Preprint from Proceedings of ITG/GI/GMM-Workshop “Methoden und
Beschreibungssprachen zur Modellierung und Verifikation von Schaltungen und
Systemen”, Meissen, Germany, February 2001, pp. 31-43

State Traversal guided by Hamming Distance
Profiles *

Andreas Hett Christoph Scholl Bernd Becker

Institute of Computer Science
Albert-Ludwigs-University
79110 Freiburg im Breisgau, Germany
email: <name>@informatik.uni-freiburg.de

Abstract

In the last years symbolic techniques have revolutionized reachability analysis. Handling large,
industrial designs is a key issue, involving the need to focus on memory consumption for BDD
representation as well as time consumption to perform symbolic traversals of finite state ma-
chines. In this paper we address the problem of reachability analysis for large finite state
machines, introducing a novel technique that performs reachability analysis using a sequence
of “Hamming Distance guided” partial traversals based on dynamically chosen prunings of the
transition relation. The efficiency and stability of our approach is demonstrated by experimen-
tal results: We succeed in completing reachability problems with significantly improved time
performance and smaller memory requirements.

1 Introduction

One of the major problems in functional design verification is to decide whether a set of target
states of a given Finite State Machine (FSM) can be reached from a set of initial states. Forward
state space traversal techniques solve this problem by an iterative fixed point computation of
all reachable states starting from the initial states. A significant number of techniques and
refinements have been developed to make Reachability Analysis applicable for large designs.

Especially symbolic techniques which avoid an explicit representation of the set of reachable
states and of the FSM transition relation by using BDD representations increased the problem
sizes which could be solved by FSM traversal [8, 11, 13, 3].

In order to reduce time and memory consumption for circuits with realistic sizes, several im-
provements of the basic symbolic FSM traversal techniques have been proposed. To avoid
huge BDD representations of monolithic transition relations for large FSMs, decomposition has
been used: conjunctive partitioning for approximate FSM traversal (e.g. [7]) and disjunctive
partitioning for exact FSM traversal (e.g. [4, 10]).

Other researchers replaced the pure breadth-first traversal of the original approach by a se-
quence of partial traversals [12, 5. These methods take into account that traversals often
produce the largest BDDs during intermediate steps. Therefore a sequence of simpler partial
traversals is used to avoid large intermediate peak memory requirements.

*This work was supported in part by DFG grant Be 1176/8-3

In [12] single symbolic traversal steps are not initiated from the whole set of the newly reached
states, but from subsets of it. The subsets are chosen in a way that their BDD representation
has a “high density”, i.e. many states are represented by a compact BDD.

In [5] a partial traversal is done based on a pruned transition relation. Information for pruning
the transition relation is collected during a learning phase which determines “activity profiles”
of the BDD nodes representing the transition relation. This is done by means of a limited
number of FSM traversals with additional node activity analysis. Then, the transition relation
is pruned, replacing “high cost” nodes by terminal zero, thus enabling a partial traversal method
as an underapproximation of the reachable states. At the end, the partial traversal needs to be
completed by using the original transition relation, accumulating all formerly left-out reachable
states.

In this paper we introduce a novel technique for symbolic FSM traversal using sequences of
partial traversals to avoid large peak memory requirements. In contrast to [12] and [5] our
method has the following properties:

1. The transition relation is pruned based on an analysis of the newly reached states BDD.
Thereby, two concepts are combined: partial traversals based on pruned transition rela-
tions and partial traversals based on subsets of the newly reached states set.

2. At first, we only traverse “short edges” in the state transition diagram. In the successive
phases of the algorithm “longer and longer” edges are used.

3. Pruning of the transition relation is done dynamically during the FSM traversal.

4. In spite of the dynamic application of pruning, efficiency of the Computed Table! is
guaranteed. The importance of this property is proven by recent research (e.g. [15])
which has shown, that the efficiency of the Computed Table plays a much more vital part
in sequential applications like FSM traversals than in combinational applications.

Our experiments underline the quality of the approach. We consider reachability analysis for
FMCAD’98 model checking traces [15, 14] as well as for ISCAS’89 benchmarks. In both cases
we succeed in computing the results with significantly less memory requirements and improved
runtime behavior. This is demonstrated by a comparison with symbolic FSM traversals both
for monolithic and partitioned representations of the transition relation. As an example, the
FMCAD model checking traces show runtime improvements for all traces, up to a factor 17.
Also the Peak Size, i.e. the maximal number of nodes needed during a run, is significantly
reduced, on average by a factor of more than 2.5. Finally we demonstrate the stability of our
method with respect to parameter changes by an additional series of experiments.

The paper is structured as follows: In Section 2 basic definitions are given which are important
for the understanding of the paper. Section 3 presents our approach to reachability analysis
using distance driven partial traversals. Experimental results are presented in Section 4. Finally
the results are summarized in Section 5.

2 Preliminaries

In this section we briefly provide essential definitions of Binary Decision Diagrams, Finite State
Machines and FExact State Space Traversal.

L Applications of BDDs use a so-called Computed Table to prevent that identical computations are performed
more than once [1].

2.1 Binary Decision Diagrams

Binary Decision Diagrams (BDDs) are directed acyclic graphs representing Boolean functions.
In the restricted form of ROBDDs they even provide canonical representations. As defined in [2],
ROBDDs are ordered, i.e. on each path from their root to a terminal node each input variable
occurs only once and on each path the input variables occur in the same order. ROBDDs
are reduced, i.e. they do not contain vertices either with isomorphic sub-graphs or with both
outgoing edges pointing to the same node. Since we work only with ROBDDs in the following
we briefly call them BDDs.

BDDs have proven to be an efficient data structure and nowadays they are widely used in
applications of VLSI CAD, including traversals of FSMs.

2.2 Finite State Machines, Image Computation

A Finite State Machine (FSM) is defined as a 6-tuple (I,0,S,6,)\, sq) where I is the input
alphabet, O is the output alphabet, S is a finite and non-empty set of states, d : S x I — S is
the next state function, A : S x I — O is the output function, and sy € S is the initial state.

Since we only consider FSMs corresponding to sequential circuits, in the following I = {0, 1}*,
O = {0,1}™ and S = {0,1}" contain bit vectors of fixed length. Then, the characteristic
functions x g of subsets R C S are Boolean functions xg : {0,1}" — {0, 1} with yg(z) =1 <
r € R.

The transition function & : {0,1}" x {0,1}* — {0,1}" can also be represented by the char-
acteristic function of its Boolean relation TR : {0,1}" x {0,1}* x {0,1}* — {0,1} with
TR(z,i,2') = 1 < §(z,i) = 2'. TR is a characteristic function describing all existing
transitions between states of the given FSM. The variables x4, . .., x, corresponding to the first
n arguments of T'R are called current state variables, the variables iy, ..., corresponding to
the next k arguments of TR are called (primary) input variables and the variables zi, ...,z
corresponding to the last n arguments are called next state variables.

If FROM is a set of states in S, the image of FROM under ¢ is defined as follows:
Image(d, FROM) = {z' € S|3i € I,z € FROM with é(z,i) = z'}.

In essence, the Image is the set of states that can be reached from the set of states FROM
by means of a single time-step (transition).

Thus, if the set of states FROM is given by its characteristic function FROM (z) and the
transition relation is given by its characteristic function TR(z, i, z'), the image computation to
determine the characteristic function REACHED(z') of all states that can be reached from
the set of states FROM by a single transition can be performed by the following Boolean
operations:
REACHED(z') := Image(TR(z,i,2"), FROM (z))
= 3pi(TR(z,i,2") - FROM(z)) (1)

= 3.(TR(z,z") - FROM (x))

with TR(z,2') = 3;TR(z,i,2'). Since the existential quantification for the input variables i
can be done before the image computation for FROM, we assume in the following, that this
existential quantification was done at the beginning of the FSM traversal and for simplicity we
use TR(z,z') instead of TR(x, ') for the transition relation of the FSM.

2.3 Exact Forward Traversal

Symbolic forward FSM traversals start with a state set FF ROM containing only the initial state
and apply a sequence of image computations in order to compute the set of reachable states.
After each image computation step the set of new states resulting from this step is added to
the total set of reachable states (T'otal REACHED set). The algorithm terminates as soon as
Total REACHED reaches a fixed point.

3 FSM Traversal by a sequence of Hamming Distance guided partial
traversals

3.1 Main Idea and Goals

This section describes our approach to perform FSM traversals by a sequence of distance driven
partial traversals. The purpose of this approach is to prevent peak sizes in memory consump-
tion, when the final reachable state set allows a compact BDD representation, but intermediate
results of the straightforward BFS based FSM traversal cannot be represented by BDDs of rea-
sonable size. We have the challenge to choose a suitable order of adding new reachable states
to the set of already reached states such that the representation of the set of reached states is
as compact as possible. More precisely, we pursue the following goals with our distance driven
partial traversal strategy:

Goal 1: We try to use FROM sets with compact BDD representations as starting points for
image computations.

Goal 2: For each image computation step we use a subset of the transition relation. This sub-
set should contain only transitions leading us to a set of new states, providing a compact
BDD when added to the set of already accumulated reachable states (Total_ REACHED).

Applications of BDDs use a so-called Computed Table to prevent that identical computations
are performed more than once [1]. Recent research (e.g. [15]) has shown, that the efficiency
of a Computed Table plays a much more vital part in sequential applications like e.g. FSM
traversals than in combinational applications. The importance of the Computed Table for
sequential applications leads us to an important third goal:

Goal 3: The performance of the Computed Table should not be decreased by the subsetting
of the transition relation.

The intuition behind our method to achieve Goal 1 is that states with similar Hamming weights
(number of 1’s in the bit vector) [9] are supposed to combine to a compact BDD representation.
Therefore the FROM set of image computation should contain states with similar Hamming
weights. We assume that we start the FSM traversal from the initial state (0...0) with Ham-
ming weight 0. Then we continue with states having small Hamming weights and — step by
step — we increase the Hamming weights of the states, which are starting points of one time
step of reachability analysis.

The subsetting of the transition relation is done in a way that we reach only new states “with
a small distance” to the states in the FROM set, i.e. states whose Hamming weight does
not differ very much from the Hamming weights of the states in the FROM set. This fulfills
(heuristically) our Goal 2.

preselect

TODO
cutdepth j ‘ @ ' @ @ ‘
varifbles

CUT_SET —» ‘ Q ‘O O O ‘ FROM = TODO - preselect

3 2
best_node | 5, |
MAGE IGIGAN

Figure 1: Determination of condition preselect.

If we change the pruning of the transition relation several times during the reachability analysis
algorithm, we have to be careful how to prune the transition relation to achieve Goal & all the
same. In contrast to our approach, in [5], e.g., pruning of the transition relation is based on a
replacement of nodes of the transition relation with “high cost” (determined in a learning phase
based on an “activity profile”) by constant zero. However this replacement leads to the fact
that the two transition relations, which result from different prunings, will typically have only
a few cofactors in common. Thus it is not likely that the recursive procedure to compute the
AND-EXIST operator of equation 1 will encounter common subproblems leading to Computed
Table hits.

Le. if we would apply a straightforward generalization of [5], namely a dynamic application of
this kind of pruning for several times during the algorithm, efficiency of the Computed Table
would decrease with high probability. (Note that this is no problem in [5], since the pruning is
performed only once based on an initial learning phase.)

Since we want to adapt pruning dynamically during the traversal, we choose another pruning
approach, which leads to subsets of the transisition relation having many cofactors in common
with the original transition relation, such that Goal 3 is fulfilled, too.

More details of the complete algorithm and the pruning method in particular are given in the
next section.

3.2 Detailed Description of the Algorithm

In the first part of this section we describe, how the BDD T'ODO representing the reached
states, which where not yet used as starting points for image computations, is pruned before
an image computation to achieve Goal 1. Afterwards we describe our dynamic pruning of the
transition relation TR and finally show, how all parts work together leading to an algorithm,
which performs a full FSM traversal using a sequence of partial distance driven FSM traversals.

Pruning of TODO

In contrast to the straightforward BFS traversal algorithm we do not start an image computa-
tion from the set of all newly reached states, but only from a subset of them to achieve Goal 1.
To restrict the states we perform an AND operation between the representation of the states,
which were not yet processed (TODO), and a characteristic function preselect. preselect is

1 procedure iterate_until_converge (T'ODO, preselect, select)
>

3 FROM :=TODO - preselect

4 TODO := TODO - preselect

5

6 do

7 {

8 TR' := TR - preselect - select

9 New_REACHED := Image(TR, FROM)

10 Total REACHED := Total REACHED U New_REACHED
11 FROM := New_REACHED - preselect

12 TODO :=TODOU (New-REACHED - preselect)

13 }

14 until (empty(FROM))

15 }

Figure 2: Partial Traversal with respect to preselect, select

16 Reachability_Analysis
17 ---

18 TODO := sy

19 Hamming Weight :=1

20

21 do

22 {

23 do

24 {

25 (preselect, select) := determine_selectors(TODO, Hamming W eight)
26 iterate_until_converge(TODO, preselect, select)
27 }

28 until (empty(TODO))

29

30 increase Hamming W eight

31 TODO := Total_Reached

32}

33 until (Hamming W eight = number_of_next_state_variables)

Figure 3: Reachability Analysis using Hamming Distance guided partial traversals

determined based on a Hamming weight metric by a procedure determine_selectors. The
procedure analyzes the BDD T'ODO representing the characteristic function of the states not
yet processed. It considers a set CUT_SET of nodes of BDD TODO immediately below a
cut line after the first cutdepth variables (see also Figure 1). In a first step for each node
v; in CUT_SET we consider all assignments to current state variables, which define a path
passing through v; and leading to terminal one (these assignments represent certain states of
TODO) and for each node v; we compute the sum of the Hamming weights of these assign-
ments. (Note that this computation can be done in time linear to the number of nodes of
TODO.) Since we want to start with states having low Hamming weights we choose the node
best_node € CUT_SET as the one with the smallest sum. Now preselect is the characteristic
function of all assignments to the first cutdepth variables which lead to node best_node. The
image computation is then started with preselect - TODQO instead of TODO.

Pruning of TR

To achieve our Goal 2, we prune the transition relation TR to collect only states with similar
Hamming weights. The pruning can be viewed as a selection of edges in the state transition

diagram of the FSM. It is done by a conjunction TR’ := TR - preselect - select of TR with the
characteristic function preselect and a new characteristic function select. First, the character-
istic function preselect selects only edges, which start from states fulfilling condition preselect.
However, not all such edges are considered, but only “short edges”. Here “short edges” denote
edges connecting states with similar Hamming weights. We select only edges between states
whose Hamming distance is less or equal to a constant Hamming W eight 2. The selection of
short edges is done by a conjunction with the characteristic function select depending on next
state variables where

ON (select) = {y |3y’ € ON(preselect) with
Hamming_distance(y,y') < Hamming W eight}.

Partial Traversal in Phases

Using our pruning methods for the BDD TTO DO and for the transition relation 7R we obtain an
algorithm for FSM traversal which proceeds in rounds and phases. The algorithm is illustrated
in Figures 2 and 3.

In summary, the complete algorithm proceeds in [log(cut_depth)] + 1 phases. In each phase
we work with a constant Hamming weight to restrict the “length of edges” in the transition
relation. Each phase is divided into rounds. In each round, depending on the choice of the
condition preselect, we process a different subspace of the total state space until no new states
can be reached in this subspace. In each round a pruned transistion relation TR’ is chosen
dynamically.

Procedure iterate_until_converge (see Figure 2) performs a single round of the algorithm. It
performs a fixed point iteration starting from a set TODO of states using the pruned transition
relation TR' = T R-preselect-select. All reached states are collected in set Total REACHED.
Since iterate_until_converge starts image computations only from states fulfilling condition
preselect, we have to collect states which are reached, but not yet processed by image compu-
tations, in a new set 7ODO (lines 4, 12).

Figure 3 gives an overview of the whole FSM traversal algorithm: We start the first phase with
Hamming weight 1 to compute the selectors select and preselect (lines 19, 25). Now we iterate
in procedure iterate_until_converge the image computation until no new states are reached
assuming selectors select and preselect (line 26). This process is repeated until the set TODO
provided by iterate_until converge will become empty (loop of lines 23-28).

When TODO is empty, we are not finished however, since we used a pruned transition relation
with only “short edges”. Now we have to enter a new phase: We increase Hamming W eight
(line 30), which restricts the selection of edges to be included in the pruned transition relation,
now allowing also longer edges. For each phase we double the constant Hamming Weight
and we repeat the process until Hamming W eight is maximal, i.e. until it equals the number
cut_depth of state variables (loop of lines 21-33). Finally we have accumulated all reachable
states in Total REACHED.

Experimental results in Section 4 prove that the order in which we visit new reached states in
our distance driven traversal is really efficient to reduce peak sizes in memory consumption,
which occur for the straightforward BFS based traversal.

Furthermore, also the runtime behaviour is improved. Using our special method to prune the
transition relation 7T'R we also succeed in achieving Goal 3: If we can assume that corresponding

2For reasons of efficiency the Hamming weight of the states is only considered for the first cut_depth state
variables here.

Circuit ITR| | Depth | |Reached| | #Reached Original Method Distance Guided
Peak Size | Runtime Peak Size | Runtime
furnacel? 7,264 174 845 8.9 x 101° 4.0 M 139 0.2 M 8
key10 9,426 151 17,179 1.1 x 1012 3.8 M 165 2.1 M 67
over12 6,782 90 3,671 5.9 x 1016 9.2 M 507 1.2 M 32
mmgt20 6,167 144 9,756 8.1 x 1031 42 M 248 0.7 M 30
dme2-16 141,840 433 8,353 1.4 x 1018 5.7 M 500 3.8 M 269
dpd75 7,409 371 4,396 4.1 x 1080 5.2 M 766 2.4 M 238
ftp3 6,399 58 55,937 59x108 3.6 M 339 2.5 M 283

Table 1: FMCAD’98 benchmarks - monolithic transition relations

Circuit [| Traversal Depth | #Reachable States |

51269 9 1.1x10°
s3271 16 1.3 x 1031
$3330 7 7.3 x 1017
54863 4 2.2 x 101°

Table 2: Characteristics of ISCAS’89 benchmarks

current and next state variables are neighboured in the BDD variable order (which is usually
true in FSM traversal applications), preselect and select depend only on the first 2 - cutdepth
variables in the variable order, such that cofactors of TR' := T R - preselect - select with respect
to 2 - cutdepth variables (or more variables) will also occur as cofactors of TR. Since the
recursive BDD synthesis procedures are always working with a same set of cofactors of TR, we
achieve an efficient Computed Table usage leading also to small runtimes (see Section 4).

4 Experimental Results

In this section, experimental results on the traversal techniques introduced in this paper are
presented and compared with standard traversal, partitioned traversals and partitioned traver-
sals combined with activity profiling [5]. The executive machine for all measurements was an
Ultra-II model 2170 workstation with 1 GByte main memory. For all presented measurements
the memory limit was given by 800 MByte and 5,000 seconds runtime. In all tables improve-
ments of more than 100 % are presented in bold face, all runtimes are given in seconds, peak
sizes represent numbers of BDD nodes.

Table 1 contains runtimes and memory performance results for model checking traces first in-
troduced in [15] for use as a comparison basis of different BDD packages. For these traces the
relevant FSM information for performing reachability analysis has been extracted without any
modifications of the synthesis process originally given. | TR| denotes the number of BDDs nodes
of the transition relation. Depth is the traversal depth of the FSM. The columns |Reached| and
#Reached denote the number of BDDs nodes for the reachable states set and the number of
reachable states, respectively. The column Original Method denotes our competitor, a stan-
dard FSM traversal process provided by the CUDD package [6] fully exploiting the rich set of
newly added features for version 2.3.0 (e.g. the death-row for delayed freeage of BDDs improv-

Circuit PT | #Cluster TR Original Method Activity Profiling Distance Guided
Peak Size | Runtime || Peak Size | Runtime || Peak Size | Runtime
s1269 5,000 6 | 12,122 10.7 M 4,596 04 M 18 0.8 M 52
s3271 500 17 6,158 1.9 M 4,191 1.3 M 664 3.5 M 329
3330 500 17 7,891 timeout timeout 1.4 M 358 1.9 M 320
54863 5,000 39 | 85,384 0.4 M 53 0.2 M 76 0.9 M 49
s1269 500 12 5,946 10.2 M 4,577 11.6 M 2,411 1.3 M 109
s3271 5,000 7 | 21,403 timeout timeout 1.5 M 1,761 4.8 M 545
s3330 5,000 6 | 20,950 timeout timeout 0.6 M 2,610 22 M 798
s4863 500 50 | 61,447 timeout timeout timeout timeout 5.6 M 350

Table 3: ISCAS’89 benchmarks — partitioned transition relations

ing Computed Table efficiency). For our method (denoted by Distance Guided) we applied a
“cutdepth” value of 8 variables.

When comparing the values presented in the Table 1, an average performance improvement of
a factor of about 2.9 for the time performance can be noticed. For some traces, the runtimes
even yield an improvement factor of upto 17 (furnacel7). Large peak sizes can be avoided
by our traversal thanks to the focus on compact state sets representation, yielding an average
improvement factor of almost 3 concerning peak sizes. Again some of the benchmarks yield
results outstandingly better than the average value, e.g. over12 and mmgt20 with improvement
factors of about 7.

A major problem when performing reachability analysis relies on the fact that in many cases it
is not feasible to even construct the initial problem, i.e. the transition relation monolithically.
Therefore the transition relation needs to be build using a conjunctive or disjunctive partition-
ing. In the following we will underline the fact, that our approach yields adequate results for
non-monolithic transition relations too.

As underlying software platform for the following series of experiments the traversal tool PdTrav
1.2 provided at [6] was used. Table 2 gives the values for the traversal depth as well as the
number of reachable states for the ISCAS’89 benchmarks used for our measurements. It needs
to be mentioned that the benchmarks s1512, s3384 and s$5378 were excluded from the tables
since, independent of the approach considered here, they did not finish calculations either due
to given memory or runtime limit when using a fixed variable ordering. All initial variable
orderings used were provided by [6].

In Table 3 we present memory and runtime comparisons of three traversal methods all imple-
mented in the PdTrav 1.2 traversal tool. Original Method denotes a straighforward BFS based
traversal, Activity Profiling shows the results for the approach presented in [5]. The usage of
this method demands the setting of several parameters (e.g. pruning threshold and heuristics,
number of iterations for the learning phase, choice of image computation during learning phase
and next FROM set selection). For the sake of simplicity we used the parameter settings sep-
arately provided for each benchmark [6] and applied the available scripts. The scripts also
provide a suggested clustering for the transisition relation. The partitioning threshold (PT)
is given in column 2 of the table. The corresponding number of clusters (#Cluster) and the
size of the shared BDDs representing the transition relation (| TR|) are presented in columns 3
and 4. To underline the quality of our results, i.e. giving an impression of the stability of our
method, we additionally present measurements for a second partitioning threshold (PT) (taken
from the set {500, 5.000}), giving a different starting point for the same circuit. The results
for the second set of PTs are shown in the lower half of Table 3. For our method (denoted
by Distance Guided) we applied a “cutdepth” value of 14 variables. It should be mentioned
that this is the only parameter that has to be set for distance driven FSM traversal. Moreover,
we made the experience that the heuristics are robust against small changes in the “cutdepth”
value.

Obviously, the choice of clustering, i.e. the representation of the initial problem has large impact
on the overall complexity of the synthesis process. Benchmark s/863 is a good example, being
handled in less than one minute when having a “good” clustering, but on the other hand is
not solvable for the Original Method and Activity Profiling within the given limits if not. As
shown, among the approaches considered here, only the method Distance Guided is capable to
partly overcome the handicap of a “bad” clustering and offers a reasonably robust behaviour.
Overall, our approach outperforms a straightforward BFS based traversal both in BDD node
peak sizes and runtimes for non-monolithic transition relations. For some of the peak sizes our
results are slightly worse than the Activity Profiling results. Concerning runtimes, up to one
exception, our runtimes are the best of all presented competitors.

5 Conclusions

We have presented a novel technique for symbolic FSM traversal which is based on a sequence of
Hamming Distance guided partial traversals using a dynamic pruning of the transition relation
and the state sets as well.

Our experimental results underline the quality of the approach, showing that Hamming Distance
guided FSM traversal has much smaller memory requirements than straightforward BFS based
traversal and significantly improved time performance. Furthermore, it also compares favorably
to more sophisticated methods, like partitioned traversal combined with activity profiling.

As part of ongoing work, we are currently investigating the chances and influences of an au-
tomatical adjustment and variation of the “best” cut depth during the reachability process.
Since for non-monolithic transition relations the variable support for all partitions can vary
a lot (e.g. dependent on the methods for clustering), another point of great interest is the
heuristical choice of the “cut depth” for each transition relation partition independently.

References
[1] K.S. Brace, R.L. Rudell, and R.E. Bryant. Efficient implementation of a BDD package. In Design Au-
tomation Conf., pages 40-45, 1990.

[2] R.E. Bryant. Graph - based algorithms for Boolean function manipulation. IEEE Trans. on Comp.,
35(8):677-691, 1986.

[3] J.R. Burch, E.M. Clark, K.L. McMillan, and D.L. Dill. Sequential circuit verification using symbolic model
checking. In Design Automation Conf., pages 46-51, 1990.

[4] G. Cabodi, P. Camurati, L. Lavagno, and S. Quer. Disjunctive partitioning and partial iterative squaring:
An effective approach for symbolic traversal of large circuits. Design Automation Conf., 34:728—-733, 1997.

[6] G. Cabodi, P. Camurati, and S. Quer. Improving symbolic traversals by means of activity profile. Design
Automation Conf., 36:306-311, 1999.

[6] G. Cabodi and S. Quer. http://www.polito.it/"quer/software.htm.

[7] H. Cho, G.D. Hachtel, E. Macii, B. Plessier, and F. Somenzi. Algorithms for approximate fsm traversal.
In Design Automation Conf., pages 25-30, 1993.

[8] O. Coudert, C. Berthet, and J.C. Madre. Verification of sequential machines based on symbolic execution.
In Automatic Verification Methods for Finite State Systems, LNCS 407, pages 365-373, 1989.

[9] R. W. Hamming. Error detecting and error correcting codes. Bell System Technical Jour., 9:147-160, April
1950.

[10] A. Narayan, A. Isles, J. Jain, R.K. Brayton, and A.L. Sangiovanni-Vincentelli. Reachability analysis using
partitioned-robdds. In Int’l Conf. on CAD, pages 388-393, 1997.

[11] O.Coudert and J.C. Madre. A unified framework for the formal verification of sequential circuits. In Int’
Conf. on CAD, pages 126-129, 1990.

[12] K. Ravi and F. Somenzi. High-density reachability analysis. In Int’l Conf. on CAD, pages 154-158, 1995.

[13] H. Touati, H. Savoj, B. Lin, R.K. Brayton, and A.L. Sangiovanni-Vincentelli. Implicit enumeration of finite
state machines using BDDs. In Int’l Conf. on CAD, pages 130-133, 1990.

[14] B. Yang. http://www-cgi.cs.cmu.edu/afs/user/bwolen/Web /software/.

[15] B. Yang, R.E. Bryant, D.R. O’Hallaron, A. Biere, O. Coudert, G. Janssen, R.K. Ranjan, and F. Somenzi.
A performance study of BDD-based model checking. In Proceedings of Formal Methods in Computer-Aided
Design, LNCS 1522, pages 255-289, 1998.

