y

1

=1;:::;y

m

=1

is not onstant 0 (this follows from the fat that there is at least one outgoing edge fv

i

; v

j

g of

node v

i

in G and therefore f

0

i

j

y

1

=1;:::;y

m

=1

(b

n

j

) = a

on

ij

= 1).

Next we show that for i 6= j 2 I the funtions h

ir

and h

jr

are di�erent. For r = 0 h

i0

= f

0

i

6= f

0

j

= h

j0

.

Sine h

ir

j

y

r+1

=0

= h

jr

j

y

r+1

=0

� 0 (as shown above) h

ir

6= h

jr

implies h

i;r+1

6= h

j;r+1

and h

ir

6= h

jr

for all

r 2 f0; : : : ;mg follows by indution.

We have de�ned jI j �(m+1) = d �(m+1) pairwise di�erent funtions, whih are not onstant 0 and whih have

to be represented by nodes of B

0

. Sine no node an represent two di�erent funtions, we have jB

0

j � d(m+1).

We are now able to omplete the proof for \(=". Let d be the number of equivalene lasses of equal

f

0

i

and thus the number of olors of our oloring. We know that jB

0

j � d(m + 1) and that jB

0

j � s =

k(m+ n(n+ 1)=2) + n(n+ 1)=2 + 2. Together with the fat that k � n, we obtain

d < k +

(k + 1)n(n+ 1)=2 + 2

m+ 1

� k +

n(n+ 1)

2

=2 + 2

m+ 1

and setting m := n(n+ 1)

2

=2 + 2 �nally d � k, i.e. we use at most k olors.

It remains to prove that DCBMD

0

is in NP . It is possible to guess a bmd B

0

of size s. We have to prove that for

the funtion f

0

realized by B

0

the hek f �  = f

0

�  an be done in polynomial time. To prove this, we use wlds

[18℄. Aording to [18℄ B,  and B

0

an be translated into wlds in linear time. Then we have to hek whether

(f � f

0

) �  � 0. Subtration of two wlds B and B

0

an be done in linear time and multipliation in quadrati

time. The better worst ase omplexity of operations for wlds has to be paid by a more ompliated equivalene

hek, but the hek is still polynomial. Although wlds are not a anonial data struture, the redution of

a wld to a wld representing the same funtion with a minimal number of nodes an be done in polynomial

time by Gaussian eliminations whih are performed level by level. Sine there is only one wld representing the

0{funtion, namely the empty wld ontaining no nodes at all, we simply have to hek, whether the redued

wld has zero nodes or not. This proves that the hek f �  = f

0

�  an be done in polynomial time.

2

The proof for problem DC*BMD

0

an be done in a similar way by having a lose look at the proof for DCBMD

0

.

Proof: (Sketh)

We onstrut the same funtions f and  as in the proof for bmds. To obtain a *bmd from the onstruted graph

B we just have to apply additional redution rules, whih an further redue the graph size ompared to bmds,

but it is lear that the onstrution an also be performed in polynomial time.

In the \=)"{part of the proof for DCBMD

0

we onstruted from a k{oloring a bmd B of size � s. Here we

onstrut the same graph and the additional *bmd redution rules an make the graph only smaller.

In the \(="{part we onstruted a oloring with d � k olors from a bmd with at most s nodes. Due to additional

*bmd redution rules this onstrution has to be hanged slightly for *bmds. Like in the proof for bmds we onsider

funtions h

ir

, i 2 f1; : : : ; ng, r 2 f0; : : : ;mg. Funtions h

ir

are represented by nodes in the *bmd.

5

Now two verties

5

Here we use for funtions g 6� 0 the notion \g is represented by *bmd node v" i� g = k � f

v

for k 2 Zn f0g. Note that in a *bmd

there annot be two nodes whih represent the same funtion in this sense.

12



v

i

; v

j

from G obtain the same olor, i� h

i0

and h

j0

are represented by the same *bmd node. As in the bmd proof

we have to prove that this is a legal oloring. We have to show that from the fat that h

i0

and h

j0

are represented

by the same *bmd node, i.e.

1

k

i

� h

i0

=

1

k

j

� h

j0

, k

j

� h

i0

= k

i

� h

j0

for k

i

; k

j

2 Zn f0g, it follows that fv

i

; v

j

g =2 E.

Again the �rst ase is 

j

(b; b

n

i

) = a

are

ji

= 1. Then h

j0

(b; b

n

i

) = f

j

(b; b

n

i

) = a

on

ji

and, sine 

i

(b; b

n

i

) = a

are

ii

= 1,

h

i0

(b; b

n

i

) = f

i

(b; b

n

i

) = a

on

ii

= 0. Thus k

j

� h

i0

= k

i

� h

j0

implies k

i

� a

on

ji

= k

i

� h

j0

(b; b

n

i

) = k

j

� h

i0

(b; b

n

i

) = k

j

� 0 = 0.

Thus a

on

ji

= 0, sine k

i

6= 0 and therefore fv

i

; v

j

g =2 E. If 

j

(b; b

n

i

) = a

are

ji

= 0, fv

i

; v

j

g =2 E follows from de�nition.

To prove that d � k we have to prove for the *bmd B

0

that jB

0

j � d(m+1). Again, this is proven by the fat, that

in the *bmd d(m + 1) di�erent funtions h

ir

6� 0 are represented by di�erent nodes. As in the ase of bmds we

onlude that funtions h

ir

and h

jr

0

with r 6= r

0

are represented by di�erent nodes, sine the funtions essentially

depend on a di�erent set of variables. Again we onsider a subset I � f1; : : : ; ng of indies with jI j = d, suh

that for all i 6= j 2 I h

i0

and h

j0

are represented by di�erent nodes, i.e. there exist no k

i

; k

j

2 Z n f0g with

k

j

�h

i0

= k

i

�h

j0

. We show that for i 6= j 2 I the funtions h

ir

and h

jr

(r 2 f0; : : : ;mg) are represented by di�erent

nodes. Sine h

ir

j

y

r+1

=0

= h

jr

j

y

r+1

=0

� 0, 9k

i

; k

j

2 Znf0gwith k

j

�h

i;r+1

= k

i

�h

j;r+1

would imply k

j

�h

ir

= k

i

�h

jr

and by indution k

j

� h

i0

= k

i

� h

j0

, whih is a ontradition. From jB

0

j � d(m+ 1) we onlude again d � k.

The proof, that DC*BMD

0

is in NP , an be done in a ompletely analogeous manner: Also *bmds an be

transformed to wlds in linear time and the remaining arguments are the same.

2
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