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Abstrat

In the last years symboli tehniques have revolutionized reahability analysis. Handling large,

industrial designs is a key issue, involving the need to fous on memory onsumption for BDD

representation as well as time onsumption to perform symboli traversals of �nite state ma-

hines. In this paper we address the problem of reahability analysis for large �nite state

mahines, introduing a novel tehnique that performs reahability analysis using a sequene

of \Hamming Distane guided" partial traversals based on dynamially hosen prunings of the

transition relation. The eÆieny and stability of our approah is demonstrated by experimen-

tal results: We sueed in ompleting reahability problems with signi�antly improved time

performane and smaller memory requirements.

1 Introdution

One of the major problems in funtional design veri�ation is to deide whether a set of target

states of a given Finite State Mahine (FSM) an be reahed from a set of initial states. Forward

state spae traversal tehniques solve this problem by an iterative �xed point omputation of

all reahable states starting from the initial states. A signi�ant number of tehniques and

re�nements have been developed to make Reahability Analysis appliable for large designs.

Espeially symboli tehniques whih avoid an expliit representation of the set of reahable

states and of the FSM transition relation by using BDD representations inreased the problem

sizes whih ould be solved by FSM traversal [8, 11, 13, 3℄.

In order to redue time and memory onsumption for iruits with realisti sizes, several im-

provements of the basi symboli FSM traversal tehniques have been proposed. To avoid

huge BDD representations of monolithi transition relations for large FSMs, deomposition has

been used: onjuntive partitioning for approximate FSM traversal (e.g. [7℄) and disjuntive

partitioning for exat FSM traversal (e.g. [4, 10℄).

Other researhers replaed the pure breadth-�rst traversal of the original approah by a se-

quene of partial traversals [12, 5℄. These methods take into aount that traversals often

produe the largest BDDs during intermediate steps. Therefore a sequene of simpler partial

traversals is used to avoid large intermediate peak memory requirements.
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In [12℄ single symboli traversal steps are not initiated from the whole set of the newly reahed

states, but from subsets of it. The subsets are hosen in a way that their BDD representation

has a \high density", i.e. many states are represented by a ompat BDD.

In [5℄ a partial traversal is done based on a pruned transition relation. Information for pruning

the transition relation is olleted during a learning phase whih determines \ativity pro�les"

of the BDD nodes representing the transition relation. This is done by means of a limited

number of FSM traversals with additional node ativity analysis. Then, the transition relation

is pruned, replaing \high ost" nodes by terminal zero, thus enabling a partial traversal method

as an underapproximation of the reahable states. At the end, the partial traversal needs to be

ompleted by using the original transition relation, aumulating all formerly left-out reahable

states.

In this paper we introdue a novel tehnique for symboli FSM traversal using sequenes of

partial traversals to avoid large peak memory requirements. In ontrast to [12℄ and [5℄ our

method has the following properties:

1. The transition relation is pruned based on an analysis of the newly reahed states BDD.

Thereby, two onepts are ombined: partial traversals based on pruned transition rela-

tions and partial traversals based on subsets of the newly reahed states set.

2. At �rst, we only traverse \short edges" in the state transition diagram. In the suessive

phases of the algorithm \longer and longer" edges are used.

3. Pruning of the transition relation is done dynamially during the FSM traversal.

4. In spite of the dynami appliation of pruning, eÆieny of the Computed Table

1

is

guaranteed. The importane of this property is proven by reent researh (e.g. [15℄)

whih has shown, that the eÆieny of the Computed Table plays a muh more vital part

in sequential appliations like FSM traversals than in ombinational appliations.

Our experiments underline the quality of the approah. We onsider reahability analysis for

FMCAD'98 model heking traes [15, 14℄ as well as for ISCAS'89 benhmarks. In both ases

we sueed in omputing the results with signi�antly less memory requirements and improved

runtime behavior. This is demonstrated by a omparison with symboli FSM traversals both

for monolithi and partitioned representations of the transition relation. As an example, the

FMCAD model heking traes show runtime improvements for all traes, up to a fator 17.

Also the Peak Size, i.e. the maximal number of nodes needed during a run, is signi�antly

redued, on average by a fator of more than 2.5. Finally we demonstrate the stability of our

method with respet to parameter hanges by an additional series of experiments.

The paper is strutured as follows: In Setion 2 basi de�nitions are given whih are important

for the understanding of the paper. Setion 3 presents our approah to reahability analysis

using distane driven partial traversals. Experimental results are presented in Setion 4. Finally

the results are summarized in Setion 5.

2 Preliminaries

In this setion we briey provide essential de�nitions of Binary Deision Diagrams, Finite State

Mahines and Exat State Spae Traversal.

1

Appliations of BDDs use a so-alled Computed Table to prevent that idential omputations are performed

more than one [1℄.



2.1 Binary Deision Diagrams

Binary Deision Diagrams (BDDs) are direted ayli graphs representing Boolean funtions.

In the restrited form of ROBDDs they even provide anonial representations. As de�ned in [2℄,

ROBDDs are ordered, i.e. on eah path from their root to a terminal node eah input variable

ours only one and on eah path the input variables our in the same order. ROBDDs

are redued, i.e. they do not ontain verties either with isomorphi sub-graphs or with both

outgoing edges pointing to the same node. Sine we work only with ROBDDs in the following

we briey all them BDDs.

BDDs have proven to be an eÆient data struture and nowadays they are widely used in

appliations of VLSI CAD, inluding traversals of FSMs.

2.2 Finite State Mahines, Image Computation

A Finite State Mahine (FSM) is de�ned as a 6-tuple (I; O; S; Æ; �; s

0

) where I is the input

alphabet, O is the output alphabet, S is a �nite and non-empty set of states, Æ : S � I ! S is

the next state funtion, � : S � I ! O is the output funtion, and s

0

2 S is the initial state.

Sine we only onsider FSMs orresponding to sequential iruits, in the following I = f0; 1g

k

,

O = f0; 1g

m

and S = f0; 1g

n

ontain bit vetors of �xed length. Then, the harateristi

funtions �

R

of subsets R � S are Boolean funtions �

R

: f0; 1g

n

! f0; 1g with �

R

(x) = 1()

x 2 R.

The transition funtion Æ : f0; 1g

n

� f0; 1g

k

! f0; 1g

n

an also be represented by the har-

ateristi funtion of its Boolean relation TR : f0; 1g

n

� f0; 1g

k

� f0; 1g

n

! f0; 1g with

TR(x; i; x

0

) = 1 () Æ(x; i) = x

0

. TR is a harateristi funtion desribing all existing

transitions between states of the given FSM. The variables x

1

; : : : ; x

n

orresponding to the �rst

n arguments of TR are alled urrent state variables, the variables i

1

; : : : ; i

k

orresponding to

the next k arguments of TR are alled (primary) input variables and the variables x

0

1

; : : : ; x

0

n

orresponding to the last n arguments are alled next state variables.

If FROM is a set of states in S, the image of FROM under Æ is de�ned as follows:

Image(Æ; FROM) = fx

0

2 Sj9i 2 I; x 2 FROM with Æ(x; i) = x

0

g.

In essene, the Image is the set of states that an be reahed from the set of states FROM

by means of a single time-step (transition).

Thus, if the set of states FROM is given by its harateristi funtion FROM(x) and the

transition relation is given by its harateristi funtion TR(x; i; x

0

), the image omputation to

determine the harateristi funtion REACHED(x

0

) of all states that an be reahed from

the set of states FROM by a single transition an be performed by the following Boolean

operations:

REACHED(x

0

) := Image(TR(x; i; x

0

); FROM(x))

:= 9

x;i

(TR(x; i; x

0

) � FROM(x))

:= 9

x

(

~

TR(x; x

0

) � FROM(x))

(1)

with

~

TR(x; x

0

) = 9

i

TR(x; i; x

0

). Sine the existential quanti�ation for the input variables i

an be done before the image omputation for FROM , we assume in the following, that this

existential quanti�ation was done at the beginning of the FSM traversal and for simpliity we

use TR(x; x

0

) instead of

~

TR(x; x

0

) for the transition relation of the FSM.



2.3 Exat Forward Traversal

Symboli forward FSM traversals start with a state set FROM ontaining only the initial state

and apply a sequene of image omputations in order to ompute the set of reahable states.

After eah image omputation step the set of new states resulting from this step is added to

the total set of reahable states (Total REACHED set). The algorithm terminates as soon as

Total REACHED reahes a �xed point.

3 FSM Traversal by a sequene of Hamming Distane guided partial

traversals

3.1 Main Idea and Goals

This setion desribes our approah to perform FSM traversals by a sequene of distane driven

partial traversals. The purpose of this approah is to prevent peak sizes in memory onsump-

tion, when the �nal reahable state set allows a ompat BDD representation, but intermediate

results of the straightforward BFS based FSM traversal annot be represented by BDDs of rea-

sonable size. We have the hallenge to hoose a suitable order of adding new reahable states

to the set of already reahed states suh that the representation of the set of reahed states is

as ompat as possible. More preisely, we pursue the following goals with our distane driven

partial traversal strategy:

Goal 1: We try to use FROM sets with ompat BDD representations as starting points for

image omputations.

Goal 2: For eah image omputation step we use a subset of the transition relation. This sub-

set should ontain only transitions leading us to a set of new states, providing a ompat

BDDwhen added to the set of already aumulated reahable states (Total REACHED).

Appliations of BDDs use a so-alled Computed Table to prevent that idential omputations

are performed more than one [1℄. Reent researh (e.g. [15℄) has shown, that the eÆieny

of a Computed Table plays a muh more vital part in sequential appliations like e.g. FSM

traversals than in ombinational appliations. The importane of the Computed Table for

sequential appliations leads us to an important third goal:

Goal 3: The performane of the Computed Table should not be dereased by the subsetting

of the transition relation.

The intuition behind our method to ahieve Goal 1 is that states with similar Hamming weights

(number of 1's in the bit vetor) [9℄ are supposed to ombine to a ompat BDD representation.

Therefore the FROM set of image omputation should ontain states with similar Hamming

weights. We assume that we start the FSM traversal from the initial state (0 : : : 0) with Ham-

ming weight 0. Then we ontinue with states having small Hamming weights and { step by

step { we inrease the Hamming weights of the states, whih are starting points of one time

step of reahability analysis.

The subsetting of the transition relation is done in a way that we reah only new states \with

a small distane" to the states in the FROM set, i.e. states whose Hamming weight does

not di�er very muh from the Hamming weights of the states in the FROM set. This ful�lls

(heuristially) our Goal 2.



preselect
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Figure 1: Determination of ondition preselet.

If we hange the pruning of the transition relation several times during the reahability analysis

algorithm, we have to be areful how to prune the transition relation to ahieve Goal 3 all the

same. In ontrast to our approah, in [5℄, e.g., pruning of the transition relation is based on a

replaement of nodes of the transition relation with \high ost" (determined in a learning phase

based on an \ativity pro�le") by onstant zero. However this replaement leads to the fat

that the two transition relations, whih result from di�erent prunings, will typially have only

a few ofators in ommon. Thus it is not likely that the reursive proedure to ompute the

AND-EXIST operator of equation 1 will enounter ommon subproblems leading to Computed

Table hits.

I.e. if we would apply a straightforward generalization of [5℄, namely a dynami appliation of

this kind of pruning for several times during the algorithm, eÆieny of the Computed Table

would derease with high probability. (Note that this is no problem in [5℄, sine the pruning is

performed only one based on an initial learning phase.)

Sine we want to adapt pruning dynamially during the traversal, we hoose another pruning

approah, whih leads to subsets of the transisition relation having many ofators in ommon

with the original transition relation, suh that Goal 3 is ful�lled, too.

More details of the omplete algorithm and the pruning method in partiular are given in the

next setion.

3.2 Detailed Desription of the Algorithm

In the �rst part of this setion we desribe, how the BDD TODO representing the reahed

states, whih where not yet used as starting points for image omputations, is pruned before

an image omputation to ahieve Goal 1. Afterwards we desribe our dynami pruning of the

transition relation TR and �nally show, how all parts work together leading to an algorithm,

whih performs a full FSM traversal using a sequene of partial distane driven FSM traversals.

Pruning of TODO

In ontrast to the straightforward BFS traversal algorithm we do not start an image omputa-

tion from the set of all newly reahed states, but only from a subset of them to ahieve Goal 1.

To restrit the states we perform an AND operation between the representation of the states,

whih were not yet proessed (TODO), and a harateristi funtion preselet. preselet is



1 proedure iterate until onverge (TODO, preselet, selet )

2 f

3 FROM := TODO � preselet

4 TODO := TODO � preselet

5

6 do

7 f

8 TR

0

:= TR � preselet � selet

9 New REACHED := Image( TR`, FROM)

10 Total REACHED := Total REACHED [New REACHED

11 FROM := New REACHED � preselet

12 TODO := TODO [ (New REACHED � preselet)

13 g

14 until (empty( FROM ))

15 g

Figure 2: Partial Traversal with respet to preselet, selet

16 Reahability Analysis

17 � � �

18 TODO := s

0

19 Hamming Weight := 1

20

21 do

22 f

23 do

24 f

25 (preselet, selet) := determine seletors( TODO, Hamming Weight )

26 iterate until onverge( TODO, preselet, selet )

27 g

28 until (empty( TODO ))

29

30 inrease Hamming Weight

31 TODO := Total Reahed

32 g

33 until ( Hamming Weight = number of next state variables )

Figure 3: Reahability Analysis using Hamming Distane guided partial traversals

determined based on a Hamming weight metri by a proedure determine seletors. The

proedure analyzes the BDD TODO representing the harateristi funtion of the states not

yet proessed. It onsiders a set CUT SET of nodes of BDD TODO immediately below a

ut line after the �rst utdepth variables (see also Figure 1). In a �rst step for eah node

v

i

in CUT SET we onsider all assignments to urrent state variables, whih de�ne a path

passing through v

i

and leading to terminal one (these assignments represent ertain states of

TODO) and for eah node v

i

we ompute the sum of the Hamming weights of these assign-

ments. (Note that this omputation an be done in time linear to the number of nodes of

TODO.) Sine we want to start with states having low Hamming weights we hoose the node

best node 2 CUT SET as the one with the smallest sum. Now preselet is the harateristi

funtion of all assignments to the �rst utdepth variables whih lead to node best node. The

image omputation is then started with preselet � TODO instead of TODO.

Pruning of TR

To ahieve our Goal 2, we prune the transition relation TR to ollet only states with similar

Hamming weights. The pruning an be viewed as a seletion of edges in the state transition



diagram of the FSM. It is done by a onjuntion TR

0

:= TR � preselet � selet of TR with the

harateristi funtion preselet and a new harateristi funtion selet. First, the harater-

isti funtion preselet selets only edges, whih start from states ful�lling ondition preselet.

However, not all suh edges are onsidered, but only \short edges". Here \short edges" denote

edges onneting states with similar Hamming weights. We selet only edges between states

whose Hamming distane is less or equal to a onstant Hamming Weight

2

. The seletion of

short edges is done by a onjuntion with the harateristi funtion selet depending on next

state variables where

ON(selet) = fy j 9y

0

2 ON(preselet) with

Hamming distane(y; y

0

) � Hamming Weightg:

Partial Traversal in Phases

Using our pruning methods for the BDD TODO and for the transition relation TR we obtain an

algorithm for FSM traversal whih proeeds in rounds and phases. The algorithm is illustrated

in Figures 2 and 3.

In summary, the omplete algorithm proeeds in dlog(ut depth)e + 1 phases. In eah phase

we work with a onstant Hamming weight to restrit the \length of edges" in the transition

relation. Eah phase is divided into rounds. In eah round, depending on the hoie of the

ondition preselet, we proess a di�erent subspae of the total state spae until no new states

an be reahed in this subspae. In eah round a pruned transistion relation TR

0

is hosen

dynamially.

Proedure iterate until onverge (see Figure 2) performs a single round of the algorithm. It

performs a �xed point iteration starting from a set TODO of states using the pruned transition

relation TR

0

= TR �preselet �selet. All reahed states are olleted in set Total REACHED.

Sine iterate until onverge starts image omputations only from states ful�lling ondition

preselet, we have to ollet states whih are reahed, but not yet proessed by image ompu-

tations, in a new set TODO (lines 4, 12).

Figure 3 gives an overview of the whole FSM traversal algorithm: We start the �rst phase with

Hamming weight 1 to ompute the seletors selet and preselet (lines 19, 25). Now we iterate

in proedure iterate until onverge the image omputation until no new states are reahed

assuming seletors selet and preselet (line 26). This proess is repeated until the set TODO

provided by iterate until onverge will beome empty (loop of lines 23{28).

When TODO is empty, we are not �nished however, sine we used a pruned transition relation

with only \short edges". Now we have to enter a new phase: We inrease Hamming Weight

(line 30), whih restrits the seletion of edges to be inluded in the pruned transition relation,

now allowing also longer edges. For eah phase we double the onstant Hamming Weight

and we repeat the proess until Hamming Weight is maximal, i.e. until it equals the number

ut depth of state variables (loop of lines 21{33). Finally we have aumulated all reahable

states in Total REACHED.

Experimental results in Setion 4 prove that the order in whih we visit new reahed states in

our distane driven traversal is really eÆient to redue peak sizes in memory onsumption,

whih our for the straightforward BFS based traversal.

Furthermore, also the runtime behaviour is improved. Using our speial method to prune the

transition relation TR we also sueed in ahieving Goal 3: If we an assume that orresponding

2

For reasons of eÆieny the Hamming weight of the states is only onsidered for the �rst ut depth state

variables here.



Ciruit jTRj Depth jReahedj #Reahed Original Method Distane Guided

Peak Size Runtime Peak Size Runtime

furnae17 7,264 174 845 8.9 x 10

19

4.0 M 139 0.2 M 8

key10 9,426 151 17,179 1.1 x 10

12

3.8 M 165 2.1 M 67

over12 6,782 90 3,671 5.9 x 10

16

9.2 M 507 1.2 M 32

mmgt20 6,167 144 9,756 8.1 x 10

31

4.2 M 248 0.7 M 30

dme2-16 141,840 433 8,353 1.4 x 10

18

5.7 M 500 3.8 M 269

dpd75 7,409 371 4,396 4.1 x 10

60

5.2 M 766 2.4 M 238

ftp3 6,399 58 55,937 5.9 x 10

8

3.6 M 339 2.5 M 283

Table 1: FMCAD'98 benhmarks - monolithi transition relations

Ciruit Traversal Depth #Reahable States

s1269 9 1.1 x 10

9

s3271 16 1.3 x 10

31

s3330 7 7.3 x 10

17

s4863 4 2.2 x 10

19

Table 2: Charateristis of ISCAS'89 benhmarks

urrent and next state variables are neighboured in the BDD variable order (whih is usually

true in FSM traversal appliations), preselet and selet depend only on the �rst 2 � utdepth

variables in the variable order, suh that ofators of TR

0

:= TR �preselet � selet with respet

to 2 � utdepth variables (or more variables) will also our as ofators of TR. Sine the

reursive BDD synthesis proedures are always working with a same set of ofators of TR, we

ahieve an eÆient Computed Table usage leading also to small runtimes (see Setion 4).

4 Experimental Results

In this setion, experimental results on the traversal tehniques introdued in this paper are

presented and ompared with standard traversal, partitioned traversals and partitioned traver-

sals ombined with ativity pro�ling [5℄. The exeutive mahine for all measurements was an

Ultra-II model 2170 workstation with 1 GByte main memory. For all presented measurements

the memory limit was given by 800 MByte and 5,000 seonds runtime. In all tables improve-

ments of more than 100 % are presented in bold fae, all runtimes are given in seonds, peak

sizes represent numbers of BDD nodes.

Table 1 ontains runtimes and memory performane results for model heking traes �rst in-

trodued in [15℄ for use as a omparison basis of di�erent BDD pakages. For these traes the

relevant FSM information for performing reahability analysis has been extrated without any

modi�ations of the synthesis proess originally given. jTRj denotes the number of BDDs nodes

of the transition relation. Depth is the traversal depth of the FSM. The olumns jReahedj and

#Reahed denote the number of BDDs nodes for the reahable states set and the number of

reahable states, respetively. The olumn Original Method denotes our ompetitor, a stan-

dard FSM traversal proess provided by the CUDD pakage [6℄ fully exploiting the rih set of

newly added features for version 2.3.0 (e.g. the death-row for delayed freeage of BDDs improv-

Ciruit PT #Cluster jTRj Original Method Ativity Pro�ling Distane Guided

Peak Size Runtime Peak Size Runtime Peak Size Runtime

s1269 5,000 6 12,122 10.7 M 4,596 0.4 M 18 0.8 M 52

s3271 500 17 6,158 1.9 M 4,191 1.3 M 664 3.5 M 329

s3330 500 17 7,891 timeout timeout 1.4 M 358 1.9 M 320

s4863 5,000 39 85,384 0.4 M 53 0.2 M 76 0.9 M 49

s1269 500 12 5,946 10.2 M 4,577 11.6 M 2,411 1.3 M 109

s3271 5,000 7 21,403 timeout timeout 1.5 M 1,761 4.8 M 545

s3330 5,000 6 20,950 timeout timeout 0.6 M 2,610 2.2 M 798

s4863 500 50 61,447 timeout timeout timeout timeout 5.6 M 350

Table 3: ISCAS'89 benhmarks { partitioned transition relations



ing Computed Table eÆieny). For our method (denoted by Distane Guided) we applied a

\utdepth" value of 8 variables.

When omparing the values presented in the Table 1, an average performane improvement of

a fator of about 2.9 for the time performane an be notied. For some traes, the runtimes

even yield an improvement fator of upto 17 (furnae17). Large peak sizes an be avoided

by our traversal thanks to the fous on ompat state sets representation, yielding an average

improvement fator of almost 3 onerning peak sizes. Again some of the benhmarks yield

results outstandingly better than the average value, e.g. over12 and mmgt20 with improvement

fators of about 7.

A major problem when performing reahability analysis relies on the fat that in many ases it

is not feasible to even onstrut the initial problem, i.e. the transition relation monolithially.

Therefore the transition relation needs to be build using a onjuntive or disjuntive partition-

ing. In the following we will underline the fat, that our approah yields adequate results for

non-monolithi transition relations too.

As underlying software platform for the following series of experiments the traversal tool PdTrav

1.2 provided at [6℄ was used. Table 2 gives the values for the traversal depth as well as the

number of reahable states for the ISCAS'89 benhmarks used for our measurements. It needs

to be mentioned that the benhmarks s1512, s3384 and s5378 were exluded from the tables

sine, independent of the approah onsidered here, they did not �nish alulations either due

to given memory or runtime limit when using a �xed variable ordering. All initial variable

orderings used were provided by [6℄.

In Table 3 we present memory and runtime omparisons of three traversal methods all imple-

mented in the PdTrav 1.2 traversal tool. Original Method denotes a straighforward BFS based

traversal, Ativity Pro�ling shows the results for the approah presented in [5℄. The usage of

this method demands the setting of several parameters (e.g. pruning threshold and heuristis,

number of iterations for the learning phase, hoie of image omputation during learning phase

and next FROM set seletion). For the sake of simpliity we used the parameter settings sep-

arately provided for eah benhmark [6℄ and applied the available sripts. The sripts also

provide a suggested lustering for the transisition relation. The partitioning threshold (PT)

is given in olumn 2 of the table. The orresponding number of lusters (#Cluster) and the

size of the shared BDDs representing the transition relation (jTRj) are presented in olumns 3

and 4. To underline the quality of our results, i.e. giving an impression of the stability of our

method, we additionally present measurements for a seond partitioning threshold (PT) (taken

from the set f500, 5.000g), giving a di�erent starting point for the same iruit. The results

for the seond set of PTs are shown in the lower half of Table 3. For our method (denoted

by Distane Guided) we applied a \utdepth" value of 14 variables. It should be mentioned

that this is the only parameter that has to be set for distane driven FSM traversal. Moreover,

we made the experiene that the heuristis are robust against small hanges in the \utdepth"

value.

Obviously, the hoie of lustering, i.e. the representation of the initial problem has large impat

on the overall omplexity of the synthesis proess. Benhmark s4863 is a good example, being

handled in less than one minute when having a \good" lustering, but on the other hand is

not solvable for the Original Method and Ativity Pro�ling within the given limits if not. As

shown, among the approahes onsidered here, only the method Distane Guided is apable to

partly overome the handiap of a \bad" lustering and o�ers a reasonably robust behaviour.

Overall, our approah outperforms a straightforward BFS based traversal both in BDD node

peak sizes and runtimes for non-monolithi transition relations. For some of the peak sizes our

results are slightly worse than the Ativity Pro�ling results. Conerning runtimes, up to one

exeption, our runtimes are the best of all presented ompetitors.



5 Conlusions

We have presented a novel tehnique for symboli FSM traversal whih is based on a sequene of

Hamming Distane guided partial traversals using a dynami pruning of the transition relation

and the state sets as well.

Our experimental results underline the quality of the approah, showing that Hamming Distane

guided FSM traversal has muh smaller memory requirements than straightforward BFS based

traversal and signi�antly improved time performane. Furthermore, it also ompares favorably

to more sophistiated methods, like partitioned traversal ombined with ativity pro�ling.

As part of ongoing work, we are urrently investigating the hanes and inuenes of an au-

tomatial adjustment and variation of the \best" ut depth during the reahability proess.

Sine for non-monolithi transition relations the variable support for all partitions an vary

a lot (e.g. dependent on the methods for lustering), another point of great interest is the

heuristial hoie of the \ut depth" for eah transition relation partition independently.
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