
Preprint from Proceedings of DATE 2000, Paris, France, March 2000

On the Generation of Multiplexer Circuits for Pass Transistor Logic

Christoph Scholl Bernd Becker

Institute of Computer Science
Albert–Ludwigs–University

D 79110 Freiburg im Breisgau, Germany
email:<name>@informatik.uni-freiburg.de

Abstract

Pass Transistor Logic has attracted more and more in-
terest during last years, since it has proved to be an attrac-
tive alternative to static CMOS designs with respect to area,
performance and power consumption. Existing automatic
PTL synthesis tools use a direct mapping of (decomposed)
BDDs to pass transistors. Thereby, structural properties of
BDDs like the ordering restriction and the fact that the select
signals of the multiplexers (corresponding toBDD nodes)
directly depend on input variables, are imposed on PTL cir-
cuits although they are not necessary for PTL synthesis.

General Multiplexer Circuits can be used instead and
should provide a much higher potential for optimization
compared to a pureBDD approach. Nevertheless – to the
best of our knowledge – an optimization of general Multi-
plexer Circuits (MCs) for PTL synthesis was not tried so far
due to a lack of suitable optimization approaches. In this
paper we present such an algorithm which is based on effi-
cient BDD optimization techniques. Our experiments prove
that there is indeed a high optimization potential by the use
of generalMCs – both concerning area and depth of the
resulting PTL networks.

1 Introduction

Pass Transistor Logic (PTL) has proved to be an attrac-
tive alternative to static CMOS designs with respect to area,
performance and power consumption [23, 15, 9, 12]. In ear-
lier works using PTL the main disadvantage was that the
PTL circuits were designed by hand and there was a lack of
automatic synthesis tools.

Recently, several approaches for anautomaticPTL syn-
thesis flow were proposed [22, 6, 3, 10, 8, 13]. They are
all based on a mapping ofBDDs [5] (in most cases of de-
composedBDDs) to PTL. The advantage of this method is
that the PTL circuits originating fromBDDs are sneak-path-
free [3, 6], i.e. there is no assignment to the inputs which

produces a conducting path from power supply to ground.
However, BDDs use an ordering restriction, which is not
necessary for PTL synthesis. Moreover even the restriction
to free BDDs [2] or generalBDDs [1] is not necessary. It
is easy to see that we can also use general Multiplexer Cir-
cuits (MCs)1 as a basis to synthesize PTL circuits without
losing the property of sneak-path absence. Of course, there
are more degrees of freedom forMC optimization compared
to BDD optimization, sinceBDDs can be viewed as special
cases ofMCs. Thus,MCs should provide better PTL solu-
tions thanBDDs.

However – to the best of our knowledge – all existing
automatic PTL synthesis procedures are based onBDDs.
One reason for this could be the fact, that there are efficient
BDD packages (see e.g. [20]), which provide efficientBDD

optimization techniques by variable reordering like sifting
[16], whereas powerful optimization techniques forMCs
have been missing. In this paper we present such a pow-
erful optimization procedure forMCs, which makes use of
the additional degrees of freedom compared toBDDs. Our
novel technique is able to improve on both size and depth
of BDD based circuits (see Section 5). Although the result
of our algorithm areMCs, we can make use of well matured
and efficientBDD optimization techniques to compute the
MCs.

In Section 2 we give a comparison betweenBDDs and
MCs. Section 3 reviews howBDDs or MCs are mapped to
Pass Transistor Logic. In Section 4 we present our algo-
rithm for MC minimization. After giving experimental re-
sults for PTL synthesis using this algorithm in Section 5 we
conclude the paper with Section 6.

2 BDDs versus MCs

BDDs provide a canonical representation of Boolean
functions. As defined in [5], they are ordered, i.e. on each

1MCs are basically the same as if-then-else DAGs [11].

path from their root to a terminal node each input variable
occurs only once and on each path the input variables occur
in the same order.

In contrast, Multiplexer Circuits (MCs) are more general:

Definition 1 A Multiplexer Circuit (MC) M is modeled as a
directed acyclic graph(V,E). The node set V is partitioned
into four sets Vconst, Vinp, Vinv and Vmux:

• The nodes of Vconst are constants, have indegree 0 and
are labeled by 0 or 1.

• The nodes of Vinp are inputs, have indegree 0 and are
labeled by Boolean variables.

• The nodes of Vinv are inverters and have indegree 1.

• The nodes of Vmux are multiplexers and have indegree
3.

There is a bijective mapping IN: {1, . . . , |Vinp|}→Vinp such
that IN(i) defines the ith input of the function defined by the
MC M. There is a mapping OUT: {1, . . . ,m}→V such that
OUT(i) defines the ith output of the function defined by the
MC M.

ThusMCs are Boolean circuits consisting only of multi-
plexers, inverters and constants and it is straightforwardto
define the Boolean function represented by anMC.

Since aBDD node labeled by a variablexi can be viewed
as a multiplexer with select inputxi , it is clear, thatBDDs can
be viewed as a restricted class ofMCs. BecauseBDDs corre-
spond only to arestrictedclass ofMCs, it is also clear, that
there are more degrees of freedom inMC optimization com-
pared toBDD optimization. However the question arises
how to exploit these additional degrees of freedom. Our
answer to this question can be found in Section 4.

Before we deal with our approach toMC optimization,
we give a brief review of Pass Transistor Logic (PTL) in the
next section.

3 Pass Transistor Logic

Pass Transistor Logic has proved to be an attractive al-
ternative to static CMOS designs2 with respect to area, per-
formance and power consumption [23, 15, 9, 12, 22, 6, 3,
10, 8, 13].

The basic unit in PTL is a MOS transistor which is used
as a switch. It is very easy to implement a multiplexer as a
wired OR of two MOS transistors (see Figure 1). For this
reason recent automatic PTL synthesis tools useBDDs as a
basis for PTL synthesis. Figure 2 shows an example of a
BDD mapped to an NMOS PTL implementation. Mapping
BDDs to PTL is easy and has the additional advantage that
the resulting circuits are sneak-path-free. But note that the
same is also true for general Multiplexer Circuits.

2which are in fact restricted cases of PTL

x

F

G H

F

G H

x x

Figure 1. Implementation of a multiplexer by
pass transistors

F

c c

b b

a a

0

0

1

1

F

0 1

b

a

c

0

0

0
1

1

1

F = b + ca

Figure 2. Mapping of a BDD to an NMOS PTL
implementation

4 Our Algorithm for MC minimization

A mapping to PTL is not only easy forBDDs, but also for
generalMCs. SinceMCs are more general, there is a higher
potential for optimization both concerning area and depth.

A BDD realizing ann–input Boolean function typically
contains paths ofBDD nodes/multiplexers of lengthn, such
that the delay of a corresponding PTL implementation is
linear inn. More precisely, a chain ofn transistors in series
even has a quadratic delay inn [21] and buffers have to be
inserted after a constant number of levels to achieve a linear
delay. We will show in the following that a path of lengthn
can be avoided by usingMCs.

To present our algorithm forMC minimization we need
the following definition which characterizes special nodes
at the bottom of aBDD:

Definition 2 A BDD node is called apositive variable node
iff its low son is constant0 and its high son is constant1. It
is called anegative variable nodeiff its low son is constant
1 and its high son is constant0 and it is called avariable
nodeiff it is a positive or a negative variable node.

A BDD node is called amultiplexer nodeiff both, low
son and high son, are a constant node or a variable node
and at least one of the sons is a variable node. If both sons
of a multiplexer node are variable nodes it is called atrue
multiplexer node, otherwise apseudomultiplexer node.

Intuitively, our algorithm now successively removes
multiplexer nodes from the originalBDD thereby replacing

“parts of theBDD” by “new” variables. The “meaning” of
the new variables is computed in a separateMC. Finally, the
wholeBDD has been transformed into anMC.

Our algorithm starts with aBDD for a single-output
Boolean function. (Note that it can easily be extended
to multi-rootedBDDs andBDDs with complemented edges
[4].) The algorithm uses a mappingmc map between
{x1, . . . ,xn} and the input nodes of theMC, i.e.,mc map(xi)
gives theMC input node labeled byxi . In the course of
the algorithmmc mapis extended to newly introduced vari-
ablesx, heremc map(x) gives the signal line in theMC cor-
responding tox.

The algorithm now proceeds as follows (for illustration
see also Figure 3):

Input: BDD B representing functionf : {0,1}n → {0,1}
with input variablesx1, . . . ,xn.

Output: MC for f .

1. (a) Compute all multiplexer nodes ofBDD B.

(b) If there is a true multiplexer node, choosevmux

as the true multiplexer node with most incom-
ing edges3. If there are only pseudo multiplexer
nodes, choosevmux as the pseudo multiplexer
node with most incoming edges.

(c) Build theBDD BDDc for a new intermediate vari-
ablec.

(d) Replacevmux and the corresponding sub-BDD in
B by BDDc.

(e) A new multiplexer is introduced in theMC.
If vmux is labeled by variablex, the select in-
put of the multiplexer is connected toMC node
mc map(x). If the low son ofvmux is constant
0 (1), the 0-data-input of the multiplexer is con-
nected to constant 0 (1) node of theMC. If the
low son is the positive variabley, the 0-data-input
of the multiplexer is connected tomc map(y)
and if the low son is the negative variabley,
the 0-data-input of the multiplexer is connected
to a new inverter, which itself is connected to
mc map(y). The 1-data-input is assigned in the
same way.

2. Optimize the resultingBDD B by variable reordering.

3. Repeat steps 1 and 2 until theBDD consists only of one
variable node.

Note that reordering can cause a change of the variable
label of the next multiplexer node to be replaced. (Exper-
iments using our algorithm forMC optimization show that
this happens indeed.)

3The intuition behind this selection is that this multiplexernode is the
“most important” for the computation of theBDD in some sense.

In each step of the algorithm the initial Boolean function
f is represented by two parts: aBDD part and aMC part.
Of course, we may interpret theBDD part as anMC. If we
connect the select-inputs of the multiplexers forBDD nodes
labeled by variablex to mc map(x), then we obtain anMC

for f .
The MC size achieved so far can be determined by the

size of the already constructedMC part and the size of the
remainingBDD. Optimizing the size of the remainingBDD

corresponds to optimizing this preliminary size.
But we can also optimize thedepthof the currentMC

circuit: Each variable of theBDD corresponds to a primary
input variable or a multiplexer of the already constructed
MC. This means that a circuit depth information can be as-
signed to eachBDD variable. If we interpret theBDD part
as anMC again, we can compute the current depth of the
circuit. Changing the variable order of theBDD does also
change the depth of the circuit.

To optimize size and depth of the resultingMC (step 2.
of the algorithm) we use a variant of sifting [16], which we
call delay sifting. (Ordinary) sifting is based on finding the
locally optimal position of a variable assuming that all other
variables remain fixed. To determine the optimal position of
a variable in the variable order it is sifted to all possible po-
sitions and then, the position, where the resulting BDD size
is minimized, is selected. The cost function during siftingis
only the size of the resulting BDD. To take account of our
two optimization goals (area and depth) we change the cost
function of sifting: We use some combination ofBDD size
and depth of the overall circuit.

For each position of the variable we determine the new
sizesizenew of the resultingBDD and the new depth of the
overall circuitdepthnew. Then we choose the position for
the variable where the expression

α ·
sizenew

sizeold +(1−α) ·
depthnew

depthold (1)

is minimized. (sizeold anddepthold, respectively, mean the
BDD size and depth of the overall circuit before moving the
variable,α is a number between 0 and 1 to influence the
trade off betweenBDD sizes and depth.)

If the already constructed part of theMC circuit gives
depth informationdx for variablex at leveli, we say thatx
provides depth contributiondx + i. The depth of the over-
all circuit is estimated by the maximum depth contribution
over all levelsi. This gives us only an approximation of
the total depth, but the approach has the advantage that the
depth estimation can adjusted locally during level exchange,
such that asymptotic complexity of delay sifting remains the
same as for original sifting.

Figure 4 gives an interesting example for our algorithm
to optimize MCs. We consider theexor function with 8
inputs. Note that for this example in each step of the al-

0 1

xj

ci

ck

0

0

0

1

1

1

MUX MUX

+

0 1

c
0 1

MUXMUX

MUX

+..
.

..
.

..
.

..
.

ck ci

ck

c

ci

xj

BDDc

Figure 3. Illustration of step 1) of the algorithm: x j is a primary input variable, ci and ck intermediate
variables for multiplexers introduced in previous steps of the algorithm. The multiplexer node labeled
by ck is replaced by a the BDD BDDc for a new variable c and a new multiplexer is introduced in the MC

which computes the assignment of c. After reordering in step 2) the next selected multiplexer node
is not necessarily labeled by ck.

gorithm the function represented by the remainingBDD is
totally symmetric, such that changing the position of a vari-
able does not change theBDD size, i.e. in formula 1 only
the second part concerning depth plays any role. Starting
from aBDD with linear depth our algorithm constructs step
by step aMC for the same function. The resultingMC has
logarithmic depth. The improvement on the depth is due to
the fact that intermediate variables are used as select inputs
of multiplexers in our approach.

5 Experimental Results

In this section we present our results for PTL synthe-
sis using theMC optimization algorithm of Section 4. For
our experiments we use the implementation of [6] which is
integrated in the sis environment [18]. Buch et al. [6] trans-
form a Boolean circuit into a so-called “decomposedBDD”
to prevent a size explosion of a monolithicBDD approach.
BDDs are constructed starting from the inputs. When a
certain size or depth limit of the resultingBDD would be
reached, an intermediate variable or cut point is introduced.
The result is a set of clusters of the circuit, which are rep-
resented byBDDs depending on primary input variables or
intermediate cut point variables. After that in [6] theBDDs
for these clusters are mapped to PTL. A “PTL cell” is com-
puted for each cluster. To cope with the quadratic delay of
transistors in series buffers are inserted for the outputs of
the PTL cells.

In this paper we replace theBDD based PTL mapping
of [6] by an MC based mapping as described in Section 4.
(Of course ourMC optimization approach can also be used
as a post-processing step of otherBDD based PTL synthe-

sis tools like [10, 8] to optimize the PTL cells originating
from BDD representations.) In the following we will call
our synthesis tool, which uses anMC based PTL mapping,
“mc map”.

Since the clusters produced by [6] are very small (the
depth of theBDDs is not larger than 3) and we made the ex-
perience that the optimization potential of theMC approach
can be increased using larger clusters, we also present re-
sults for a second version of ourMC based PTL mapping
tool, which first enlarges the clusters to some extent to in-
crease the optimization potential. In this version we remove
cut point variables by composition as long as the overall
BDD size will not increase in this way and as long as a max-
imum BDD size for a cluster is not exceeded (in our experi-
ments we use a limit of 100). In the following we will call
this second version of our PTL synthesis tool “mc map+”.

We tried two different optimization strategies: optimiza-
tion only for area (weightα = 1.0, see Section 4) and opti-
mization for a combination of area and depth withα = 0.2.
Our depth minimization makes use of depth information as-
signed to the already constructedMC part as described in
Section 4. As already proposed in [6], we can addition-
ally use also depth informations for the inputs of the clus-
ter, which is presently optimized, since the clusters which
compute these input signals are optimized before.

We start with Table 1 which shows the results ofmc map
and mc map+ using area optimization (α = 1.0) for IS-
CAS89 benchmarks and compare them to the initial so-
lution of the tool from [6]. Columns 2–4 show the re-
sults of the tool from [6], columns 5–8 the results of our
tool mc map with area minimization and columns 9–12
the results ofmc map+ with area optimization. Columns

1

0

0

0

0

0

0

0

0

1

1

1

1

1

1

1

1

x3

x5

x8

x7

x6

x4

x1

x2

0
0
0
0
0
0
0
0

MUX

x8x8

x7

c1

1

1

1

1

1

1

1

0

0

0

0

0

0

0

x3

x5

c1

x6

x4

1

x1

x2

0
0
0
0
0
0
1

MUX

x8x8

x7

c1

1

1

1

1

1

1

1

0

0

0

0

0

0

0

x2

x4

x6

x5

x3

1

c1

x1

1
0
0
0
0
0
0

MUX

x8x8

x7

c1

MUX

x6x6

x5

c2

1

1

1

1

1

1

0

0

0

0

0

0

x2

x4

c2

x3

1

c1

x1

1
0
0
0
0
1

10
1

c7

MUX

x4x4

x3
c3

MUX

x2x2

x1
c4

c5

MUX

c7

MUX

c6

MUX

MUX

x8x8

x7
c1

MUX

x6x6

x5
c2

MUX

x4x4

x3
c3

MUX

x2x2

x1
c4

c5

MUX

c7

MUX

c6

MUX

MUX

x8x8

x7
c1

MUX

x6x6

x5
c2

MUX

x8x8

x7

c1

MUX

x6x6

x5

c2

MUX

x4x4

x3

c3

MUX

x2x2

x1

c4
1

1

1

1

0

0

0

0

c3

c4

1

c1

c2

1
1
1
1MUX

x8x8

x7

c1

MUX

x6x6

x5

c2

c5

1

1

1

0

0

0
c5

1

c1

c2

MUX

MUX

x4x4

x3
c3

MUX

x2x2

x1
c4

1
1
2

1) 2) 3)

8)9)13)

0)

replacement replacement

replacement

replacement

replacement

sifting

sifting

sifting

sifting

sifting, replacement,
sifting, replacementresult

3

Figure 4. Computation of an MC for exor(x1, . . . ,x8). Here we use BDDs with complement edges. The
numbers beside the BDD nodes represent the depth information which is assigned to the nodes and
which is used by delay sifting.

“mux/inv” give the numbers of multiplexers and inverters
of the result, columns “area” give the active transistor area
for a realization using only NMOS transistors (the size of an
NMOS transistor is assumed to be 1.5λ×1λ) and columns
“md” give the maximum number of multiplexers on a path
from primary inputs to primary outputs. Both [6] and our
tool use buffer insertion to force the maximum number of
transistors in series to be 3. The experiments were per-
formed on a SPARC Ultra 4 and we use Long’sBDD pack-
age [14] for our implementation. Columns “time” give CPU
times in seconds to transform theBDDs intoMCs.

The experiments prove that there is indeed a high opti-
mization potential ofMC minimization compared toBDD

minimization:
Our area minimization is able to achieve considerable

improvements on the multiplexer/inverter counts and thus
also on the transistor area in comparison to [6]. In all cases
the multiplexer counts are improved (up to 21.7% for C7552
andmc mapand up to 39.3% for C7552 andmc map+).
On the average the multiplexer and inverter counts are im-
proved by 12.1% and 16.1% respectively bymc mapand
by 28.4% and 32.2% respectively bymc map+. The tran-
sistor area is improved by 14.5% bymc mapand by 30.8%

by mc map+. Interestingly already the area optimization is
able to improve the depths of the PTL circuits in 8 out of 11
cases formc mapand in 9 out of 11 cases formc map+.
The overall depth improvement formc mapis 3.2% and for
mc map+ the overall improvement is 12.9%.

The results for our combined area and depth minimiza-
tion can be found in Table 2, which has the same struc-
ture as Table 1. As expected, the combined area and delay
optimization needs slightly more area than our results for
pure area minimization, but is still better than the resultsof
[6]. (It remains an average area improvement of 16.2% for
mc mapand 21.6% formc map+.) The experiments show
that we can really exploit an area/depth trade off by our pa-
rameter for delay sifting. In all cases the depth results of [6]
are improved (up to 31.3% for C880 andmc mapand up
to 40.6% for C880 andmc map+) while maintaining better
area results. On the average the depth results of the area op-
timization are further improved by 22.4% formc map(24.0
% for mc map+), such that compared to [6]mc mapcould
improve the depth by 24.9% andmc map+ could improve
depth by 33.8%.

As already mentioned, an inspection of the resultingMC

circuits of our optimization algorithm shows, that they are

Berkeley mc map(area) mc map+ (area)
circuit mux/inv area md mux/inv area md time mux/inv area md time

C17 7/12 75 4 7/7 52.5 4 0.34 6/6 45 3 0.21
C432 207/250 1746 47 204/236 1674.0 48 27.22 196/229 1618.5 51 15.96
C499 414/413 3100.5 26 332/357 2602.5 21 49.65 302/273 2134.5 23 26.52
C880 354/401 2866.5 32 335/320 2445.0 31 54.77 313/309 2329.5 29 31.46
C1355 510/465 3622.5 34 484/462 3531.0 29 74.15 326/305 2350.5 28 28.94
C1908 416/430 3183 39 354/366 2709.0 33 53.69 307/321 2365.5 29 28.46
C2670 768/917 6430.5 28 678/687 5125.5 26 106.98 512/493 3754.5 41 44.99
C3540 1112/1173 8614.5 52 1025/1025 7687.5 47 160.75 950/913 6958.5 42 95.88
C5315 1912/2162 15465 47 1673/1569 12079.5 40 282.79 1185/1099 8500.5 34 113.79
C6288 2698/2764 20532 159 2551/2946 20910.0 181 365.67 2208/2402 17433.0 133 182.28
C7552 2706/2776 20610 38 2120/1897 14896.5 30 284.72 1642/1622 12225.0 28 151.36

∑ 11104/11763 86245.5 506 9763/9872 73713.0 490 7947/7972 59715.0 441

Table 1. Comparison for PTL synthesis (area optimization, α = 1.0).

Berkeley mc map(depth) mc map+ (depth)
circuit mux/inv area md mux/inv area md time mux/inv area md time

C17 7/12 75 4 7/7 52.5 3 0.25 6/6 45.0 3 0.21
C432 207/250 1746 47 209/226 1644.0 34 10.59 226/228 1704.0 31 10.80
C499 414/413 3100.5 26 278/291 2143.5 18 15.98 373/372 2793.0 20 22.65
C880 354/401 2866.5 32 332/353 2584.5 22 16.72 332/334 2499.0 19 17.04
C1355 510/465 3622.5 34 358/396 2856.0 25 23.00 405/332 2709.0 24 26.49
C1908 416/430 3183 39 355/391 2824.5 29 17.22 363/362 2718.0 25 19.09
C2670 768/917 6430.5 28 608/635 4681.5 20 34.54 542/530 4011.0 18 34.96
C3540 1112/1173 8614.5 52 1026/1004 7596.0 37 51.87 1067/1040 7881.0 32 59.51
C5315 1912/2162 15465 47 1496/1613 11746.5 33 93.48 1206/1215 9085.5 30 79.47
C6288 2698/2764 20532 159 2729/3006 21714.0 131 136.75 2641/2798 20514.0 107 133.30
C7552 2706/2776 20610 38 1822/1999 14461.5 28 117.69 1745/1865 13627.5 26 99.89
∑ 11104/11763 86245.5 506 9220/9921 72304.5 380 8906/9082 67587.0 335

Table 2. Comparison for PTL synthesis (depth optimization, α = 0.2).

substantially different fromBDD realizations, since we get
rid both of the ordering restriction and the restriction toMCs
with only input variables as selector inputs of the multiplex-
ers. Thus, we really obtained a generalMC structure by us-
ing algorithms working on the (restricted)BDD structures.

6 Conclusions and Future Work

In this paper we presented for the first time an automatic
PTL synthesis approach which is based on general Multi-
plexer Circuits rather than onBDDs. Our experiments show,
that we are able to exploit the additional degrees of free-
dom both for area and delay optimization. These degrees of
freedom arise from removing restrictions ofBDDs, which
are important for verification applications, but not for PTL
synthesis.

We put our experiments on top of the results of [6], but
it is obvious, that ourMC optimization approach can also be
used as a post-processing step of otherBDD based PTL syn-
thesis tools like [10, 8] to optimize the PTL cells originating
from BDD representations.

As a future work we plan to incorporate don’t care con-
ditions into our approach. Don’t cares can be used to mini-

mize theBDD part during theMC computation using meth-
ods from [7, 19, 17]. There are two types of don’t care infor-
mations duringMC computation for a cluster of the circuit:
satisfiability and observability don’t cares which originate
from the environment of the cluster and don’t cares which
originate from theMC part of the cluster that is already com-
puted.

References

[1] P. Ashar, A. Ghosh, and S. Devadas. Boolean satisfi-
ability and equivalence checking using general binary
decision diagrams. InInt’l Conf. on CAD, 1991.

[2] J. Bern, J. Gergov, C. Meinel, and A. Slobodová.
Boolean manipulation with free BDD’s. First exper-
imental results. InEuropean Design & Test Conf.,
pages 200–207, 1994.

[3] V. Bertacco, S. Minato, P. Verplaetse, L. Benini, and
G. De Micheli. Decision diagrams and pass transistor
logic synthesis. InInt’l Workshop on Logic Synth.,
1997.

[4] K.S. Brace, R.L. Rudell, and R.E. Bryant. Efficient
implementation of a BDD package. InDesign Au-
tomation Conf., pages 40–45, 1990.

[5] R.E. Bryant. Graph - based algorithms for Boolean
function manipulation. IEEE Trans. on Comp.,
35(8):677–691, 1986.

[6] P. Buch, A. Narayan, A.R. Newton, and A.L.
Sangiovanni-Vincentelli. Logic synthesis for large
pass transistor circuits. InInt’l Conf. on CAD, pages
663–670, 1997.

[7] S. Chang, D. Cheng, and M. Marek-Sadowska. Min-
imizing ROBDD size of incompletely specified mul-
tiple output functions. InEuropean Design & Test
Conf., pages 620–624, 1994.

[8] R. Chaudhry, T.-H. Liu, A. Aziz, and J.L. Burns. Area-
oriented synthesis for pass-transistor logic. InInt’l
Conf. on Comp. Design, pages 160–167, 1998.

[9] T.S. Cheung and K. Asada. Regenerative pass-
transistor logic: A circuit technique for high speed
digital design. IEICE Trans. Electron., E79-
C(9):1274–1283, 1996.

[10] F. Ferrandi, A. Macii, E. Macii, M. Poncino, R. Scarsi,
and F. Somenzi. Symbolic algorithms for layout-
oriented synthesis of pass transistor logic circuits. In
Int’l Conf. on CAD, 1998.

[11] K. Karplus. ITEM: an if-then-else minimizer for logic
synthesis. Technical report, University of California,
Santa Cruz, 1992.

[12] F.S. Lai and W. Hwang. Design and implementation
of differential cascode voltage switch with pass-gate
(dcvspg) logic for high-performance digital systems.
IEEE Jour. of Solid-State Circ., 32(4):563–573, April
1997.

[13] T.-H. Liu, A. Aziz, and J.L. Burns. Performance
driven synthesis for pass-transistor logic. InInt’l
Workshop on Logic Synth., pages 255–259, 1998.

[14] D.E. Long.BDD library. 1993.

[15] A. Parameswar, H. Hara, and T. Sakurai. A high speed,
low power, swing restored pass-transistor logic based
multiply and accumulate circuit for multimedia appli-
cations. InProc. Custom Integrated Circuits Conf.,
pages 278–281, May 1994.

[16] R. Rudell. Dynamic variable ordering for ordered bi-
nary decision diagrams. InInt’l Conf. on CAD, pages
42–47, 1993.

[17] C. Scholl, S. Melchior, G. Hotz, and P. Molitor. Mini-
mizing ROBDD sizes of incompletely specified func-
tions by exploiting strong symmetries. InEuropean
Design & Test Conf., pages 229–234, 1997.

[18] E. Sentovich, K. Singh, L. Lavagno, Ch. Moon,
R. Murgai, A. Saldanha, H. Savoj, P. Stephan,
R. Brayton, and A. Sangiovanni-Vincentelli. SIS: A
system for sequential circuit synthesis. Technical re-
port, University of Berkeley, 1992.

[19] T.R. Shiple, R. Hojati, A.L. Sangiovanni-Vincentelli,
and R.K. Brayton. Heuristic minimization of BDDs
using don’t cares. InDesign Automation Conf., pages
225–231, 1994.

[20] F. Somenzi. CUDD: CU Decision Diagram Pack-
age Release 2.3.0. University of Colorado at Boulder,
1998.

[21] N. Weste and K. Eshraghian.Principles of CMOS
VLSI Design: A Systems Perspective. Addison-
Wesley, 1992.

[22] K. Yano, Y. Sasaki, K. Rikino, and K. Seki. Top-down
pass-transistor logic design.IEEE Jour. of Solid-State
Circ., 31(6):792–803, June 1996.

[23] K. Yano, T. Yamanaka, T. Nishida, and M. Satio. A
3.8-ns cmos 16× 16-b multiplier using complemen-
tary pass-transistor logic.IEEE Jour. of Solid-State
Circ., 25(2):388–395, April 1990.

