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Abstract
We present for the first time methods to minimize *BMDs exploiting don’t care conditions. These minimiza-
tion methods can be used during the verification of circuits by *BMDs. By changing function values for input
vectors, which are in the don’t care set, smaller *BMDs can be computed to keep peak memory consumption during
*BMD construction as low as possible. We determine the complexity of the problem of don’t care minimization
for *BMDs and thus justify the use of heuristics to approximate the solution. Preliminary experimental results
prove our heuristcs to be very effective in minimizing ¥BMD sizes.

1 Introduction

One of the most important tasks during the design of Integrated Clircuits is the verification of an implemented
circuit, i.e., the check whether the implementation fulfills its specification.

In the last few years several methods based on Decision Diagrams (DDs) have been proposed [16, 4, 15] to perform
verification. The idea is to transform both implementation and specification of a combinational circuit into a DD.
Then, due to the canonicity of the DD representation, the equivalence check for specification and implementation
reduces to the check whether the corresponding DDs are identical.

The most popular data structure in this context were Binary Decision Diagrams (BDDs) [3]. They were applied
successfully e.g. to the verification of control logic and integer adders. But there are functions of high practical
relevance (e.g. integer multipliers), which cannot be represented efficiently by BDDs. To overcome the limitations
of BDDs other types of DDs were defined, e.g. Binary Moment Diagrams (BMDs) and Multiplicative BMDs (*BMDSs)
[5], which are able to represent integer—valued pseudo Boolean functions f : {0,1}" — Z and which are especially
suited for arithmetic functions.

When a circuit consists of several modules or subcircuits, existing methods to compute the *BMD representing the
overall circuit compute *BMDs for the modules and combine these *BMDs to a *BMD for the overall circuit by *BMD
operations [7]. Other methods use backward construction [10, 14] from the circuit outputs towards the inputs and
compose step by step the *BMD for a gate of the current cut front into the *BMD for the intermediate result.

A potential, which has not been used in this process so far, is the knowledge that certain input combinations
cannot be applied to subcircuits/modules. Input combinations, which cannot be applied to subcircuits, can be
given as don’t care informations in the circuit specification or can be computed as satisfiability don’t cares by
image computations [1]. These don’t cares can be used to minimize *BMDs — either before combining the *BMDs
for submodules by *BMD operations or in the backward construction method when the processing of a submodule,
for which don’t care informations are at hand, is finished. In this context the minimization of *BMDs by exploiting
don’t care informations aims at reducing the *BMD sizes to keep peak memory consumption as low as possible.

The problem we have to solve is to minimize a *BMD B for a function fp under don’t care conditions given by a
characteristic function dc (dc(z) = 1, if z is a don’t care vector, i.e. z cannot be applied to the subcircuit realizing
fB). Since dc is a Boolean function, we assume that it is represented by a BDD. Our task is to compute a *BMD B’
realizing a function fp, such that fp(z) = fp:(z) for all z with de(z) = 0 and B’ has a (nearly) minimum number
of nodes among all *BMDs fulfilling this property.



To the best of our knowledge the heuristics presented in this paper are the first solution to this problem. For the
minimization of BDDs under don’t care conditions there is a number of methods in the literature, e.g. [9, 8, 6, 20,
19, 12]. However for *BMDs the problem seems to be more difficult, since due to the Davio decomposition in *BMDs
a change of the function value for a single input vector (exploiting a don’t care for this input vector) has not only
a “local effect” in the Decision Diagram, but can affect larger parts of the *BMD (see Section 2). A paper which
has some relations to our work in this sense is [22]. In that work FDDs [13] are minimized (which are also based on
Davio decompositions). In fact our first method! to minimize *BMDs (which are representations of integer—valued
functions) is somewhat similar to the minimization of FDDs in [22] (FDDs are representations of Boolean functions).
Another related paper is [21], which minimizes Reed—Muller forms. However the method from [21], which decides,
whether to flip the value for a subset of coefficients in the Reed—Muller spectrum from 0 to 1 (1 to 0) or not, with
the goal to maximize the number of zeros in the Reed—Muller spectrum, is not applicable when the values are
integers as for functions represented by *BMDs.

We developed two different methods for the minimization of *BMDs under don’t care conditions. After Section 2,
which gives some basic definitions and notations, we determine the complexity of the problem and present our two
heuristic methods in Section 3. In Section 4 we give preliminary experimental results to evaluate the approaches.
The minimization results are very promising. The first method was able to reduce *BMD sizes by 75% on the
average, the second even by 79%. Finally, Section 5 concludes the paper and gives directions for future research.

2 Preliminaries

In this section we give a brief review of BDDs [3], BMDs and *BMDs [5]. BDDs are used to represent Boolean functions
f:{0,1}" — {0,1}, and both BMDs and *BMDs represent integer—valued pseudo Boolean functions f : {0,1}" — Z.

A BDD is a rooted directed acyclic graph G = (V, E) with non empty node set V containing two types of nodes,
non-terminal and terminal nodes. A non-terminal node v has as label a variable indez(v) € {zi,...,2,} and two
children low(v), high(v) € V. We call low(v) also 0-successor(v) and high(v) 1-successor( v). The edge leading
to low(v) (high(v)) is called low (high) edge of v. BDDs are ordered [3]. A terminal node v is labeled with a value
value(v) € {0,1} and has no outgoing edges. The Boolean function f, : {0,1}" — {0, 1} defined by a BDD node
v is defined recursively: If v is a terminal node with value(v) = ¢ € {0,1}, then f,(z1,...,2,) = ¢ and if v is
a non-terminal node with index(v) = z;, then f,(z1,...,%0) = %5 - fiow(w)(Z1,--+5 Tn) + Ti * frigh(v)(T1,- -\ Tn).
(BDDs use the so-called Shannon decomposition.) The function represented by a BDD B is equal to the function
represented by its root node v,p0¢.

Like BDDs BMDs are based on a rooted directed acyclic graph. In contrast to BDDs the terminal nodes v are labeled
with values value(v) € Z. The recursive definition of the pseudo Boolean function f, : {0,1}" — 7Z represented
by a BMD node v differs from BDDs: If v is a terminal node with value(v) = ¢ € Z, then f,(z1,...,z,) = c and if
v is a non-terminal node with index(v) = z;, then f,(z1,...,2n) = flow(w)(T1,- - Tn) + i+ frigh(v)(T1,- -+, Tn).
BMDs use the so-called positive Davio decomposition. It follows from this recursive definition that the function
represented by low(v) is equal to fy|z,—of, but in contrast to Shannon decomposition the function represented by
high(v) is

Jo

Since BMDs use another decomposition type than BDDs (positive Davio decomposition instead of Shannon decom-
position), the reduction rules to reduce the BMD sizes and to make BMDs a canonical data structure have to be
changed compared to BDDs: As in the case of BDDs, if for terminal nodes v and v' € V wvalue(v) = value(v') or
if for non-terminal nodes v and v’ indez(v) = index(v'), low(v) = low(v') and high(v) = high(v') then v = v'.
However due to the Davio decomposition we have the reduction rule that in a reduced BMD there is no node v € V
with high(v) = ¢, ¢ terminal node with value(t) = 0.

;=1 — fU

xr;=0- (1)

For simplicity we assume in the following that the variables occur in the fixed order z1,...,zy.

Lsee Section 3
tFor a function, f: {0,1}* — 7 fu,—0 (fz;=1) is the function which results from a substitution of z; by constant 0 (1) and is called
negative (positive) cofactor of f with respect to z;.



(a) reduced (b) non-reduced

Figure 1: Example for a BMD.

To give a relation between nodes of a BMD B and cofactors of the function fp represented by B, we define “the
node which is reached by (e1,...,¢) € {0,1} (I <n)”:

To determine the node reached by (€1, ..., ¢;) we start at the root node and follow the edges according to (1, ..., €;).
If we are at a node v labeled with z; and ¢; = 0, then we follow the edge to low(v) and if ¢; = 1, we go to high(v).
Special attention has to be paid to the case, when ¢;-successor(v) has not label z;;. If in this case ¢; —successor(v)
is a non—terminal, choose k with z;, = indez(e;—successor(v)) and if €;-successor(v) is a terminal choose k = n + 1.
Then we have to take into account, that in an non-reduced version of the BMD the edge leading to ¢;—successor(v)
would be replaced by a path of nodes leading to ¢;—successor(v) where the labels are z;11,...,7;—1 and the high
edges lead to the constant 0, respectively. Therefore we go to €;—-successor(v) only if €41 = ... = g1 = 0,
otherwise we say that the terminal 0 is reached by (e1,...,¢) (since 0 would be reached in a non-reduced version
of the BMD). We call the node reached by (ej,...,€) also (e1,...,€¢)—node and the function represented by this

node fj(;l““’q).

Example 2.1 Figure 1(a) shows an example of a BMD for function f with f(0,0) =1, f(0,1) =6, f(1,0) =5
and f(1,1) = 10. The (0,0)-node is the terminal 1, the (0,1)-node is terminal 5, the (1,0)-node is terminal 4, but
the (1,1)-node is terminal 0, since the high edge starting from the root leads to a terminal and not to a node with
label o and — as shown in Figure 1(b) — in the non-reduced BMD vector (1,1) leads to terminal 0.

Using (1) we can conclude the following lemma by induction:

Lemma 2.1 Let B be a BMD representing a function fp :{0,1}" — 7Z and let v be the (e1,...,€)—node (I < n).
Then the function f](;l’””e’) represented by v is equal to

€1,---,€ L (e;—0;
fyr) = D G ) Dt G R Y PP 2)
(01,--501) <(€1,---,€1)

(For §,e € {0,1}' : § <eiff 6; < e V1<i<l.)

Lemma 2.1 shows that the change of the function fp for a single input vector e, i.e. the change of cofactor fp|;—e,
has not only a “local effect” in the Decision Diagram, but affects all y—nodes with ¢ < ~.

*BMDs were defined in [5] to further reduce the size of BMDs by increasing the amount of subgraph sharing. In
*BMDs each edge has an additional multiplicative edge weight m € Z, such that an edge with edge weight m leading
to a node v represents a function m - f,. Reduction rules guarantee that functions c; - g and ¢z - g (e1,co € Z\ {0})
are represented by the same node (but by different edges).

3 Don’t care assignment

In the following we present a solution to the problem to minimize a *BMD by assigning values to don’t cares. We
have to solve the following problem DC*BMD:



(a) min_polynomial (b) independent_dfs
Figure 2: Example: BMD minimization.

Given: A *BMD B representing a function f : {0, 1} — Z and a BDD C representing a function ¢ : {0,1}"
— {0,1}.

Find: A *BMD B’ representing a function f’ : {0,1}" — Z, such that f-c = f'-c and B’ has the minimum number
of nodes among all *BMDs fulfilling the same property (and respecting the same variable order).

The corresponding problem for BMDs instead of *BMDs is called DCBMD.

DC*BMD and DCBMD are hard problems, more precisely we can prove the following theorem:
Theorem 3.1 DC*BMD and DCBMD are NP complete.

Proof: The proof that DC*BMD and DCBMD are N P-hard is done by a reduction from the graph colorability
problem. DC*BMD, DCBMD € NP is shown using WLCDs [18]. For details see Appendix A. O

Because of this complexity result we are looking for a heuristic solution of DC*BMD in the following.

3.1 Method min_polynomial

Our first method min_polynomial is motivated by the relationship between BMDs over variables z1, ..., z, and poly-
nomials over z1,...,2,: The rule to evaluate BMDs directly implies a method to derive the polynomial representing
the same function as the BMD. E.g. the function from Figure 1(a) is equal to (1 + 23 -5) + 21 -4 =1 + 525 + 4z;.
In general the polynomial contains the term c - z{' - ... - z& (z} = z; and 2? = 1) if and only if the node reached

n (2
by (€1,...,€,) is terminal ¢ # 0.

It is easy to see that the size of the BMD B representing function fp is always less or equal to the size of the
polynomial® representing fz. Since *BMDs can be obtained from BMDs by reduction, this is clearly also true for
*BMDs.

Our first method consists in a (heuristic) minimization of the size of this polynomial, which is an upper bound
on the BMD and the *BMD size. For vectors (e1,...,€,), such that the terminal reached by (e1,...,€,) is ¢ # 0,
we try to use don’t cares to change the value of the terminal to zero. If (e1,...,€,) is a don’t care vector, i.e.
dc(er,...,€en) = 1, we change the function value fg(ey,...,€,) such that the terminal reached by (ey,...,€,) will
be 0. Using the formula of Lemma 2.1 it is clear that we just have to set for the changed function fp

fBr(€1y---y€n) = fBlE€1, .. €n) — C

to achieve this goal. After that we must not forget to adjust the values of other terminals according to this change
of f(e1,...,€n), since the value of fg(e1,...,€,) has an impact on all terminals, which are reached by vectors
Y2 e

The main idea of our method min_polynomial is illustrated in Figure 2(a). Figure 2(a) shows a BMD for the function
f:{0,1}*> — Z with polynomial 1 + 4z + 3z1 + 8z122. There are two don’t care vectors: dc(0,0) = dc(1,1) = 1.

3The size of a polynomial is defined as the number of constants, variable names and operators + and - in the polynomial.
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1 *BMD function min_polynomial(*BMD B,BDD D(C)

2 if DC = then return @ fi;

s if DC = @ then return B fi

4 if B = constant then return B fi

5 if computed table contains entry result for (B, DC) then return result fi
6 Let v be top variable of B and DC,

7 Biow = Blv=0, Brigh = Blv=1 — Blv=0,

8 DClow = DCly=0, DChigh = DC|y=1

9 Bj,,, = min_polynomial(Biow, DCiow)
10 By,;,p, == min_polynomial (Bhrign + (Biow — Bisy,), DChigh)
11 B=B] +v- B;”gh

12 if size(B') > size(B) then B'=B fi
13 insert entry B’ for (B, DC) in computed table

14 return B’

Figure 3: Pseudo code for min_polynomial.

The don’t care values for (0,0) and (1, 1) are represented in the BMD by the shaded boxes of terminals 1 and 8. At
first, we set terminal 1, which is reached by (0,0) to 0. To achieve this we make use of the don’t care vector (0, 0)
and change f(0,0) by adding —1. Then we have to propagate the change to all terminals which are reached by
vectors > (0,0). According to the formula of Lemma 2.1 we have to change terminal 4 by adding 1, terminal 3 by
adding 1 and terminal 8 by adding —1. The resulting values for the terminals are given in Figure 2(a) in the row
1st dc below the original terminals. Finally we make use of the don’t care (1,1) by adding -7 to f(1,1) resulting in
a O—terminal reached by (1,1). Since there is no vector greater than (1,1), we do not have to propagate the change
in this case and the resulting terminals are shown in the second row 2nd dc below the original terminals. Finally,
we obtain a changed function with polynomial 522 + 4z;. The reduced version of the resulting BMD is shown on
the right hand side of Figure 2(a).

The order of processing the different don’t care values in the example was not arbitrary: Since we process the
terminals from left to right the propagation of changes due to other don’t care assignments cannot destroy the
zeros we have already set. For this reason our recursive procedure processes the *BMD in a depth—first manner
following low edges before high edges. Pseudo code of the resulting recursive procedure min_polynomial to minimize
a *BMD B using don’t cares specified by a BDD DC is given in Figure 3. Note that in line 10 the propagation of
the changes made to Bj,,, is performed by adding Bjoy — Bj,,, t0 Bhign before applying min_polynomial to Bpgp,.

low

3.2 Method independent_dfs

The second method is motivated by the “matching siblings” heuristics from [20]. This heuristics was introduced
to minimize BDDs in a recursive procedure. When the procedure processes a BDD node v, it tries to assign don’t
cares in such a way that low(v) and high(v) become identical. If this is possible, we have to keep this subgraph
only once and additionally — because of the BDD reduction rules — node v can be removed, because the subfunction
is now independent from variable index(v).

Since BMDs use positive Davio decomposition instead of Shannon decomposition, the function represented by a node
v cannot be made independent from variable indexz(v) by changing low(v) and high(v) to make them identical.
Here we try to make use of don’t cares to change high(v), such that it becomes 0. Then, the function represented
by v is independent from index(v) and we can delete high(v) and (according to BMD reduction rules) also node v.



1 *BMD function independent_dfs(*BMD B,BDD DC(C')

2 if DC = then return @ fi;

s if DC = @ then return B fi

4 if B = constant then return B fi

5 if computed table contains entry result for (B, DC) then return result fi
6 Let v be top variable of B and DC,

7 Biow = Blv=0, Brigh = Blv=1 — Blv=0,

8 DClow = DCly=0, DChigh = DC|y=1

9 (success, Biow diff) := check_zero(Bhigh, DClow, DChign)

10 if success then

11 B’ = independent_df s(Biow + Biow,dif fs DClow - DChign)
12 else

13 B,,,, := independent_df s(Biow, DCiow)

14 B;”»gh := independent _df s(Bhigh + (Biow — Blpwy)s DChigh)
15 B =B, +v- B;u-gh

16 fi
17 if size(B') > size(B) then B'= B fi
18 insert entry B’ for (B, DC) in computed table

19 return B’

Figure 4: Pseudo code for independent_dfs.

Thus, we have to check for a node v, which is reached by (ey,...,€;), whether the node function can be made
independent from variable z;4; by exploiting don’t cares from dc|s, =, ,....z,=¢,- Figure 2(b) illustrates the method
using the same example as in Figure 2(a). At the beginning we check whether the root node v can be made
independent from z; by using don’t cares, which is equivalent to the question, if we can set high(v) to zero. To do
this we can exploit don’t cares both from dc|;,—o and from de|,,—1, i.e. both the don’t cares at (0,0) and (1,1) in
this example. The terminal reached by (1, 0) cannot be set to 0 using don’t cares from dc|,,=1, but it is possible to
use don’t care (0, 0) (adding 3 to f(0,0)) to set this terminal to 0. Then we use don’t care (1,1) to set the terminal
reached by (1,1) to 0 and in fact, it is possible to make the root node independent from z;. The changed values
for the terminals are given in Figure 2(b) in the row below the original terminals. The reduced BMD is given on
the right hand side of Figure 2(b). It is easy to see that it is not possible to make the remaining node independent
from z2, since there are no don’t cares which could be exploited. (Note that also the don’t care (0,0) must not be
used in the minimization of this node, since it was already used to make the root function independent from z;.
Exploitation of don’t care (0,0) could make the function depend on z; again.)

The check, whether a function of a node v, which is reached by (ey,...,¢€), can be made independent from variable
Zi41 using de|g, =, .. z;=¢, can be formulated as a recursive procedure, which checks first if the low son can be set
to 0 and then if the high son can be set to 0. This check is used in a depth—first traversal of the *BMD. Whenever
we reach a node which can be made independent from its top variable, we perform the modification and the effect
of the change is propagated similar to procedure min_polynomial.

Pseudo code for procedure independent_dfs, which minimizes a *BMD B using a don’t care set given by DC, is
shown in Figure 4. In line 9 the algorithm checks whether the high son By, of a node labeled by variable v can be
set to 0 or not. For this check don’t cares from two sets can be used: One set is represented by DChgp, = DC'|y=1
and the other set is represented by DCj,y = DC|y=p (see also example from Figure 2(b)). The check is done by
a procedure check_zero. check_zero returns a Boolean variable success, which indicates, whether the check was

6
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(boolean, *BMD) function check_zero(*BMD By, BDD DCp,,BDD DCg)

2 if By = @ or DCy =|1|then return (1,@) fi

s if By = constant and DCygx = @ and DC = then return (1, By) fi

4 if DCyg = @ and DCp = @ then return (0,@) fi

5 if computed table contains entry result for (By, DCr,, DCy) then return result fi

6 Let v be top variable of By, DCr, and DCy,

7 B jow = Bu|v=0, BH,high = Bt |lv=1 — B |v=0,

8 DCLjow = DCLlv=0, DCL high = DCL|v=1, DCH,jow = DCH|v=0, DCH,high = DCr|v=1
9 (success, BL_giffiow) := check_zero(Br,iows DCL 10wy DCH 1ow)
10 if success = 0 then return (0,@) fi
11 (success, Br,_qiff high) 1= check_zero(Bu high + BH 10w, DCL,high, DCH,high)
12 if success = 0 then return (0,@) fi

13 Br,_giff = (1 —v) - Br_giff.iow + V- BL_diff,high
14 insert entry (1, Br_gify¢) for (Bm, DCr, DCy) in computed table

15 return (1, Br_qiff)

Figure 5: Pseudo code for check_zero.

successful or not, and a *BMD By, girs. If the check is not successful (success = 0 in line 10) the algorithm
proceeds like procedure min_polynomial. If the check is successful, i.e. if Bj;qp can be set to 0, the exploitation
of don’t cares from DC(Cj,,, has to be taken into account: Exploiting don’t cares from DC},,, means changing the
negative cofactor to set Bp;gn to 0. These changes are returned as a *BMD Bio.,q4iff by the procedure check_zero.
Thus we have to minimize Bjo + Biow,diff instead of Bjg,, in line 11. The don’t cares, which we are allowed to
use in line 11, are not given by DCj,,,, but only by DCjoyy - DChigh, since we have to keep the result B in line 11
independent from variable v.

For completeness, pseudo code for the procedure check_zero which checks, whether don’t cares can be used to set
the function of a node to 0, can be found in Figure 5.

4 Experimental results

We implemented the two methods for ¥*BMD minimization based on wld, an experimental Word-Level DD package
developed at University of Freiburg [11] and performed experiments to compare the different approaches. The
experiments were performed using a SPARC Ultrall with a memory limit of 400 MB.

To generate incompletely specified functions from completely specified functions, we used a method proposed in
[6]: After collapsing each benchmark circuit to two level form, we randomly selected cubes in the on-set with a
probability of 40% to be included into the don’t care set. The cubes which were not selected to be included in
the don’t care set were used to construct a *BMD to represent a weighted sum of the output functions (output ¢
weighted by 2%). For the don’t care set a BDD was computed. As variable order we used the initial order given in
the benchmark specification. The results are summarized in Table 1. In the first column the benchmark circuit
is given, in the second column the number of primary inputs and in the third column the number of primary
outputs. Column 4 shows the number of BDD nodes needed to represent the don’t care set and column 5 the
number of nodes needed to represent the initial *BMD. Columns 6-8 give the *BMD sizes after minimization. Three
different methods are compared: For comparison we give in column az the simple method to set all don’t care
input vectors to function value 0, which can be done by computing fp - de. Column mp gives the results for our
procedure min_polynomial and column dfs the results for our procedure independent_dfs. Columns 9-11 give the

7



[*BMD yin |

) ) |*BMD pin | ratio [+BMD] Time
Circuit #PI #PO |DC| |xBMD| az | mp | dfs az | mp | dfs az | mp | dfs
5xpl 7 10 15 76 19 12 3 0.250 0.157 0.039 0:00 0:00 0:00
9symml 9 1 97 223 242 183 182 1.085 0.820 0.816 0:09 0:00 0:00
alu2 10 6 91 401 372 139 147 0.927 0.346 0.366 0:30 0:01 0:01
apex7 49 37 120 1390 2305 118 49 1.658 0.084 0.035 0:08 1:28 3:27
c8 28 18 126 346 336 17 13 0.971 0.049 0.037 0:02 1:23 0:02
mux 21 1 5798 60 47 34 34 0.783 0.566 0.566 0:00 0:06 0:18
pcler8 27 17 34 44 61 32 21 1.386 0.727 0.477 0:01 0:00 0:09
rd73 7 3 36 89 87 43 36 0.977 0.483 0.404 0:02 0:00 0:00
rd84 8 4 65 196 200 114 81 1.020 0.581 0.413 0:15 0:00 0:00
saon2 10 4 52 128 96 47 37 0.750 0.367 0.289 0:01 0:00 0:00
z4ml 7 4 30 69 87 30 26 1.260 0.434 0.376 0:00 0:00 0:00

[ > [ 3022 ][ 3852 | 769 | 620 [[ 1.247 [ 0.954 | 0.208 |

Table 1: Results for don’t care minimization.

ratios “size of minimized *BMD divided by size of initial *BMD”, again for the three different methods. Finally the
corresponding CPU times are given in columns 12-14 in format minutes:seconds, rounded to seconds.

The results show that setting all don’t cares to 0 (columns az) is not a successful method. On the average the
sizes even increase by 24.7%. In contrast, our two methods for don’t care minimization are both very effective in
minimizing the *BMD sizes: Method min_polynomial (columns mp) is able to reduce *BMD sizes by 74.6% on the
average and method independent_dfs (columns dfs) reduces the sizes even by 79.2%. Columns 13 and 14 show that
these results can be achieved within a small amount of run time.

5 Conclusions and future work

We presented two heuristic methods for don’t care minimization of *BMDs. Experimental results proved them to
be very effective in reducing *BMD sizes within a small amount of CPU time.

At the moment we are working on a modified version of method independent_dfs, which is based on the observation
that in contrast to BDDs [20] for *BMDs the order in which we process the nodes can influence the quality of the
result due to the propagation of the change. Setting the high son of a node v to 0 can destroy the possibility to set
the high son of another node v' to 0. Since the subgraph of the high son of a node at a higher level in the *BMD
will be larger on the average, we expect that the gain of setting the high son of such a node to 0 is also larger.
Therefore nodes at higher levels should be processed first leading to a breadth-first traversal of the *BMD instead
of a depth-first traversal.

Moreover, we are working on an application of our *BMD minimization in the verification of Pentium style integer
dividers to keep peak memory consumption small during backward construction [10]. Don’t cares are computed
by an iterative image computation for the different add&shift stages.

A Proof of Theorem 3.1

We prove Theorem 3.1 for the decision problem versions DCBMD' and DC*BMD’ of DCBMD and DC*BMD.

DCBMD': Given a BMD B representing a function f :{0,1}" — Z, a BDD C representing a function ¢ : {0,1}" —

{0,1} and a constant s € IN. Is there a BMD B’ of size < s (with the same variable order) representing a
function f': {0,1}" — Z, such that f-c= f'-¢c?

DC*BMD': Given a *BMD B representing a function f : {0,1}" — Z, a BDD C representing a function ¢ : {0,1}"
— {0,1} and a constant s € IN. Is there a *BMD B’ of size < s (with the same variable order) representing
a function f': {0,1}" — Z, such that f-c= f'-¢?



(a) Top part of B (b) Structure of sub-BMDs B;

Figure 6: Definition of BMD B.

At first, we prove the theorem for problem DCBMD'.

Proof: The first part is to prove that DCBMD' is NP-hard. The proof uses ideas and proof techniques from [17]
and [2]. In [17] Sauerhoff and Wegener prove that minimizing the BDD size of incompletely specified functions is
NP-hard and in [2] Bollig, Lobbing, Sauerhoff and Wegener prove that the same problem is NP-hard for FDDs.
Since FDDs also use the positive Davio decomposition, the proof can be adapted to BMDs.

Similar to [2] and [17] we construct a reduction from the well-known graph colorability problem (GC) to DCBMD'.

An instance of GC is a connected undirected graph G = (V, E) with the property that E does not contain any
edges {v,v}, v € V, and a number k. The problem is to decide whether G has a k-coloring, i.e. whether there is
a function ¢ : V. — {1,...,k}, such that the endpoints of the edges are colored differently (¢(v) # @(w) for all
{v,w} € E.

Let G = (V = {v1,...,v,}, FE) and k be the given instance for GC. The corresponding instance for DCBMD'
consists of a BMD B, a BDD (' and a size bound s.

For the BMD and the BDD we use the following variables (where m is a parameter defined later on in the proof);
the variables are to be tested in the given order:

TlyeeosTnyYlye ey YmyR1y-+ -5 2n-

We first describe the BMD B. This BMD realizes almost the same function as in the proof of [2]. The function
values are only 0 and 1, but we have to take into account that we have to construct a BMD, i.e. a word-level data
structure. We use a substructure depending on the z—variables at the top of B as a switch to choose exactly one
of the sub-BMDs By, ..., B, of B (see Figure 6(a)). These sub-BMDs will correspond to the vertices of the graph
G. Let f be the function computed by B and let f; be the function computed by the sub-BMD B;.

All the sub-BMDs B; for i = 1,...,n have the structure shown in Figure 6(b). The number m of y—nodes will be
needed to adjust the graph size of the sub-BMDs B;. The part containing the z—variables again is a switch. This
time, one of the constants a2 (j € {1,...,n}) describing the neighborhood of vertex v; in G is chosen by the

J
switch. We define for j € {1,...,n}

4" = 1, if {v;,v;} € E;
K 0, otherwise.

Note that especially af* =0 for 1 <¢ <n.

The value of af7,_; is set to (=1) - 3°7%_; 2%, such that the sum of all values af/* equals zero.



(a) Top part of C (b) Structure of sub-BDDs C}

Figure 7: Definition of BDD C.

We have to find out now which function is represented by the thus constructed BMD. Let b] denote an input vector
of length 7, which has a zero at the i—th position and ones everywhere else. Examining the construction of B, we
find out that

fi ,ifa=07,
flo=a = 2?21 fiifa=(1,...,1),
0 Lifac{0,1)"\ (b7, ..., 6% (L,..., 1)}

<9y Yns

A sub—BMD B; obviously computes zero, if at least one of the y—variables is zero. The part containing the z—variables
has the same structure as the top part of B, so it is easy to see that for 1 <7 <n, 8 € {0,1}™, v € {0,1}"

ag, if = (1,...,1) and v = b,
0 , otherwise.

fz(/B”Y) =

Note that for 8 = (1,...,1) and v = (1,...,1) the definition a7, ,;, = (~1)- Z;‘:l a?f guarantees that f;(8,v) = 0.

The care set for function f has to be specified by a BDD C'. Before we construct a BDD C to represent a characteristic
function c of the care set, we define values a7?"® as follows (1 <4,j < n):
care . _ { 1, ifj =V {’U,’,’Uj} € F;

a .
4 0, otherwise.

The underlying graph of the BDD is similar to the BMD. The top part of the graph is given by Figure 7(a). It
differs from the graph in Figure 6(a) from the fact, that terminals 0 are replaced by terminals 1 (except the last
0), for 1 < i < n B; is replaced by C;.

The graphs for the sub—BDDs C; (1 < i < n) are given by Figure 7(b). Again, the difference to the graph in Figure
6(b) lies in the fact, that terminals 0 are replaced by terminals 1, a¢}' are replaced by aff™ (1 < j <n) and af’;, |,
is replaced by 1.

Let ¢ be the function computed by C, then it is easy to see that for a,vy € {0,1}"™ and for 8 € {0,1}™

agjqre, ifa=0,0= (1,...,1),7:();?,(2‘,]' e{1,...,n}),

C(O{?ﬁ?fY) = 0 ’ifa:(]"""]‘)’
1 , otherwise.
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Like for f; and B; we use in the following the notion c; for the function represented by Ci; ¢; = cp=pn.

Finally, we choose s := k(m + n(n + 1)/2) + n(n + 1)/2 + 2 for the BMD size in the instance of DCBMD'. Both
constructed graphs B and C have size O(nm + n®). We will fix m to n(n + 1)2/2 + 2 below, so that these sizes are
polynomial in n. Note that strictly speaking B and C' are not a BMD and a BDD, since it is possible that reduction
rules are applicable to B and C' to reduce the graph size. However the reduction of B to a BMD and of C' to a BDD
can easily be done in polynomial time and it can only reduce the size. All in all we can say that the size of the
constructed instance of DCBMD' is polynomial in n and can be computed in polynomial time.

We have to show that
(G, k) e GC <= (B,C,s) € DCBMD'.

=: Let a k—coloring of G be given. We have to construct a BMD B’ which computes a function f' such that
f+-c= f"-cand whose size is bounded by s. For B’ we use the same graph structure as for B.

Let f' be the function represented by the BMD B’ and let f/ be the function of the subgraph B] defined in
the same way as in the construction of B.

For 1 <1i,j <n we replace af}' by

, { 0, if v; and v; have the same color;
1)

Q.. — .
1, otherwise.

The value of a} ,, ; is set to (=1) - 327, a} ;, such that also in B’ the sum of all values a}; equals zero.
We first verify that indeed f-c = f'-c. Let a = b}, B = (1,...,1) and v = b}, i.e. an input where
C(a,ﬁ,’)/) = a%qre and fl(aaﬁa’)/) = a;j' If a%qre = 0 then (f ' C)(a,ﬁ,’)/) = (fl ' C)(Oé,ﬁ,’Y) =0 If a%@re =1,
then j = ¢ or {v;,v;} € E. If j = i, then f(a,8,7) = a9 = 0 and f'(o, B,7) = a}; = 0. If {v;,v;} € E,
fla,B,7) = aff =1 and f'(a,8,7) = a;; = 1, since in this case, v; and v; must have different colors.

If a=(1,...,1), then ¢(a, 8,7) = 0.

For all other choices of «, 8 and v, we get f'(a,3,v) = f(a,8,7) = 0.

Now we will show that after applying the BMD reduction rules B’ will have at most s nodes. It is easy to
see that f; = fI, if the vertices v; and v; belong to the same color class. Thus all functions f; belonging to
vertices in the same color class can be represented by the same subgraph of B’. Thus the subgraphs Bj ... B},
can be merged to at most k different subgraphs. The resulting reduced BMD has at most k(m +n(n+1)/2)+
n(n+1)/2+4 2 = s nodes.

<=: Now let a BMD B’ for f' with f-c = f"-c be given for which |B'| < s. Let f; := f'|,—py. We define a
coloring of G as follows.

Two vertices v;, v; from G obtain the same color, iff f; = fj’ It is easy to verify that this is a legal
coloring. We have to show that from f; = f} it follows that {v;,v;} ¢ E. First, let us consider the case that
cj(b,b}) = a§i"™® = 1, where b = (1,...,1). Then f;(b,b}) = f;(b,b}) = a9} and, since c;(b,b}) = aff™ =1,
fi(b,b7) = fi(b,b}) = agl' = 0. Thus f; = f; implies a2l = f;(b,0}) = fi(b,b}) = 0 and {v;,v;} ¢ E. If
cj(b,b}) = aji" =0, {v;,v;} ¢ E follows directly from the definition of afj™.

Now we have to show that our coloring does not use too many colors (at most k). We claim that |B’| >
d(m + 1), if there are at least d pairwise different functions f; with ¢ € {1,...,n}. For the proof of this claim
we consider cofactors hjy := f!|y,=1,.4.=1 of f', where ¢ € {1,...,n} and r € {0,...,m} (we let hi := f}).
We show that these cofactors are represented in B’ and that enough cofactors are pairwise different, such
that they are represented by different nodes.

First we show that the cofactor functions h;,. are represented by nodes of B’. We consider the node, which is
reached by the path (b7,b)* with b= (1,...,1) € {0,1}", and show that this node represents h;.. According
to Lemma 2.1 the node reached by (b7, b) represents the function

Z (_1)2?:1((5?)j*Otj)+z;:1(bj76]‘)]0‘;1:6”’.“@":0["’ylzﬁl’“.,yrzﬁr
(o,8)<(b} ,b)

4As defined in Section 2.
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Since ¢|gy=an,...2n=an = 1, flzi=01,....2n=a, = 0 for a < b} and also
Cilyr=1,yjo1=1,5;=0 = L, filyi=1,....y,_1=1,9,=0 = 0, we have

! — n ! —
f |E1:a17.--,ln:an =0fora< bl and fi|y1:1,...7yj_1:17yj:0 =0.

Therefore
Z ( )Z? 1((bn) _O‘J)+Z] 1(b;=B;)

(0,8)<(b} ,b)
and the node reached by (b}, ) represents exactly h;,.

Now we consider a subset I C {1,...,n} of indices with |I| = d, such that for all i # j € I f; # f;. We show
that for all i € I, r € {0,...,m} the cofactors h;, are different. For ry # r» € {0,...,m} cofactors h;., and
hjr, are different, since for r € {0,...,m—1} h;, depends on y,q1: hirly,,1—0 = filyi=1,...yn=1,yr11=0 = 0 as al-
ready shown above and hirly, 1=1 Z 0, since hirly,i1=1,....ym=1 =
filyi=1,...,y,n=1 is not constant 0 (this follows from the fact that there is at least one outgoing edge {v;,v;} of

node v; in G and therefore fz|y1,17___,ym,1(b?) =af = 1).

Next we show that for ¢ # j € I the functions h;. and hj, are different. For r = 0 hyp = f! # fJ’. = hjo.
Since hirly, .1=0 = Rjr|y,.,=0 = 0 (as shown above) h;. # hj, implies h; 41 # hjr41 and h;. # hy, for all
r € {0,...,m} follows by induction.

z1 01,4, B =0 Y1 =P, Yr=Br — 0

We have defined |I|-(m+1) = d-(m+1) pairwise different functions, which are not constant 0 and which have
to be represented by nodes of B’. Since no node can represent two different functions, we have |B'| > d(m+1).

We are now able to complete the proof for “<—". Let d be the number of equivalence classes of equal
f! and thus the number of colors of our coloring. We know that |B’| > d(m + 1) and that |B'| < s =
k(m+n(n+1)/2) + n(n+1)/2 + 2. Together with the fact that k£ < n, we obtain

(E+1nn+1)/2+2 <k+1~b(n+1)2/2-|-2

d<k+
< m+1 - m+ 1

and setting m := n(n + 1)2/2 + 2 finally d < k, i.e. we use at most k colors.

It remains to prove that DCBMD' is in N P. It is possible to guess a BMD B’ of size s. We have to prove that for
the function f’ realized by B’ the check f-c = f'-c can be done in polynomial time. To prove this, we use WLCDs
[18]. According to [18] B, c and B’ can be translated into WLCDs in linear time. Then we have to check whether
(f = f') - ¢ = 0. Subtraction of two WLcDs B and B’ can be done in linear time and multiplication in quadratic
time. The better worst case complexity of operations for WLCDs has to be paid by a more complicated equivalence
check, but the check is still polynomial. Although WLCDs are not a canonical data structure, the reduction of
a WLCD to a WLCD representing the same function with a minimal number of nodes can be done in polynomial
time by Gaussian eliminations which are performed level by level. Since there is only one WLCD representing the
O0—function, namely the empty WLCD containing no nodes at all, we simply have to check, whether the reduced
WLCD has zero nodes or not. This proves that the check f-c¢ = f'-c can be done in polynomial time.

O

The proof for problem DC*BMD’ can be done in a similar way by having a close look at the proof for DCBMD'.

Proof: (Sketch)

We construct the same functions f and ¢ as in the proof for BMDs. To obtain a *BMD from the constructed graph
B we just have to apply additional reduction rules, which can further reduce the graph size compared to BMDs,
but it is clear that the construction can also be performed in polynomial time.

In the “=="-part of the proof for DCBMD' we constructed from a k—coloring a BMD B of size < s. Here we
construct the same graph and the additional *BMD reduction rules can make the graph only smaller.

In the “<="-part we constructed a coloring with d < k colors from a BMD with at most s nodes. Due to additional
*BMD reduction rules this construction has to be changed slightly for *BMDs. Like in the proof for BMDs we consider
functions Ay, i € {1,...,n},r € {0,...,m}. Functions h;, are represented by nodes in the *BMD.> Now two vertices

5Here we use for functions g Z 0 the notion “g is represented by *BMD node v” iff g = k - f,, for k € Z \ {0}. Note that in a *BMD
there cannot be two nodes which represent the same function in this sense.
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v;,v; from G obtain the same color, iff h;y and hjo are represented by the same *BMD node. As in the BMD proof
we have to prove that this is a legal coloring. We have to show that from the fact that h;o and hjo are represented
by the same *BMD node, i.e. k% . hiO = % . hjo p= k]' . hiO = kl . hjo for ki, k]' €7 \ {0}, it follows that {’Ui,’Uj} ¢ E.
Again the first case is c;(b,b}') = a§{"™® = 1. Then h;o(b,b}') = f;(b,b}) = a3 and, since c;(b,b}') = aff"™ = 1,
hig(b, b?) = f,(b, b?) = a;?i" = 0. Thus k‘j . hiO = k‘, . hj() implies k‘, . a;?ln = kl . hj()(b, b?) = kj . hig(b, b?’) = k‘j -0=0.
Thus af} = 0, since k; # 0 and therefore {v;,v;} ¢ E. If ¢;(b,b}') = a5¢"® = 0, {v;,v;} ¢ E follows from definition.
To prove that d < k we have to prove for the *BMD B’ that |B’| > d(m +1). Again, this is proven by the fact, that
in the *BMD d(m + 1) different functions h;. Z 0 are represented by different nodes. As in the case of BMDs we
conclude that functions h;, and hj» with r # ' are represented by different nodes, since the functions essentially
depend on a different set of variables. Again we consider a subset I C {1,...,n} of indices with |I| = d, such
that for all ¢ # j € I hjp and hjo are represented by different nodes, i.e. there exist no k;, k; € Z \ {0} with
kj-hio = ki-hjo. We show that for i # j € I the functions h;, and hj, (r € {0,...,m}) are represented by different
nodes. Since hir|y,+1:0 = hjr|y,+1:0 = 0, E”Cz, k]' € 7 \ {0} with kj . hi,r+1 = kz . h]'7r+1 would imply k]' . hir = kz . hjr
and by induction k; - hjo = k; - hjo, which is a contradiction. From |B’| > d(m + 1) we conclude again d < k.

The proof, that DC*BMD' is in NP, can be done in a completely analogeous manner: Also *BMDs can be
transformed to WLCDs in linear time and the remaining arguments are the same.

a
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