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Abstra
t

In the last years symboli
 te
hniques have revolutionized rea
hability analysis. Handling large,

industrial designs is a key issue, involving the need to fo
us on memory 
onsumption for BDD

representation as well as time 
onsumption to perform symboli
 traversals of �nite state ma-


hines. In this paper we address the problem of rea
hability analysis for large �nite state

ma
hines, introdu
ing a novel te
hnique that performs rea
hability analysis using a sequen
e

of \Hamming Distan
e guided" partial traversals based on dynami
ally 
hosen prunings of the

transition relation. The eÆ
ien
y and stability of our approa
h is demonstrated by experimen-

tal results: We su

eed in 
ompleting rea
hability problems with signi�
antly improved time

performan
e and smaller memory requirements.

1 Introdu
tion

One of the major problems in fun
tional design veri�
ation is to de
ide whether a set of target

states of a given Finite State Ma
hine (FSM) 
an be rea
hed from a set of initial states. Forward

state spa
e traversal te
hniques solve this problem by an iterative �xed point 
omputation of

all rea
hable states starting from the initial states. A signi�
ant number of te
hniques and

re�nements have been developed to make Rea
hability Analysis appli
able for large designs.

Espe
ially symboli
 te
hniques whi
h avoid an expli
it representation of the set of rea
hable

states and of the FSM transition relation by using BDD representations in
reased the problem

sizes whi
h 
ould be solved by FSM traversal [8, 11, 13, 3℄.

In order to redu
e time and memory 
onsumption for 
ir
uits with realisti
 sizes, several im-

provements of the basi
 symboli
 FSM traversal te
hniques have been proposed. To avoid

huge BDD representations of monolithi
 transition relations for large FSMs, de
omposition has

been used: 
onjun
tive partitioning for approximate FSM traversal (e.g. [7℄) and disjun
tive

partitioning for exa
t FSM traversal (e.g. [4, 10℄).

Other resear
hers repla
ed the pure breadth-�rst traversal of the original approa
h by a se-

quen
e of partial traversals [12, 5℄. These methods take into a

ount that traversals often

produ
e the largest BDDs during intermediate steps. Therefore a sequen
e of simpler partial

traversals is used to avoid large intermediate peak memory requirements.

�
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In [12℄ single symboli
 traversal steps are not initiated from the whole set of the newly rea
hed

states, but from subsets of it. The subsets are 
hosen in a way that their BDD representation

has a \high density", i.e. many states are represented by a 
ompa
t BDD.

In [5℄ a partial traversal is done based on a pruned transition relation. Information for pruning

the transition relation is 
olle
ted during a learning phase whi
h determines \a
tivity pro�les"

of the BDD nodes representing the transition relation. This is done by means of a limited

number of FSM traversals with additional node a
tivity analysis. Then, the transition relation

is pruned, repla
ing \high 
ost" nodes by terminal zero, thus enabling a partial traversal method

as an underapproximation of the rea
hable states. At the end, the partial traversal needs to be


ompleted by using the original transition relation, a

umulating all formerly left-out rea
hable

states.

In this paper we introdu
e a novel te
hnique for symboli
 FSM traversal using sequen
es of

partial traversals to avoid large peak memory requirements. In 
ontrast to [12℄ and [5℄ our

method has the following properties:

1. The transition relation is pruned based on an analysis of the newly rea
hed states BDD.

Thereby, two 
on
epts are 
ombined: partial traversals based on pruned transition rela-

tions and partial traversals based on subsets of the newly rea
hed states set.

2. At �rst, we only traverse \short edges" in the state transition diagram. In the su

essive

phases of the algorithm \longer and longer" edges are used.

3. Pruning of the transition relation is done dynami
ally during the FSM traversal.

4. In spite of the dynami
 appli
ation of pruning, eÆ
ien
y of the Computed Table

1

is

guaranteed. The importan
e of this property is proven by re
ent resear
h (e.g. [15℄)

whi
h has shown, that the eÆ
ien
y of the Computed Table plays a mu
h more vital part

in sequential appli
ations like FSM traversals than in 
ombinational appli
ations.

Our experiments underline the quality of the approa
h. We 
onsider rea
hability analysis for

FMCAD'98 model 
he
king tra
es [15, 14℄ as well as for ISCAS'89 ben
hmarks. In both 
ases

we su

eed in 
omputing the results with signi�
antly less memory requirements and improved

runtime behavior. This is demonstrated by a 
omparison with symboli
 FSM traversals both

for monolithi
 and partitioned representations of the transition relation. As an example, the

FMCAD model 
he
king tra
es show runtime improvements for all tra
es, up to a fa
tor 17.

Also the Peak Size, i.e. the maximal number of nodes needed during a run, is signi�
antly

redu
ed, on average by a fa
tor of more than 2.5. Finally we demonstrate the stability of our

method with respe
t to parameter 
hanges by an additional series of experiments.

The paper is stru
tured as follows: In Se
tion 2 basi
 de�nitions are given whi
h are important

for the understanding of the paper. Se
tion 3 presents our approa
h to rea
hability analysis

using distan
e driven partial traversals. Experimental results are presented in Se
tion 4. Finally

the results are summarized in Se
tion 5.

2 Preliminaries

In this se
tion we brie
y provide essential de�nitions of Binary De
ision Diagrams, Finite State

Ma
hines and Exa
t State Spa
e Traversal.

1

Appli
ations of BDDs use a so-
alled Computed Table to prevent that identi
al 
omputations are performed

more than on
e [1℄.



2.1 Binary De
ision Diagrams

Binary De
ision Diagrams (BDDs) are dire
ted a
y
li
 graphs representing Boolean fun
tions.

In the restri
ted form of ROBDDs they even provide 
anoni
al representations. As de�ned in [2℄,

ROBDDs are ordered, i.e. on ea
h path from their root to a terminal node ea
h input variable

o

urs only on
e and on ea
h path the input variables o

ur in the same order. ROBDDs

are redu
ed, i.e. they do not 
ontain verti
es either with isomorphi
 sub-graphs or with both

outgoing edges pointing to the same node. Sin
e we work only with ROBDDs in the following

we brie
y 
all them BDDs.

BDDs have proven to be an eÆ
ient data stru
ture and nowadays they are widely used in

appli
ations of VLSI CAD, in
luding traversals of FSMs.

2.2 Finite State Ma
hines, Image Computation

A Finite State Ma
hine (FSM) is de�ned as a 6-tuple (I; O; S; Æ; �; s

0

) where I is the input

alphabet, O is the output alphabet, S is a �nite and non-empty set of states, Æ : S � I ! S is

the next state fun
tion, � : S � I ! O is the output fun
tion, and s

0

2 S is the initial state.

Sin
e we only 
onsider FSMs 
orresponding to sequential 
ir
uits, in the following I = f0; 1g

k

,

O = f0; 1g

m

and S = f0; 1g

n


ontain bit ve
tors of �xed length. Then, the 
hara
teristi


fun
tions �

R

of subsets R � S are Boolean fun
tions �

R

: f0; 1g

n

! f0; 1g with �

R

(x) = 1()

x 2 R.

The transition fun
tion Æ : f0; 1g

n

� f0; 1g

k

! f0; 1g

n


an also be represented by the 
har-

a
teristi
 fun
tion of its Boolean relation TR : f0; 1g

n

� f0; 1g

k

� f0; 1g

n

! f0; 1g with

TR(x; i; x

0

) = 1 () Æ(x; i) = x

0

. TR is a 
hara
teristi
 fun
tion des
ribing all existing

transitions between states of the given FSM. The variables x

1

; : : : ; x

n


orresponding to the �rst

n arguments of TR are 
alled 
urrent state variables, the variables i

1

; : : : ; i

k


orresponding to

the next k arguments of TR are 
alled (primary) input variables and the variables x

0

1

; : : : ; x

0

n


orresponding to the last n arguments are 
alled next state variables.

If FROM is a set of states in S, the image of FROM under Æ is de�ned as follows:

Image(Æ; FROM) = fx

0

2 Sj9i 2 I; x 2 FROM with Æ(x; i) = x

0

g.

In essen
e, the Image is the set of states that 
an be rea
hed from the set of states FROM

by means of a single time-step (transition).

Thus, if the set of states FROM is given by its 
hara
teristi
 fun
tion FROM(x) and the

transition relation is given by its 
hara
teristi
 fun
tion TR(x; i; x

0

), the image 
omputation to

determine the 
hara
teristi
 fun
tion REACHED(x

0

) of all states that 
an be rea
hed from

the set of states FROM by a single transition 
an be performed by the following Boolean

operations:

REACHED(x

0

) := Image(TR(x; i; x

0

); FROM(x))

:= 9

x;i

(TR(x; i; x

0

) � FROM(x))

:= 9

x

(

~

TR(x; x

0

) � FROM(x))

(1)

with

~

TR(x; x

0

) = 9

i

TR(x; i; x

0

). Sin
e the existential quanti�
ation for the input variables i


an be done before the image 
omputation for FROM , we assume in the following, that this

existential quanti�
ation was done at the beginning of the FSM traversal and for simpli
ity we

use TR(x; x

0

) instead of

~

TR(x; x

0

) for the transition relation of the FSM.



2.3 Exa
t Forward Traversal

Symboli
 forward FSM traversals start with a state set FROM 
ontaining only the initial state

and apply a sequen
e of image 
omputations in order to 
ompute the set of rea
hable states.

After ea
h image 
omputation step the set of new states resulting from this step is added to

the total set of rea
hable states (Total REACHED set). The algorithm terminates as soon as

Total REACHED rea
hes a �xed point.

3 FSM Traversal by a sequen
e of Hamming Distan
e guided partial

traversals

3.1 Main Idea and Goals

This se
tion des
ribes our approa
h to perform FSM traversals by a sequen
e of distan
e driven

partial traversals. The purpose of this approa
h is to prevent peak sizes in memory 
onsump-

tion, when the �nal rea
hable state set allows a 
ompa
t BDD representation, but intermediate

results of the straightforward BFS based FSM traversal 
annot be represented by BDDs of rea-

sonable size. We have the 
hallenge to 
hoose a suitable order of adding new rea
hable states

to the set of already rea
hed states su
h that the representation of the set of rea
hed states is

as 
ompa
t as possible. More pre
isely, we pursue the following goals with our distan
e driven

partial traversal strategy:

Goal 1: We try to use FROM sets with 
ompa
t BDD representations as starting points for

image 
omputations.

Goal 2: For ea
h image 
omputation step we use a subset of the transition relation. This sub-

set should 
ontain only transitions leading us to a set of new states, providing a 
ompa
t

BDDwhen added to the set of already a

umulated rea
hable states (Total REACHED).

Appli
ations of BDDs use a so-
alled Computed Table to prevent that identi
al 
omputations

are performed more than on
e [1℄. Re
ent resear
h (e.g. [15℄) has shown, that the eÆ
ien
y

of a Computed Table plays a mu
h more vital part in sequential appli
ations like e.g. FSM

traversals than in 
ombinational appli
ations. The importan
e of the Computed Table for

sequential appli
ations leads us to an important third goal:

Goal 3: The performan
e of the Computed Table should not be de
reased by the subsetting

of the transition relation.

The intuition behind our method to a
hieve Goal 1 is that states with similar Hamming weights

(number of 1's in the bit ve
tor) [9℄ are supposed to 
ombine to a 
ompa
t BDD representation.

Therefore the FROM set of image 
omputation should 
ontain states with similar Hamming

weights. We assume that we start the FSM traversal from the initial state (0 : : : 0) with Ham-

ming weight 0. Then we 
ontinue with states having small Hamming weights and { step by

step { we in
rease the Hamming weights of the states, whi
h are starting points of one time

step of rea
hability analysis.

The subsetting of the transition relation is done in a way that we rea
h only new states \with

a small distan
e" to the states in the FROM set, i.e. states whose Hamming weight does

not di�er very mu
h from the Hamming weights of the states in the FROM set. This ful�lls

(heuristi
ally) our Goal 2.



preselect

TODO

CUT_SET

best_node

cutdepth
variables

1

FROM = TODO . preselect

1

0 0 0

10 0 0

Figure 1: Determination of 
ondition presele
t.

If we 
hange the pruning of the transition relation several times during the rea
hability analysis

algorithm, we have to be 
areful how to prune the transition relation to a
hieve Goal 3 all the

same. In 
ontrast to our approa
h, in [5℄, e.g., pruning of the transition relation is based on a

repla
ement of nodes of the transition relation with \high 
ost" (determined in a learning phase

based on an \a
tivity pro�le") by 
onstant zero. However this repla
ement leads to the fa
t

that the two transition relations, whi
h result from di�erent prunings, will typi
ally have only

a few 
ofa
tors in 
ommon. Thus it is not likely that the re
ursive pro
edure to 
ompute the

AND-EXIST operator of equation 1 will en
ounter 
ommon subproblems leading to Computed

Table hits.

I.e. if we would apply a straightforward generalization of [5℄, namely a dynami
 appli
ation of

this kind of pruning for several times during the algorithm, eÆ
ien
y of the Computed Table

would de
rease with high probability. (Note that this is no problem in [5℄, sin
e the pruning is

performed only on
e based on an initial learning phase.)

Sin
e we want to adapt pruning dynami
ally during the traversal, we 
hoose another pruning

approa
h, whi
h leads to subsets of the transisition relation having many 
ofa
tors in 
ommon

with the original transition relation, su
h that Goal 3 is ful�lled, too.

More details of the 
omplete algorithm and the pruning method in parti
ular are given in the

next se
tion.

3.2 Detailed Des
ription of the Algorithm

In the �rst part of this se
tion we des
ribe, how the BDD TODO representing the rea
hed

states, whi
h where not yet used as starting points for image 
omputations, is pruned before

an image 
omputation to a
hieve Goal 1. Afterwards we des
ribe our dynami
 pruning of the

transition relation TR and �nally show, how all parts work together leading to an algorithm,

whi
h performs a full FSM traversal using a sequen
e of partial distan
e driven FSM traversals.

Pruning of TODO

In 
ontrast to the straightforward BFS traversal algorithm we do not start an image 
omputa-

tion from the set of all newly rea
hed states, but only from a subset of them to a
hieve Goal 1.

To restri
t the states we perform an AND operation between the representation of the states,

whi
h were not yet pro
essed (TODO), and a 
hara
teristi
 fun
tion presele
t. presele
t is



1 pro
edure iterate until 
onverge (TODO, presele
t, sele
t )

2 f

3 FROM := TODO � presele
t

4 TODO := TODO � presele
t

5

6 do

7 f

8 TR

0

:= TR � presele
t � sele
t

9 New REACHED := Image( TR`, FROM)

10 Total REACHED := Total REACHED [New REACHED

11 FROM := New REACHED � presele
t

12 TODO := TODO [ (New REACHED � presele
t)

13 g

14 until (empty( FROM ))

15 g

Figure 2: Partial Traversal with respe
t to presele
t, sele
t

16 Rea
hability Analysis

17 � � �

18 TODO := s

0

19 Hamming Weight := 1

20

21 do

22 f

23 do

24 f

25 (presele
t, sele
t) := determine sele
tors( TODO, Hamming Weight )

26 iterate until 
onverge( TODO, presele
t, sele
t )

27 g

28 until (empty( TODO ))

29

30 in
rease Hamming Weight

31 TODO := Total Rea
hed

32 g

33 until ( Hamming Weight = number of next state variables )

Figure 3: Rea
hability Analysis using Hamming Distan
e guided partial traversals

determined based on a Hamming weight metri
 by a pro
edure determine sele
tors. The

pro
edure analyzes the BDD TODO representing the 
hara
teristi
 fun
tion of the states not

yet pro
essed. It 
onsiders a set CUT SET of nodes of BDD TODO immediately below a


ut line after the �rst 
utdepth variables (see also Figure 1). In a �rst step for ea
h node

v

i

in CUT SET we 
onsider all assignments to 
urrent state variables, whi
h de�ne a path

passing through v

i

and leading to terminal one (these assignments represent 
ertain states of

TODO) and for ea
h node v

i

we 
ompute the sum of the Hamming weights of these assign-

ments. (Note that this 
omputation 
an be done in time linear to the number of nodes of

TODO.) Sin
e we want to start with states having low Hamming weights we 
hoose the node

best node 2 CUT SET as the one with the smallest sum. Now presele
t is the 
hara
teristi


fun
tion of all assignments to the �rst 
utdepth variables whi
h lead to node best node. The

image 
omputation is then started with presele
t � TODO instead of TODO.

Pruning of TR

To a
hieve our Goal 2, we prune the transition relation TR to 
olle
t only states with similar

Hamming weights. The pruning 
an be viewed as a sele
tion of edges in the state transition



diagram of the FSM. It is done by a 
onjun
tion TR

0

:= TR � presele
t � sele
t of TR with the


hara
teristi
 fun
tion presele
t and a new 
hara
teristi
 fun
tion sele
t. First, the 
hara
ter-

isti
 fun
tion presele
t sele
ts only edges, whi
h start from states ful�lling 
ondition presele
t.

However, not all su
h edges are 
onsidered, but only \short edges". Here \short edges" denote

edges 
onne
ting states with similar Hamming weights. We sele
t only edges between states

whose Hamming distan
e is less or equal to a 
onstant Hamming Weight

2

. The sele
tion of

short edges is done by a 
onjun
tion with the 
hara
teristi
 fun
tion sele
t depending on next

state variables where

ON(sele
t) = fy j 9y

0

2 ON(presele
t) with

Hamming distan
e(y; y

0

) � Hamming Weightg:

Partial Traversal in Phases

Using our pruning methods for the BDD TODO and for the transition relation TR we obtain an

algorithm for FSM traversal whi
h pro
eeds in rounds and phases. The algorithm is illustrated

in Figures 2 and 3.

In summary, the 
omplete algorithm pro
eeds in dlog(
ut depth)e + 1 phases. In ea
h phase

we work with a 
onstant Hamming weight to restri
t the \length of edges" in the transition

relation. Ea
h phase is divided into rounds. In ea
h round, depending on the 
hoi
e of the


ondition presele
t, we pro
ess a di�erent subspa
e of the total state spa
e until no new states


an be rea
hed in this subspa
e. In ea
h round a pruned transistion relation TR

0

is 
hosen

dynami
ally.

Pro
edure iterate until 
onverge (see Figure 2) performs a single round of the algorithm. It

performs a �xed point iteration starting from a set TODO of states using the pruned transition

relation TR

0

= TR �presele
t �sele
t. All rea
hed states are 
olle
ted in set Total REACHED.

Sin
e iterate until 
onverge starts image 
omputations only from states ful�lling 
ondition

presele
t, we have to 
olle
t states whi
h are rea
hed, but not yet pro
essed by image 
ompu-

tations, in a new set TODO (lines 4, 12).

Figure 3 gives an overview of the whole FSM traversal algorithm: We start the �rst phase with

Hamming weight 1 to 
ompute the sele
tors sele
t and presele
t (lines 19, 25). Now we iterate

in pro
edure iterate until 
onverge the image 
omputation until no new states are rea
hed

assuming sele
tors sele
t and presele
t (line 26). This pro
ess is repeated until the set TODO

provided by iterate until 
onverge will be
ome empty (loop of lines 23{28).

When TODO is empty, we are not �nished however, sin
e we used a pruned transition relation

with only \short edges". Now we have to enter a new phase: We in
rease Hamming Weight

(line 30), whi
h restri
ts the sele
tion of edges to be in
luded in the pruned transition relation,

now allowing also longer edges. For ea
h phase we double the 
onstant Hamming Weight

and we repeat the pro
ess until Hamming Weight is maximal, i.e. until it equals the number


ut depth of state variables (loop of lines 21{33). Finally we have a

umulated all rea
hable

states in Total REACHED.

Experimental results in Se
tion 4 prove that the order in whi
h we visit new rea
hed states in

our distan
e driven traversal is really eÆ
ient to redu
e peak sizes in memory 
onsumption,

whi
h o

ur for the straightforward BFS based traversal.

Furthermore, also the runtime behaviour is improved. Using our spe
ial method to prune the

transition relation TR we also su

eed in a
hieving Goal 3: If we 
an assume that 
orresponding

2

For reasons of eÆ
ien
y the Hamming weight of the states is only 
onsidered for the �rst 
ut depth state

variables here.



Cir
uit jTRj Depth jRea
hedj #Rea
hed Original Method Distan
e Guided

Peak Size Runtime Peak Size Runtime

furna
e17 7,264 174 845 8.9 x 10

19

4.0 M 139 0.2 M 8

key10 9,426 151 17,179 1.1 x 10

12

3.8 M 165 2.1 M 67

over12 6,782 90 3,671 5.9 x 10

16

9.2 M 507 1.2 M 32

mmgt20 6,167 144 9,756 8.1 x 10

31

4.2 M 248 0.7 M 30

dme2-16 141,840 433 8,353 1.4 x 10

18

5.7 M 500 3.8 M 269

dpd75 7,409 371 4,396 4.1 x 10

60

5.2 M 766 2.4 M 238

ftp3 6,399 58 55,937 5.9 x 10

8

3.6 M 339 2.5 M 283

Table 1: FMCAD'98 ben
hmarks - monolithi
 transition relations

Cir
uit Traversal Depth #Rea
hable States

s1269 9 1.1 x 10

9

s3271 16 1.3 x 10

31

s3330 7 7.3 x 10

17

s4863 4 2.2 x 10

19

Table 2: Chara
teristi
s of ISCAS'89 ben
hmarks


urrent and next state variables are neighboured in the BDD variable order (whi
h is usually

true in FSM traversal appli
ations), presele
t and sele
t depend only on the �rst 2 � 
utdepth

variables in the variable order, su
h that 
ofa
tors of TR

0

:= TR �presele
t � sele
t with respe
t

to 2 � 
utdepth variables (or more variables) will also o

ur as 
ofa
tors of TR. Sin
e the

re
ursive BDD synthesis pro
edures are always working with a same set of 
ofa
tors of TR, we

a
hieve an eÆ
ient Computed Table usage leading also to small runtimes (see Se
tion 4).

4 Experimental Results

In this se
tion, experimental results on the traversal te
hniques introdu
ed in this paper are

presented and 
ompared with standard traversal, partitioned traversals and partitioned traver-

sals 
ombined with a
tivity pro�ling [5℄. The exe
utive ma
hine for all measurements was an

Ultra-II model 2170 workstation with 1 GByte main memory. For all presented measurements

the memory limit was given by 800 MByte and 5,000 se
onds runtime. In all tables improve-

ments of more than 100 % are presented in bold fa
e, all runtimes are given in se
onds, peak

sizes represent numbers of BDD nodes.

Table 1 
ontains runtimes and memory performan
e results for model 
he
king tra
es �rst in-

trodu
ed in [15℄ for use as a 
omparison basis of di�erent BDD pa
kages. For these tra
es the

relevant FSM information for performing rea
hability analysis has been extra
ted without any

modi�
ations of the synthesis pro
ess originally given. jTRj denotes the number of BDDs nodes

of the transition relation. Depth is the traversal depth of the FSM. The 
olumns jRea
hedj and

#Rea
hed denote the number of BDDs nodes for the rea
hable states set and the number of

rea
hable states, respe
tively. The 
olumn Original Method denotes our 
ompetitor, a stan-

dard FSM traversal pro
ess provided by the CUDD pa
kage [6℄ fully exploiting the ri
h set of

newly added features for version 2.3.0 (e.g. the death-row for delayed freeage of BDDs improv-

Cir
uit PT #Cluster jTRj Original Method A
tivity Pro�ling Distan
e Guided

Peak Size Runtime Peak Size Runtime Peak Size Runtime

s1269 5,000 6 12,122 10.7 M 4,596 0.4 M 18 0.8 M 52

s3271 500 17 6,158 1.9 M 4,191 1.3 M 664 3.5 M 329

s3330 500 17 7,891 timeout timeout 1.4 M 358 1.9 M 320

s4863 5,000 39 85,384 0.4 M 53 0.2 M 76 0.9 M 49

s1269 500 12 5,946 10.2 M 4,577 11.6 M 2,411 1.3 M 109

s3271 5,000 7 21,403 timeout timeout 1.5 M 1,761 4.8 M 545

s3330 5,000 6 20,950 timeout timeout 0.6 M 2,610 2.2 M 798

s4863 500 50 61,447 timeout timeout timeout timeout 5.6 M 350

Table 3: ISCAS'89 ben
hmarks { partitioned transition relations



ing Computed Table eÆ
ien
y). For our method (denoted by Distan
e Guided) we applied a

\
utdepth" value of 8 variables.

When 
omparing the values presented in the Table 1, an average performan
e improvement of

a fa
tor of about 2.9 for the time performan
e 
an be noti
ed. For some tra
es, the runtimes

even yield an improvement fa
tor of upto 17 (furna
e17). Large peak sizes 
an be avoided

by our traversal thanks to the fo
us on 
ompa
t state sets representation, yielding an average

improvement fa
tor of almost 3 
on
erning peak sizes. Again some of the ben
hmarks yield

results outstandingly better than the average value, e.g. over12 and mmgt20 with improvement

fa
tors of about 7.

A major problem when performing rea
hability analysis relies on the fa
t that in many 
ases it

is not feasible to even 
onstru
t the initial problem, i.e. the transition relation monolithi
ally.

Therefore the transition relation needs to be build using a 
onjun
tive or disjun
tive partition-

ing. In the following we will underline the fa
t, that our approa
h yields adequate results for

non-monolithi
 transition relations too.

As underlying software platform for the following series of experiments the traversal tool PdTrav

1.2 provided at [6℄ was used. Table 2 gives the values for the traversal depth as well as the

number of rea
hable states for the ISCAS'89 ben
hmarks used for our measurements. It needs

to be mentioned that the ben
hmarks s1512, s3384 and s5378 were ex
luded from the tables

sin
e, independent of the approa
h 
onsidered here, they did not �nish 
al
ulations either due

to given memory or runtime limit when using a �xed variable ordering. All initial variable

orderings used were provided by [6℄.

In Table 3 we present memory and runtime 
omparisons of three traversal methods all imple-

mented in the PdTrav 1.2 traversal tool. Original Method denotes a straighforward BFS based

traversal, A
tivity Pro�ling shows the results for the approa
h presented in [5℄. The usage of

this method demands the setting of several parameters (e.g. pruning threshold and heuristi
s,

number of iterations for the learning phase, 
hoi
e of image 
omputation during learning phase

and next FROM set sele
tion). For the sake of simpli
ity we used the parameter settings sep-

arately provided for ea
h ben
hmark [6℄ and applied the available s
ripts. The s
ripts also

provide a suggested 
lustering for the transisition relation. The partitioning threshold (PT)

is given in 
olumn 2 of the table. The 
orresponding number of 
lusters (#Cluster) and the

size of the shared BDDs representing the transition relation (jTRj) are presented in 
olumns 3

and 4. To underline the quality of our results, i.e. giving an impression of the stability of our

method, we additionally present measurements for a se
ond partitioning threshold (PT) (taken

from the set f500, 5.000g), giving a di�erent starting point for the same 
ir
uit. The results

for the se
ond set of PTs are shown in the lower half of Table 3. For our method (denoted

by Distan
e Guided) we applied a \
utdepth" value of 14 variables. It should be mentioned

that this is the only parameter that has to be set for distan
e driven FSM traversal. Moreover,

we made the experien
e that the heuristi
s are robust against small 
hanges in the \
utdepth"

value.

Obviously, the 
hoi
e of 
lustering, i.e. the representation of the initial problem has large impa
t

on the overall 
omplexity of the synthesis pro
ess. Ben
hmark s4863 is a good example, being

handled in less than one minute when having a \good" 
lustering, but on the other hand is

not solvable for the Original Method and A
tivity Pro�ling within the given limits if not. As

shown, among the approa
hes 
onsidered here, only the method Distan
e Guided is 
apable to

partly over
ome the handi
ap of a \bad" 
lustering and o�ers a reasonably robust behaviour.

Overall, our approa
h outperforms a straightforward BFS based traversal both in BDD node

peak sizes and runtimes for non-monolithi
 transition relations. For some of the peak sizes our

results are slightly worse than the A
tivity Pro�ling results. Con
erning runtimes, up to one

ex
eption, our runtimes are the best of all presented 
ompetitors.



5 Con
lusions

We have presented a novel te
hnique for symboli
 FSM traversal whi
h is based on a sequen
e of

Hamming Distan
e guided partial traversals using a dynami
 pruning of the transition relation

and the state sets as well.

Our experimental results underline the quality of the approa
h, showing that Hamming Distan
e

guided FSM traversal has mu
h smaller memory requirements than straightforward BFS based

traversal and signi�
antly improved time performan
e. Furthermore, it also 
ompares favorably

to more sophisti
ated methods, like partitioned traversal 
ombined with a
tivity pro�ling.

As part of ongoing work, we are 
urrently investigating the 
han
es and in
uen
es of an au-

tomati
al adjustment and variation of the \best" 
ut depth during the rea
hability pro
ess.

Sin
e for non-monolithi
 transition relations the variable support for all partitions 
an vary

a lot (e.g. dependent on the methods for 
lustering), another point of great interest is the

heuristi
al 
hoi
e of the \
ut depth" for ea
h transition relation partition independently.
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