
IEEE TRANSACTIONS ON COMPUTER AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 18, NO. 2, FEB. 1999 81

BDD Minimization Using Symmetries*

Christoph S
holl, Member, IEEE, Dirk M�oller,

Paul Molitor, Member, IEEE, Rolf Dre
hsler Member, IEEE

Abstra
t|In this paper we study the e�e
t of using infor-

mation about (partially) symmetries for the minimization

of Redu
ed Ordered Binary De
ision Diagrams (robdds).

The in
uen
e of symmetries for the integration in dynami

variable ordering is studied for both
ompletely and in
om-

pletely spe
i�ed Boolean fun
tions.

The problems above are studied from a theoreti
al and

pra
ti
al point of view. Statisti
al results and ben
hmark

results are reported to underline the eÆ
ien
y of the ap-

proa
h. They prove that our te
hniques lead to improve-

ments of the robdd sizes by up to 70%.

Keywords| BDD, symmetry, sifting, in
ompletely spe
i-

�ed fun
tions, symmetry dete
tion

I. Introdu
tion

B

INARY De
ision Diagrams (bdds) as a data stru
ture

for representation of Boolean fun
tions were �rst intro-

du
ed by Lee [30℄ and further popularized by Akers [1℄ and

Moret [38℄. In the restri
ted form of robdds they gained

widespread appli
ation, be
ause robdds are a
anoni
al

representation and allow eÆ
ient manipulations [5℄. Some

�elds of appli
ation are logi
 design veri�
ation, test gen-

eration, fault simulation, and logi
 synthesis [33℄, [6℄. Most

of the algorithms using robdds have run time polynomial

in the size of the robdds. The sizes themselves depend

on the variable order used. Thus, there is a need to �nd

a variable order that minimizes the number of nodes in an

robdd.

As an example of appli
ation of robdds
onsider the use

of Field Programmable Gate Arrays (fpga) in the
on-

stru
tion of Combinational Logi
 Cir
uits (
l
) from a

bdd. The bdd has a dire
t
orresponden
e to a
l
 when

ea
h node of the bdd is substituted by a multiplexer. Sin
e

it is straightforward to map these multiplexer
ir
uits on

an fpga, where the logi
 blo
ks are based on multiplexers,

bdds have be
ome a good framework for logi
 synthesis.

Be
ause of this dire
t
orresponden
e, saving only a few

nodes in a bdd by using good variable orders already pays.

The importan
e of bdd minimization is also obvious for

re
ently proposed methods to synthesize Pass Transistor

Logi
 (PTL) networks dire
tly from bdds [7℄, [18℄. Also

Christoph S
holl is with the Institute of Computer S
i-

en
e, Albert-Ludwigs-University, 79110 Freiburg, Germany, E-mail:

s
holl�informatik.uni-freiburg.de

Dirk M�oller is with DResear
h GmbH, 12681 Berlin, Germany, E-

mail: moeller�dresear
h.de

Paul Molitor is with the Institute of Computer S
ien
e, Univer-

sity of Halle, 06099 Halle, Germany, E-mail: molitor�informatik.uni-

halle.de

Rolf Dre
hsler is with the Institute of Computer S
ien
e,

Albert-Ludwigs-University, 79110 Freiburg, Germany, E-mail:

dre
hsle�informatik.uni-freiburg.de

�

Parts of the arti
le have been presented at Int'l Conf. on CAD

1993 [36℄, IFIP Workshop on Logi
 and Ar
hite
ture Synthesis 1994

[37℄, and European Design and Test Conf. 1997 [44℄.

for other FPGA synthesis te
hniques like fun
tional de
om-

position (see e.g. [28℄, [50℄, [45℄) it is a good heuristi
 to

start with minimized bdds.

The existing heuristi
 methods for �nding good variable

orders
an be
lassi�ed into two
ategories: initial heuris-

ti
s whi
h derive an order by inspe
tion of a logi

ir
uit

[33℄, [20℄, [21℄, [19℄ and dynami
 reordering heuristi
s whi
h

try to improve on a given order [26℄, [43℄, [17℄, [2℄, [14℄.

Sifting introdu
ed by Rudell [43℄ has emerged so far as the

most su

essful algorithm for dynami
 reordering of vari-

ables. This algorithm is based on �nding the lo
al optimum

position of a variable, assuming all other variables remain

�xed. The position of a variable in the order is determined

by moving the variable to all possible positions while keep-

ing the other variables �xed. As already observed in [40℄,

one limitation of sifting, however, is that it uses the ab-

solute position of a variable as the primary obje
tive, and

only
onsiders the relative positions of groups of variables

indire
tly.

In this paper we
onsider partially symmetri
 Boolean

fun
tions, i.e., Boolean fun
tions that are invariant un-

der the permutation of some input variables. Knowing a

Boolean fun
tion to be symmetri
 allows appli
ation of spe-

ial logi
 synthesis tools that
an improve the results of the

design [16℄, [27℄, [13℄. Furthermore, knowing the variables

of a Boolean fun
tion whi
h are symmetri
 often restri
ts

the sear
h spa
e of a logi
 design problem whi
h may yield

in a remarkable de
rease of run time for that problem. Su
h

problems are, e.g., permutation independent Boolean
om-

parison [29℄, [9℄, [34℄, [35℄ and te
hnology mapping [32℄.

We show that symmetry properties
an be used to ef-

�
iently
onstru
t good variable orders for robdds using

modi�ed gradual improvement heuristi
s [37℄, [41℄

1

.

The
ru
ial point is to lo
ate symmetri
 variables side

by side and to treat them as �xed blo
k. This te
hnique is

motivated by the following three fa
ts:

1. The ex
hange of two symmetri
 variables does not

hange the size of the robdd, be
ause the fun
tion

remains the same.

2. The size of the robdd of any totally symmetri
 fun
-

tion f : f0; 1g

n

! f0; 1g is O(n

2

).

3. The value of a fun
tion whi
h is symmetri
 in some

variables fx

i

1

; : : : ; x

i

q

g does not depend on the ex-

a
t assignment of these variables but only on their

weight

P

q

j=1

x

i

j

.

Using the �rst fa
t, the heuristi
s
an skip over the ex-

hange of symmetri
 variables and so the run time de-

reases. However, the resulting robdd sizes will be the

1

The methods of paper [41℄ are similar to ours and have been inde-

pendently developed.

scholl
Schreibmaschinentext
Paper submitted to IEEE Trans. on CAD, for the final version see dx.doi.org/10.1109/43.743706

IEEE TRANSACTIONS ON COMPUTER AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 18, NO. 2, FEB. 1999 82

same. The se
ond and third fa
t leads to the spe
ial
lass of

variable orders of our te
hnique, i.e, variable orders where

the symmetri
 variables are lo
ated side by side.

If we lo
ate the symmetri
 variables side by side and

treat them as a �xed blo
k, we re
eive a modi�
ation of

sifting: the symmetri
 sifting algorithm, whi
h sifts sym-

metri
 groups simultaneously. Regular sifting usually puts

symmetri
 variables together in the order, but the sym-

metri
 groups tend to be in sub-optimal positions. The

sub-optimal solutions result from the fa
t that regular sift-

ing is unable to re
ognize that the variables of a symmetri

group have a strong attra
tion to ea
h other and should be

sifted together. When a variable of a symmetri
 group is

sifted by regular sifting, it is likely to return to its initial

position due to the attra
tion of the other variables of the

group [40℄.

To give an impressive example for the fa
t that it helps

to lo
ate the symmetri
 variables side by side,
onsider the

fun
tion x

1

x

n+1

+ x

2

x

n+2

+ : : : + x

n

x

2n

of 2n variables

[5℄. The size of the
orresponding robdd with variable

ordering x

1

; x

2

; x

3

; : : : ; x

2n

is exponential in n whereas the

size of any robdd with an order where the symmetries are

side by side is linear in n.

We present statisti
al fa
ts for Boolean fun
tions with up

to 5 input variables and experimental results for fun
tions

taken from the lgsynth91 ben
hmark set proving the new

lass of orders to be very eÆ
ient with respe
t to robdd

size. The ben
hmark results show that the modi�ed re-

ordering heuristi
, whi
h does not reorder single variables

but whole symmetri
 blo
ks, outperforms the original one.

Although, in general, it is reasonable to lo
ate the sym-

metri
 variables side by side, it does not lead to optimal re-

sults in all
ases. A
ounterexample has been given in [37℄.

By iterating one of these `bad' Boolean fun
tions a fam-

ily of parameterized Boolean fun
tions
an be
onstru
ted

su
h that there is a linear gap between optimal orders and

best symmetri
 orders [40℄.

The se
ond part of this paper handles the problem of

dete
ting partial symmetries for both
ompletely and in-

ompletely spe
i�ed Boolean fun
tions. Of
ourse before

exploiting symmetries we need to dete
t them.

First we
on
entrate on
ompletely spe
i�ed Boolean

fun
tions. So far, logi
 synthesis tools that work with

robdds use the well{known naive symmetry
he
k whi
h

ompares
ertain
ofa
tor fun
tions.

2

The problem of this

naive approa
h is that it needs to
onstru
t the robdd of

the
onsidered
ofa
tor fun
tions �rst. Espe
ially for fun
-

tions with a large number of inputs and a large robdd size

that may be impra
ti
al regarding to robdd
onstru
tion

time and storage pla
e.

We present an improved method that tries to dete
t as

many asymmetries of the fun
tion as possible without time

onsuming manipulations of the robdd data stru
ture it-

2

In this paper, we do not handle approa
hes of symmetry dete
tion

whi
h do not use robdds as, e.g., the approa
h proposed in [42℄ where

maximal sets of symmetri
 inputs of
ompletely spe
i�ed Boolean

fun
tions are
omputed using test generation pro
edures for single

stu
k-at faults.

self before using the naive symmetry
he
k. For these

asymmetry
he
ks, we use stru
tural properties of robdd

as well as simple fun
tion properties.

Experimental results on a large suit of ben
hmarks show

that this approa
h is promising. In many
ases, the CPU

time de
reases dramati
ally using our sophisti
ated sym-

metry
he
k instead of the naive one.

In many appli
ations (e.g.
he
king the equivalen
e of

two Finite State Ma
hines (fsms) [11℄, minimizing the tran-

sition relation of an fsm or logi
 synthesis for fpga realiza-

tions [28℄, [50℄, [45℄) in
ompletely spe
i�ed Boolean fun
-

tions play an important role. As determining the symmet-

ri
 groups and applying symmetri
 sifting results in good

variable orders for
ompletely spe
i�ed fun
tions, it also

seems to be a good idea in the
ase of in
ompletely spe
i�ed

fun
tions to �rst determine symmetri
 groups and then to

apply symmetri
 sifting. However, the symmetri
 groups of

in
ompletely spe
i�ed fun
tions are not uniquely de�ned as

will be demonstrated by some
ounterexamples. Therefore

we have to ask for good partitions of the Boolean variables

into symmetri
 groups with respe
t to robddminimization

and their
omputation.

To the best of our knowledge, no variable ordering algo-

rithm exploiting don't
ares has been presented in litera-

ture. First approa
hes [8℄, [47℄, [15℄ investigate the robdd

minimization problem for in
ompletely spe
i�ed Boolean

fun
tions, but there it is assumed that the variable order-

ing is �xed. However, the resulting robdd sizes heavily

depend on the initial variable order. Thus, there is a strong

need to determine good variable orders in the
ase of in-

ompletely spe
i�ed fun
tions, too.

In [27℄ an algorithm has been presented whi
h de
ides for

an in
ompletely spe
i�ed Boolean fun
tion (represented by

a
ube array) whether a given set � of input variables forms

a symmetri
 group or not. However, for our problem to

partition the input variables into symmetri
 groups there

remain two diÆ
ulties: �rst the question, how to �nd large

andidate sets � (of
ourse, we
annot test for ea
h sub-

set of the variables whether it is a symmetri
 group) and

se
ondly the question, how to
ombine symmetri
 groups

to a partition of the input variables, su
h that the in
om-

pletely spe
i�ed fun
tion is symmetri
 in ea
h set of the

partition at the same time (in Se
tion V-A we will show

that this
annot be done in a straightforward manner). To

the best of our knowledge, no te
hnique has been devel-

oped so far that targets on
omputing minimal partitions

into symmetri
 groups for in
ompletely spe
i�ed fun
tions.

The eÆ
ien
y of our approa
h is underlined by experimen-

tal results.

The paper is stru
tured as follows: In Se
tion II we intro-

du
e basi
 notations and review the main de�nitions. Sym-

metries for
ompletely spe
i�ed and in
ompletely spe
i�ed

fun
tions are de�ned. The e�e
t of symmetries for robdds

representing
ompletely spe
i�ed Boolean fun
tions is de-

s
ribed in Se
tion III. In Se
tion IV we present our asym-

metry test. Algorithms for in
ompletely spe
i�ed fun
tions

are given in Se
tion V. For all methods we give experimen-

IEEE TRANSACTIONS ON COMPUTER AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 18, NO. 2, FEB. 1999 83

tal results in Se
tion VI. Finally, the results are summa-

rized.

II. Preliminaries

In this se
tion we review some basi
s that are needed for

the understanding of the paper. First, bdds are de�ned and

the e�e
t of the variable ordering is dis
ussed. After intro-

du
ing some notations that are needed for the des
riptions

of the asymmetry dete
tion algorithm, the de�nitions of

symmetry for (in-)
ompletely spe
i�ed fun
tions are given.

A. Binary De
ision Diagrams

We start with a brief review of the essential de�nitions

and properties of Binary De
ision Diagrams as introdu
ed

in [5℄.

De�nition 1: A Binary De
ision Diagram (bdd) is a

rooted dire
ted a
y
li
 graph G = (V;E) with vertex

set V
ontaining two types of verti
es, non-terminal and

terminal verti
es. A non-terminal vertex v has as la-

bel a variable index(v) 2 fx

1

; : : : ; x

n

g and two
hildren

low(v); high(v) 2 V . A terminal vertex v is labeled with a

value value(v) 2 f0; 1g and has no outgoing edge.

A bdd
an be used to
ompute a Boolean fun
tion

f(x

1

; : : : ; x

n

) in the following way: Ea
h input a =

(a

1

; : : : ; a

n

) 2 f0; 1g

n

de�nes a
omputation path through

the bdd that starts at the root. If the path rea
hes a non-

terminal node v that is labeled by x

i

it follows the path

low(v) i� a

i

= 0 and it follows the path high(v) i� a

i

= 1.

On all paths a terminal vertex is rea
hed sin
e a bdd is

dire
ted and a
y
li
. The label of the terminal vertex de-

termines the return value of the bdd on input a.

More formally, we
an de�ne the Boolean fun
tion
or-

responding to a bdd re
ursively.

De�nition 2: A bdd having root vertex v denotes a

Boolean fun
tion f

v

de�ned as follows:

1. If v is a terminal vertex and value(v) = 1 (value(v) =

0), then f

v

= 1 (f

v

= 0).

2. If v is a non-terminal vertex and index(v) = x

i

, then

f

v

is the fun
tion

f

v

(x

1

; : : : ; x

n

) = x

i

� f

low(v)

(x

1

; : : : ; x

n

) +

x

i

� f

high(v)

(x

1

; : : : ; x

n

):

The variable x

i

is
alled the de
ision variable for v.

It is well-known that for ea
h Boolean fun
tion f there

exists a bdd denoting f . bdds are often used as a data

stru
ture in design automation and logi
 synthesis. Thus

there is a need of eÆ
ient manipulation of bdds. Unfor-

tunately, this property is not ful�lled by the general bdds

de�ned above (see [23℄). Therefore we need further restri
-

tions on the stru
ture of the bdds.

De�nition 3: A Redu
ed Ordered bdd (robdd) is a bdd

with the following two properties:

1. The bdd is ordered, i.e., there is a �xed order

� : f1; : : : ; ng ! fx

1

; : : : ; x

n

g su
h that for any

non-terminal vertex v index(low(v)) = �(k) with

k > �

�1

(index(v)) (index(high(v)) = �(q) with q >

�

�1

(index(v))) holds if low(v) (high(v)) is also a non-

terminal vertex.

0 1

x1

x2

x3 1

1

1

0

0

0

Fig. 1. BDD for f = x

1

x

2

+ x

3

2. The bdd is redu
ed, i.e., there exists no v 2 V with

low(v) = high(v) and there are no two verti
es v and

v

0

su
h that the sub-bdds rooted by v and v

0

are iso-

morphi
.

Example 1: In Figure 1 the redu
ed ordered bdd for

fun
tion f = x

1

x

2

+ x

3

is given. The left (right) outgo-

ing edge of ea
h node v is low(v) (high(v)).

Fun
tions denoted by robdds
an be manipulated eÆ-

iently [5℄. For our pra
ti
al experiments we use a robdd

pa
kage with
omplemented edges as des
ribed in [3℄.

Sin
e we work only with robdds in the following we

brie
y
all them bdds.

B. Variable Ordering

The size of a bdd is largely in
uen
ed by the
hoi
e of

the variable ordering. This is illustrated by the following

example from [5℄:

Example 2: Let f = x

1

x

2

+ : : :+ x

2n�1

x

2n

.

If the variable ordering is given by (x

1

; x

2

; : : : ; x

2n

), i.e.,

�(i) = x

i

8i, the size of the resulting bdd is 2n. On

the other hand if the variable ordering is
hosen as

(x

1

; x

3

; : : : ; x

2n�1

; x

2

; x

4

; : : : ; x

2n

) the size of the bdd is

�(2

n

). Thus the number of nodes in the graph varies

from linear to exponential depending on the variable or-

dering. In Figure 2 the bdds of the fun
tion f = x

1

x

2

+

x

3

x

4

+ x

5

x

6

with variable orderings (x

1

; x

2

; x

3

; x

4

; x

5

; x

6

)

and (x

1

; x

3

; x

5

; x

2

; x

4

; x

6

) are illustrated.

C. Notations

For a
onstant b 2 f0; 1g and a variable x

i

2 X

f j

x

i

=b

(x

1

; � � � ; x

n

) = f(x

1

; : : : ; x

i�1

; b; x

i+1

; : : : ; x

n

) de-

notes the Shannon
ofa
tor or restri
tion of f with respe
t

to x

i

= b. Instead of f j

x

i

=0

and f j

x

i

=1

we also write f

x

i

and f

x

i

, respe
tively.

The restri
tion of f with respe
t to a set of variables and

onstants is de�ned indu
tively:

f j

x

i

1

=b

1

;���;x

i

r

=b

r

= (f j

x

i

1

=b

1

;���;x

i

r�1

=b

r�1

)j

x

i

r

=b

r

:

The satisfy set of f is the set of all inputs for whi
h the

fun
tion value is 1. The satisfy
ount of f , denoted by jf j,

is the
ardinality of this set.

It is easy to see that ea
h node of a bdd is itself the

root of a bdd whi
h represents one or more restri
tions of

f . Two sets of those restri
tions will be introdu
ed in the

IEEE TRANSACTIONS ON COMPUTER AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 18, NO. 2, FEB. 1999 84

0 1

x2 x2 x2 x2

x1

x3x3

x4 x4

x5x5 x5 x5

x6

0 1

x2

x1

x3

x4

x5

x6

1

1

1

1

1

1

111

1 1

1

1

1

1

1

0

0

0
0

0

0

0

0 0
00

00

0

Fig. 2. bdds of the fun
tion f = x

1

x

2

+ x

3

x

4

+ x

5

x

6

following. When using these restri
tions for our purposes

in this paper, we
an assume w.l.o.g. that the variable order

is (x

1

; x

2

; : : : ; x

n

). For a variable x

i

we de�ne

F

f

x

i

= ff j

x

1

=b

1

;���;x

i�1

=b

i�1

: b 2 f0; 1g

i�1

g

as the set of all restri
tions of f with respe
t to all variables

that pre
ede x

i

. For x

1

we set F

f

x

1

= ffg. The node

whi
h represents a restri
tion in F

f

x

i

an be found if we

follow the path from the root using the appropriate ve
tor

of
onstants b. We stop at the �rst node with label greater

than x

i�1

.

The se
ond set is a little bit more
ompli
ated. For two

variables x

i

, x

j

(x

i

pre
edes x

j

) and a restri
tion g 2 F

f

x

i

we de�ne

R

g

x

i

x

j

= fgj

x

i

=1;���;x

i+l

=b

l

;���;x

j

=0

: b 2 f0; 1g

j�i�1

g

as the set of all restri
tions of g with respe
t to the variables

x

i

; x

i+1

; : : : ; x

j�1

; x

j

with x

i

set to 1 and x

j

set to 0. The

set R

g

x

i

x

j

is de�ned in the same way ex
ept that x

i

is set to

0 and x

j

is set to 1. The node whi
h represents a restri
tion

in R

g

x

i

x

j

an be found as des
ribed for F

f

x

i

starting at the

node that represents g and bran
hing to the right(left) son

for nodes with label x

i

(x

j

). E.g. for the variables x

1

and

x

3

, and g = f 2 F

f

x

1

we have

R

g

x

1

x

3

= fg

x

1

x

2

x

3

; g

x

1

x

2

x

3

g:

We will use these sets to formulate ne
essary
onditions

for symmetry and to develop prepro
essing algorithms that

he
k these
onditions. Note that in the next se
tions we

use the terms F

f

x

i

and R

g

x

i

x

j

to denote a set of fun
tions as

well as to denote the set of the nodes that represent these

fun
tions.

We also use the fa
t, that a fun
tion f whi
h is repre-

sented by a bdd G depends essentially on x

i

if and only if

at least one node in G is labeled with x

i

.

D. Symmetry for (In-)Completely Spe
i�ed Fun
tions

In the following, let X = fx

1

; : : : ; x

n

g be the set of vari-

ables of a Boolean fun
tion f and D some subset of f0; 1g

n

.

First, we will brie
y review de�nitions and basi
 prop-

erties of symmetries of
ompletely spe
i�ed Boolean fun
-

tions. We start with the de�nition of symmetry in two

variables, in a set of variables, and in a partition of the set

of input variables of a
ompletely spe
i�ed Boolean fun
-

tion.

De�nition 4: A
ompletely spe
i�ed Boolean fun
tion

f : f0; 1g

n

! f0; 1g is symmetri
 in a pair of input vari-

ables (x

i

; x

j

) if and only if f(�

1

; : : : ; �

i

; : : : ; �

j

; : : : ; �

n

) =

f(�

1

; : : : ; �

j

; : : : ; �

i

; : : : ; �

n

) holds 8� 2 f0; 1g

n

. f is sym-

metri
 in a subset � of X i� f is symmetri
 in x

i

and x

j

8x

i

; x

j

2 �. f is symmetri
 in a partition P = f�

1

; : : : ; �

k

g

of the set of input variables i� f is symmetri
 in �

i

81 � i � k.

If f is symmetri
 in a subset � of the set of input vari-

ables, then we say that `the variables in � form a symmetri

group'.

It is well known, that symmetry of a
ompletely spe
i�ed

Boolean fun
tion f in pairs of input variables of f leads

to an equivalen
e relation on X . Thus, there is a unique

minimal partition P ofX (namely the set of the equivalen
e

lasses of this relation) su
h that f is symmetri
 in P . The

omputation of a minimal partition of f su
h that f is

symmetri
 in P
an be done by testing for symmetry in all

pairs of input variables.

The de�nition of symmetry of an in
ompletely spe
i�ed

Boolean fun
tion f is redu
ed to the de�nition of symmetry

of
ompletely spe
i�ed extensions of f . An extension of

an in
ompletely spe
i�ed Boolean fun
tion is de�ned as

follows:

De�nition 5: Let f : D ! f0; 1g (D � f0; 1g

n

) be an

in
ompletely spe
i�ed Boolean fun
tion. f

0

: D

0

! f0; 1g

(D

0

� f0; 1g

n

) is an extension of f i� D � D

0

and f

0

(�) =

f(�) 8� 2 D.

IEEE TRANSACTIONS ON COMPUTER AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 18, NO. 2, FEB. 1999 85

De�nition 6: An in
ompletely spe
i�ed Boolean fun
-

tion f : D ! f0; 1g is symmetri
 in a pair of input variables

(x

i

; x

j

) (in a subset � ofX / in a partition P = f�

1

; : : : ; �

k

g

of X) i� there is a
ompletely spe
i�ed extension f

0

of f ,

whi
h is symmetri
 in (x

i

; x

j

) (in � / in P).

III. BDDs for Completely Spe
ified Fun
tions

In this se
tion we fo
us on
ompletely spe
i�ed Boolean

fun
tions. A polynomial upper bound for the sizes of bdds

of totally symmetri
 fun
tions is given. Motivated by this

symmetri
 variable orders are de�ned.

A. Totally Symmetri
 Fun
tions

For totally symmetri
 fun
tions it is well known that

the size of the bdd is bounded by O(n

2

). This is due to

the observation that for fun
tions symmetri
 in (x

i

; x

j

) the

equation f

x

i

x

j

= f

x

i

x

j

holds. For bdds this implies that for

f�(1); �(2)g = fx

i

; x

j

g the left son of the right son of the

root is the right son of the left son of the root. Thus, bdds

representing totally symmetri
 fun
tions grow in ea
h level

at most by one node. This is demonstrated by the following

diagram:

x1

x2 x2

x3 x3 x3

x4x4 x4x4

0

0

0 00

0

1

1

1 11

1

...

A more detailed analysis shows that the least upper

bound on the sizes is given by �(n

2

) [49℄, [24℄, [31℄.

B. Symmetri
 Variable Orderings

We now introdu
e the
lass of symmetry variable orders

that we will use to improve the existing reordering heuris-

ti
s.

De�nition 7: Let f be a partially symmetri
 fun
tion

with the set of symmetry sets S = f�

1

; : : : ; �

k

g. A

variable order � is
alled a symmetry variable order if

for ea
h symmetry set �

i

2 S there exists j so that

f�[j℄; �[j + 1℄; : : : ; �[j + j�

i

j � 1℄g = �

i

.

By this de�nition, the
lass of symmetry variable orders

onsists of all variable orders where the variables of ea
h

symmetry set are lo
ated side by side. The bdds that
or-

respond to symmetry orders are
alled symmetry ordered

bdds. In the remainder of this se
tion the eÆ
ien
y of

symmetry orders will be motivated.

As dis
ussed above the bdd size of any totally symmetri

fun
tion f is O(n

2

). In a symmetry ordered bdd there exist

a lot of sub-bdds where all variables in the upper part form

a symmetry set. If k is the size of su
h a symmetry set,

the upper parts of these sub-bdds
onsisting of all nodes

labeled by variables from the symmetry set have O(k

2

)

nodes.

Furthermore, the value of a fun
tion that is symmetri

in some variables fx

i

1

; : : : ; x

i

q

g does not depend on the

exa
t assignment of these variables but only on their weight

P

q

j=1

x

i

j

. If one uses symmetry ordered bdds, this weight

is
omputed in neighboring levels and no information about

partial weights has to be kept over several non-symmetri

levels { and keeping information may
ause large bdd sizes.

Symmetry variable orders often avoid this drawba
k

3

.

It is also worth to mention that the restri
tion to sym-

metri
 variable orderings is justi�ed not only by experi-

mental results but also from a theoreti
al point of view

[48℄.

IV. Dete
tion of Symmetries of Completely

Spe
ified Fun
tions

In this se
tion we present an eÆ
ient method for deter-

mining symmetries of
ompletely spe
i�ed Boolean fun
-

tions represented by bdds. We �rst give some
onditions

for symmetry and then present a fast algorithm that
an

eÆ
iently identify asymmetri
 stru
tures in bdds. This

algorithm is based on several ideas that have a dire
t
or-

responden
e to eÆ
ient algorithms, i.e. algorithms that
an

be
arried out in polynomial time and spa
e on the bdd

representation. We assume w.l.o.g. that the variable order

is given by (x

1

; x

2

; : : : ; x

n

).

A. Conditions for Symmetries

We give some theorems that we will use to develop meth-

ods dete
ting symmetry and asymmetry of a fun
tion.

Lemma 1: Let x; x

i

; x

j

be three distin
t variables. f is

symmetri
 with respe
t to fx

i

; x

j

g if and only if both
o-

fa
tors f

x

and f

x

are symmetri
 with respe
t to fx

i

; x

j

g.

Applying Lemma 1 re
ursively to f

x

and f

x

we get:

4

Corollary 1: f is symmetri
 with respe
t to fx

i

; x

j

g if

and only if ea
h fun
tion g 2 F

f

x

i

is symmetri
 with respe
t

to fx

i

; x

j

g.

For this, we
an restri
t ourselves to the fun
tions in F

f

x

i

in order to dete
t symmetries in f .

Lemma 2: If g 2 F

f

x

i

is symmetri
 with respe
t to

fx

i

; x

j

g then g either depends on both x

i

and x

j

or de-

pends neither on x

i

nor on x

j

.

This is
lear, be
ause of the following fa
t: If g depends on

x

i

but does not depend on x

j

, then these variables
annot

be permuted without
hanging g. With Corollary 1 we get:

Theorem 1: If f is symmetri
 with respe
t to fx

i

; x

j

g

then ea
h g 2 F

f

x

i

depends on both x

i

and x

j

or depends

neither on x

i

nor on x

j

.

Lemma 3: A fun
tion g 2 F

f

x

i

is symmetri
 with respe
t

to fx

i

; x

j

g if and only if for all w 2 f0; 1g

j�i�1

gj

x

i

=1;���;x

i+l

=w

l

;���;x

j

=0

= gj

x

i

=0;���;x

i+l

=w

l

;���;x

j

=1

:

3

This approa
h has been extended to `nearly' symmetri
 fun
tions

in [40℄. In the following we restri
t our approa
h to `pure' symmetry.

4

In the following we always assume i < j, su
h that x

i

pre
edes x

j

in the variable order.

IEEE TRANSACTIONS ON COMPUTER AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 18, NO. 2, FEB. 1999 86

In Lemma 3, a suÆ
ient and ne
essary
ondition for pair-

wise symmetry is given. Unfortunately, it requires to verify

2

j�i�1

equations. However, if we
onsider the two sets of

fun
tions that are on the left and on the right side of these

equations (that are R

g

x

i

x

j

and R

g

x

i

x

j

, respe
tively), we see

that they are equal in the
ase of symmetry. Note, that the

ardinality of these sets is restri
ted by the number of nodes

in the bdd of f . Of
ourse, the equalityR

g

x

i

x

j

= R

g

x

i

x

j

does

not ne
essarily imply that all the 2

j�i�1

equations given

above must hold. So, we obtain more eÆ
ien
y losing suf-

�
ien
y:

Theorem 2: If f is symmetri
 with respe
t to fx

i

; x

j

g

then for all g 2 F

f

x

i

we have

R

g

x

i

x

j

= R

g

x

i

x

j

:

That means, if there exists at least one fun
tion g in F

f

x

i

whi
h is not symmetri
 in fx

i

; x

j

g be
ause of the inequality

of the sets R

g

x

i

x

j

and R

g

x

i

x

j

, then f is not symmetri
 in

fx

i

; x

j

g.

Now let us
onsider a spe
ial
ase of Theorem 2, namely

x

j

= x

i+1

, i.e., symmetri
 variables whi
h are neighbors

with respe
t to the variable order. For g 2 F

f

x

i

we have

R

g

x

i

x

i+1

= fgj

x

i

=1;x

i+1

=0

g

and analogous forR

g

x

i

x

i+1

. Both sets
ontain only one fun
-

tion and they are equal if and only if the equation in Lemma

3 holds. Note that we have to test only one equation. By

this we get a ne
essary and suÆ
ient
ondition for symme-

try for pairs fx

i

; x

i+1

g:

Theorem 3: f is symmetri
 with respe
t to fx

i

; x

i+1

g if

and only if for all g 2 F

f

x

i

R

g

x

i

x

i+1

= R

g

x

i

x

i+1

:

B. Symmetries and Asymmetries

First the basi
 underlying ideas of our method to �nd the

symmetries of a fun
tion f are explained. For that we use

stru
tural properties of bdds as well as fun
tion properties.

First, we know that f is symmetri
 with respe
t to

fx

i

; x

j

g if and only if f

x

i

x

j

= f

x

i

x

j

. That
an easily be

he
ked by testing if the bdds of f

x

i

x

j

and f

x

i

x

j

are iso-

morphi
. We
all it the naive method.

Although this method is very popular, a handi
ap of

it is that
reating the ne
essary bdds may be very time

onsuming. That is why we have tried to �nd methods to

a

elerate symmetry dete
tion by dete
ting as many asym-

metri
 pairs of variables as possible to be able to avoid the

naive symmetry
he
k for those pairs. Of
ourse, these

tests have to be done with as little e�ort as possible and

without
reating new bdds.

A

ording to these
onstraints, we have developed four

ideas to dete
t asymmetri
 pairs. The �rst idea is based

on a simple fun
tion property. The other three ideas make

use of Theorem 1, Theorem 2, Theorem 3, and of
ertain

properties of bdds.

B.1 Idea 1

Our �rst method uses the fa
t that the satisfy
ount

jf

x

i

j is a
hara
teristi
 of x

i

whi
h is independent of the

permutation of the input variables of f [34℄. Thus, if two

variables x

i

and x

j

are symmetri
, then the restri
tions f

x

i

and f

x

j

have the same satisfy
ount, su
h that the following

lemma holds:

Lemma 4: f : f0; 1g

n

! f0; 1g is asymmetri
 in fx

i

; x

j

g

if jf

x

i

j 6= jf

x

j

j.

These satisfy
ounts
an be
omputed by a bottom{up

traversal of the bdd of f , i.e., without
onstru
ting the

bdds of the restri
tions [34℄. This
an be done in time

O(n � jGj), where jGj indi
ates the number of nodes in the

bdd of f . (Note that su
h an asymmetry test
an be done

by using any time eÆ
ient signature.)

B.2 Idea 2

The ba
kground of this idea is Theorem 1. Be
ause of

this theorem two variables x

i

and x

j

(i < j) do not form

a symmetri
 pair if at least one of the restri
tions in F

f

x

i

depends essentially on x

i

but does not depend on x

j

, or

vi
e versa.

Consider a restri
tion g 2 F

f

x

i

. The node v whi
h rep-

resents g may be labeled either with x

i

or with a variable

greater than x

i

. In the �rst
ase g depends on x

i

. How-

ever, if the bdd, rooted by the node v, does not
ontain

any node with label x

j

, then g does not depend on x

j

and

thus x

i

and x

j

do not form a symmetri
 pair. Thus, we

have:

Lemma 5: f : f0; 1g

n

! f0; 1g is asymmetri
 in fx

i

; x

j

g

if a node in the bdd of f with label x

i

does not have any

su

essor with label x

j

.

In the se
ond
ase g does not depend on x

i

. If the bdd,

rooted by the node v,
ontains a node with label x

j

, then g

depends on x

j

and thus x

i

and x

j

do not form a symmetri

pair. With other words, there exists a path from the root

(of the bdd of f) to a node with label x

j

, whi
h does not

ontain any node with label x

i

, and we have:

Lemma 6: f : f0; 1g

n

! f0; 1g is asymmetri
 in fx

i

; x

j

g

if in the bdd of f a node with label x

j

an be rea
hed from

the root via a path whi
h does not
ontain any node with

label x

i

.

To realize this idea, we �rst establish, for ea
h node v

in the bdd of f , the set of all variables whi
h are labels

of any su

essor of v and the set of all variables whi
h are

labels of nodes on ea
h path from the root to the node v.

The sets
an be determined for all nodes simultaneously in

one bottom{up and one top{down traversal of the bdd of

f in time O(n � jGj). Finally, to dete
t the asymmetries we

have to look for missing variables in these sets. This
an

be done in time O(n � jGj).

B.3 Idea 3

Now, we want to make use of Theorem 2. Here, our task

is to
onstru
t the two sets of nodes R

g

x

i

x

j

and R

g

x

i

x

j

for

ea
h fun
tion g 2 F

f

x

i

and to
he
k their equivalen
e.

IEEE TRANSACTIONS ON COMPUTER AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 18, NO. 2, FEB. 1999 87

Suppose, we have already
he
ked that fx

i

; x

j

g is not

asymmetri
 a

ording to Theorem 1. Then ea
h restri
tion

g in F

f

x

i

depends on neither x

i

nor x

j

or depends on both,

x

i

and x

j

. If g depends on neither x

i

nor x

j

, then R

g

x

i

x

j

and R

g

x

i

x

j

are equal, be
ause the variables x

i

and x

j

will

not be tested. So, we do not have to
onstru
t these sets.

For the
ase that g depends on both, x

i

and x

j

, let us

establish the sets R

g

x

i

x

j

and R

g

x

i

x

j

. The root node v of

the bdd of g is labeled with x

i

. Constru
ting R

g

x

i

x

j

means

to
olle
t the right sons of nodes with label x

j

in the left

subgraph of v. In the following, we
all these sons right

x

j

-sons. Analogous, R

g

x

i

x

j

ontains the left sons of nodes

with label x

j

in the right subgraph of v. These sons are

alled left x

j

-sons in the following. If the left x

j

-sons in the

right subgraph of v are di�erent from the right x

j

-sons in

the left subgraph of v, then the set R

g

x

i

x

j

is di�erent from

R

g

x

i

x

j

. Together with the fa
t that v is labeled with x

i

we

get our suÆ
ient
ondition for asymmetry:

Lemma 7: f : f0; 1g

n

! f0; 1g is asymmetri
 in fx

i

; x

j

g

if in the bdd of f one node v with label x

i

exists su
h

that the set of the left x

j

-sons in the right subgraph of

v is di�erent from the set of the right x

j

-sons in the left

subgraph of v.

To realize this idea, we start for ea
h node v with label x

i

a depth{�rst{sear
h (dfs) pro
edure on the left subgraph

and on the right subgraph of v to
olle
t the right x

j

-sons

and the left x

j

-sons, respe
tively, and
ompare these sets.

Unfortunately, we have to run (at most) 2 �n of the dfs pro-

edures for ea
h node in the bdd of f . Ea
h dfs pro
edure

visits (at most) jGj nodes. This implies an overall run time

of O(n � jGj

2

). However, the number of nodes that are vis-

ited in one sear
h is not very large if the distan
e between

the two variables x

i

and x

j

is small. Furthermore, there is

a hope that an existing asymmetry is dete
ted early and

so the number of sear
hes keeps small. Thus, it seems pos-

sible that the run time on average is not quadrati
 in the

size of the bdd. This presumption is
learly underlined by

our experimental results.

For pairs of neighboring variables we get a spe
ial
ase

of idea 3 whi
h we will
all idea 3

n

in the following:

B.4 Idea 3

n

Using Theorem 3 we
an formulate:

Lemma 8: f : f0; 1g

n

! f0; 1g is symmetri
 in fx

i

;

x

i+1

g if and only if in the bdd of f for all nodes v with

label x

i

the left x

i+1

-son in the right subgraph of v is the

same node as the right x

i+1

-son in the left subgraph of v.

The pro
edure to test this
ondition works similar to the

one for idea 3. For ea
h node we have to start only two

dfs
alls that visit at most four nodes. So, the
omplete

pro
edure requires time O(jGj). Note, that, similarly to

idea 3, we need to �lter out asymmetries with idea 1 in

order to guarantee the
orre
tness of this pro
edure.

Although the introdu
ed ideas work very well in pra
ti
e,

it
annot be guaranteed that all asymmetries of a fun
tion

an be dete
ted using them. For all other pairs, for that

no symmetry or asymmetry
ould be established so far, we

use the naive method to test if they are symmetri
 or not.

V. Symmetries of In
ompletely Spe
ified

Fun
tions

In this se
tion we dis
uss the problem of dete
ting sym-

metries of in
ompletely spe
i�ed Boolean fun
tions repre-

sented by bdds. First, we outline the o

urring diÆ
ulties.

This leads to the de�nition of `strong symmetries'. Then,

we dis
uss an algorithm to solve the minimum sized parti-

tioning of the variables of an in
ompletely spe
i�ed fun
-

tion into symmetry groups. And �nally, we investigate the

relationship of our don't
are assignment to maximize the

number of symmetries and the bdd minimization pro
e-

dure presented by Chang [8℄ and Shiple [47℄.

A. DiÆ
ulties with Symmetry of In
ompletely Spe
i�ed

Fun
tions

In order to minimize the bdd size for an in
ompletely

spe
i�ed Boolean fun
tion f , we are looking for a minimal

partition (or for maximal variable sets) su
h that f is sym-

metri
 in this partition (or these sets). Unfortunately there

are some diÆ
ulties in the
omputation of su
h partitions:

First of all, symmetry of f in two variables does not form

an equivalen
e relation on X in the
ase of in
ompletely

spe
i�ed Boolean fun
tions (see also [12℄ or [27℄):

Example 3: The following fun
tion shows that symmetry

in two variables does not lead to an equivalen
e relation

on the variable set in the
ase of in
ompletely spe
i�ed

Boolean fun
tions:

f(�) =

8

>

>

<

>

>

:

1 for � = (1; 0; 0)

d
 for � = (0; 1; 0)

0 for � = (0; 0; 1)

0 otherwise

It is easy to see that f is symmetri
 in x

1

and x

2

(for

the
orresponding
ompletely spe
i�ed extension f

0

of f

f

0

(0; 1; 0) = 1 holds) and f is symmetri
 in x

2

and x

3

.

However f is not symmetri
 in x

1

and x

3

.

Sin
e symmetry in pairs of variables does not form an

equivalen
e relation, it will be mu
h more diÆ
ult to de-

du
e symmetries in larger variable sets from symmetries in

pairs of variables than in the
ase of
ompletely spe
i�ed

Boolean fun
tions.

In the rest of the paper we use symmetry graphs to il-

lustrate symmetries of Boolean fun
tions. The symmetry

graph G

f

sym

= (X;E) of a Boolean fun
tion f : D ! f0; 1g

is a undire
ted graph with node set X (the set of input

variables of f) and edges fx

i

; x

j

g 2 E i� f is symmetri

in (x

i

; x

j

). For
ompletely spe
i�ed Boolean fun
tions f

G

f

sym

has a spe
ial stru
ture: The
onne
ted
omponents

of the graph form
liques as symmetry in two variables

forms an equivalen
e relation. For in
ompletely spe
i�ed

fun
tions there is not any stru
tural property. On the
on-

trary one
an prove (see proof of Theorem 4), that for every

graph G with n nodes, there is an (in
ompletely spe
i�ed)

Boolean fun
tion f : D ! f0; 1g su
h that the symmetry

graph of f
oin
ides with G. All possible graphs
an o

ur

as symmetry graphs of an in
ompletely spe
i�ed fun
tion.

IEEE TRANSACTIONS ON COMPUTER AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 18, NO. 2, FEB. 1999 88

x1 x2

x3 x4

Fig. 3. Symmetry graph of the fun
tion of Example 2

Even if f is symmetri
 in all pairs of variables x

i

and

x

j

of a subset � of the variable set of f , f is not ne
es-

sarily symmetri
 in �. This is illustrated by the following

example:

Example 4: Consider f : D ! f0; 1g, D � f0; 1g

4

.

f(�) =

8

>

>

>

>

<

>

>

>

>

:

1 for � = (0; 0; 1; 1)

d
 for � = (0; 1; 0; 1); � = (0; 1; 1; 0);

� = (1; 0; 0; 1); � = (1; 0; 1; 0)

0 for � = (1; 1; 0; 0)

0 otherwise

It is easy to see, that f is symmetri
 in all pairs of vari-

ables x

i

and x

j

, i; j 2 f1; 2; 3; 4g. The symmetry graph of

f is shown in Figure 3. It is the
omplete graph. For ea
h

ompletely spe
i�ed extension f

0

of f , whi
h is symmetri

in (x

1

; x

3

), f

0

(0; 1; 1; 0) = 0 holds and for ea
h
ompletely

spe
i�ed extension f

00

of f , whi
h is symmetri
 in (x

2

; x

4

),

f

00

(0; 1; 1; 0) = 1 holds. Hen
e there is no
ompletely spe
-

i�ed extension of f whi
h is symmetri
 in (x

1

; x

3

) and

(x

2

; x

4

) and therefore no extension whi
h is symmetri
 in

fx

1

; x

2

; x

3

; x

4

g.

Example 4 also points out another fa
t: If an in
om-

pletely spe
i�ed Boolean fun
tion f is symmetri
 in all vari-

able sets �

i

of a partition P = f�

1

; : : : ; �

k

g, it is not ne
-

essarily symmetri
 in P (
hoose P = ffx

1

; x

3

g; fx

2

; x

4

gg).

B. Strong Symmetry

The diÆ
ulties with the dete
tion of large symmetry

groups of in
ompletely spe
i�ed fun
tions result from the

fa
t that symmetry in pairs of variables does not form an

equivalen
e relation on the variable set X . If we
hange the

de�nition of symmetry of in
ompletely spe
i�ed fun
tions

as given in the following, symmetry in pairs of variables

provides an equivalen
e relation as in the
ase of
ompletely

spe
i�ed fun
tions:

De�nition 8 (Strong symmetry) An in
ompletely spe
i-

�ed Boolean fun
tion f : D ! f0; 1g is
alled strongly sym-

metri
 in a pair of input variables (x

i

; x

j

) i� 8(�

1

; : : : ; �

n

) 2

f0; 1g

n

either (a) or (b) holds.

(a) (�

1

; : : : ; �

i

; : : : ; �

j

; : : : ; �

n

) =2 D

and (�

1

; : : : ; �

j

; : : : ; �

i

; : : : ; �

n

) =2 D

(b) (�

1

; : : : ; �

i

; : : : ; �

j

; : : : ; �

n

) 2 D

and (�

1

; : : : ; �

j

; : : : ; �

i

; : : : ; �

n

) 2 D

and f(�

1

; : : : ; �

i

; : : : ; �

j

; : : : ; �

n

) =

f(�

1

; : : : ; �

j

; : : : ; �

i

; : : : ; �

n

).

In
ontrast to strong symmetry of in
ompletely spe
i-

�ed fun
tions the symmetry de�ned so far is
alled weak

symmetry. (Noti
e that for
ompletely spe
i�ed Boolean

fun
tions strong symmetry and weak symmetry are identi-

al.)

The following lemma holds for strong symmetry:

Lemma 9: Strong symmetry in pairs of variables of an

in
ompletely spe
i�ed Boolean fun
tion f : D ! f0; 1g

forms an equivalen
e relation on the variable set X of f .

Due to Lemma 9 there is a unique minimal partition

P of the set X of input variables su
h that f is strongly

symmetri
 in P . As in the
ase of
ompletely spe
i�ed

Boolean fun
tions, f is strongly symmetri
 in a subset �

of X i� 8x

i

; x

j

2 � f is strongly symmetri
 in (x

i

; x

j

). f

is strongly symmetri
 in a partition P = f�

1

; : : : ; �

k

g of X

i� 81 � i � k f is strongly symmetri
 in �

i

.

Of
ourse, if a fun
tion f is weakly symmetri
 in a par-

tition P , it needs not to be strongly symmetri
 in P , but it

follows dire
tly from De�nition 6 that there is an extension

of f whi
h is strongly symmetri
 in P .

Before we deal with the
omputation of extensions of in-

ompletely spe
i�ed Boolean fun
tions whi
h are strongly

symmetri
 in minimum sized variable partitions, we will

hara
terize weak and strong symmetry in variable parti-

tions in more detail. To do this, we need the term of the

`weight
lass' of a given partition.

De�nition 9 (Weight
lass of a partition P)

Let P = f�

1

; : : : ; �

k

g be a partition of fx

1

; : : : ; x

n

g. We

all w

1

(�

1

; : : : ; �

n

) =

P

n

i=1

�

i

the 1{weight of (�

1

; : : : ; �

n

)

and w

0

(�

1

; : : : ; �

n

) = n � w

1

(�

1

; : : : ; �

n

) the 0{weight

of (�

1

; : : : ; �

n

) 2 f0; 1g

n

. For �

i

= fx

i

1

; : : : ; x

i

l

g,

w

1

�

i

(�

1

; : : : ; �

n

) =

P

j2fi

1

;:::;i

k

g

�

j

is the 1{weight of the `�

i

{

part' of (�

1

; : : : ; �

n

).

C

P

w

1

;:::;w

k

= f(�

1

; : : : ; �

n

) 2 f0; 1g

n

: w

1

�

i

(�

1

; : : : ; �

n

) =

w

i

; 1 � i � kg is
alled weight
lass of the partition P

with weights (w

1

; : : : ; w

k

).

Example 5: Let P = ffx

1

; x

2

g; fx

3

; x

4

; x

5

gg. C

P

1;2

is the

subset of all verti
es of f0; 1g

n

with a 1{weight 1 of the

fx

1

; x

2

g{part and a 1{weight 2 of the fx

3

; x

4

; x

5

g{part,

i.e., the subset of all verti
es with exa
tly one 1 in the

�rst two
omponents and exa
tly two 1's in the remaining

omponents:

C

P

1;2

= f(0; 1; 0; 1; 1); (0; 1; 1; 0; 1); (0; 1; 1; 1; 0);

(1; 0; 0; 1; 1); (1; 0; 1; 0; 1); (1; 0; 1; 1; 0)g:

By means of `weight
lasses' there is an easy
hara
teri-

zation of weak and strong symmetry:

Lemma 10: Let P = f�

1

; : : : ; �

k

g be a partition of

fx

1

; : : : ; x

n

g. f : D ! f0; 1g is

(1) strongly symmetri
 in P i�

80 � w

i

� j�

i

j (1 � i � k)

f(C

P

w

1

;:::;w

k

) =

8

<

:

f0g or

f1g or

fd
g

(2) (weakly) symmetri
 in P i�

80 � w

i

� j�

i

j (1 � i � k) f0; 1g 6� f(C

P

w

1

;:::;w

k

):

Proof: See Appendix A.

IEEE TRANSACTIONS ON COMPUTER AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 18, NO. 2, FEB. 1999 89

C. Minimum Sized Partition

We have to solve the following problemMSP (Minimal

Symmetry Partition):

Given: In
ompletely spe
i�ed fun
tion f : D !

f0; 1g, represented by bdds for f

on

and

f

d

. (f

on

is the
ompletely spe
i�ed Boolean

fun
tion with the same on-set as f and

f

d

is the
ompletely spe
i�ed fun
tion with

f0; 1g

n

nD as on-set.)

Find: Partition P of the setX = fx

1

; : : : ; x

n

g su
h

that

� f is symmetri
 in P and

� for any partition P

0

of X in whi
h f

is symmetri
, the inequation jP j � jP

0

j

holds.

We
an prove the following theorem by a polynomial{

time transformation from the NP{
omplete problem `Par-

tition into Cliques' (PC) (see [22℄) to MSP:

Theorem 4: MSP is NP-hard.

Proof: See Appendix B.

To solve the problem heuristi
ally, we use a heuristi
 for

`Partition into Cliques' for the symmetry graph G

f

sym

of

f . However, the examples in Se
tion V-A showed that f is

not symmetri
 in all partitions into
liques of G

f

sym

. The

heuristi
 has to be
hanged in order to guarantee that f is

symmetri
 in the resulting partition P .

The heuristi
 to solve the problem PC makes use of the

following well known lemma:

Lemma 11: A graph G = (V;E)
an be partitioned into

k disjoint
liques i� G = (V;E)
an be
olored with k

olors. (G is the inverse graph of G, whi
h has the same

node set V as G and an edge fv; wg between two nodes v

and w i� there is no edge fv; wg in G, i.e., E = ffv; wg :

fv; wg =2 Eg.)

Thus, heuristi
s for node
oloring
an be dire
tly used

for the solution of partition into
liques. Nodes with the

same
olor in G form an `independent set' and thus a
lique

in G. Our implementation is based on Br�elaz algorithm

for node
oloring [4℄ whi
h has a run time of O(N) in an

implementation of Morgenstern [39℄, where N denotes the

number of nodes of the graph whi
h has to be
olored. It

is a greedy algorithm, whi
h
olors node by node and does

not
hange the
olor of a node whi
h is already
olored. In

the algorithm there are
ertain
riteria to
hoose the next

node to
olor and the
olor to use for it in a
lever way (see

[4℄, [39℄).

Figure 4 shows our heuristi
 for the problemMSP, whi
h

is derived from the Br�elaz/Morgenstern heuristi
 for node

oloring. First of all the symmetry graph G

f

sym

of f (or

the inverse graph G

f

sym

) is
omputed. The nodes of G

f

sym

are the variables x

1

; : : : ; x

n

. These nodes are
olored in

the algorithm. Nodes with the same
olor form a
lique in

G

f

sym

. Note that partition P (see line 3) has the property

that it
ontains set fx

k

g for any un
olored node x

k

and

that nodes with the same
olor are in the same set of P , at

any moment. The
ru
ial point of the algorithm is that the

invariant 'f is strongly symmetri
 in P ' of line 6 is always

maintained.

Now let us take a look at the algorithm in more detail.

At �rst glan
e, the set of all admissible
olors for the next

node x

i

is the set of all
olors between 1 and n ex
ept the

olors of nodes whi
h are adja
ent to x

i

in G

f

sym

. In the

original Br�elaz/Morgenstern algorithm the minimal
olor

among these
olors is
hosen for x

i

(
urr
olor in lines 10,

11). However, sin
e we have to guarantee that f is sym-

metri
 in the partition P whi
h results from
oloring, it is

possible that we are not allowed to
olor x

i

with
urr
olor.

If there is already another node x

j

whi
h is
olored by

urr
olor, then f has to be symmetri
 in the partition P

0

whi
h results by union of fx

i

g and [x

j

℄ ([x

j

℄ denotes �

q

,

if x

j

2 �

q

and P = f�

1

; : : : ; �

k

g). If there is su
h a node

x

j

, we have to test whether f is symmetri
 in (x

i

; x

j

) (line

14). (This test
an have a negative result, sin
e the don't

are set of f is redu
ed during the algorithm). If f is not

symmetri
 in (x

i

; x

j

),
urr
olor is removed from the set

of
olor
andidates for x

i

(line 20) and the minimal
olor

in the remaining set is
hosen as the new
olor
andidate

(line 10). If the
ondition of line 14 is true, the new par-

tition P results from the old partition P by union of fx

i

g

and [x

j

℄ (line 16). Now f is symmetri
 in the new partition

P (invariant (*) from line 17, see Lemma 12), and we
an

assign don't
ares of f su
h that f is strongly symmetri

in P (line 18).

The fa
t that the
onditions given in the algorithm im-

ply that f is symmetri
 in the new partition P is shown

in Lemma 12. In addition we have to point out how f
an

be made strongly symmetri
 in P (line 18). At the end

we re
eive an extension of the original in
ompletely spe
-

i�ed Boolean fun
tion whi
h is strongly symmetri
 in the

resulting partition P .

To prove invariant (*) in line 17, we need the following

lemma:

Lemma 12: Let f : D ! f0; 1g be strongly symmetri

in P , [x

i

℄; [x

j

℄ 2 P two subsets with j[x

i

℄j = 1, and let

f be symmetri
 in (x

i

; x

j

), then f is symmetri
 in P

0

=

P n f[x

j

℄; fx

i

gg

S

f[x

j

℄ [fx

i

gg.

Proof: Let P = f�

1

; : : : ; �

k

g and w.l.o.g. �

1

= fx

i

g,

�

2

= [x

j

℄. Then we have P

0

= f�

1

[�

2

; �

3

; : : : ; �

k

g.

Be
ause of Lemma 10, we have to show that there is no

weight
lass C

P

0

w

2

;:::;w

k

of P

0

with f0; 1g � f(C

P

0

w

2

;:::;w

k

).

Case 1: w

2

� 1

C

P

0

w

2

;:::;w

k

an be written as a disjoint union of two

weight
lasses of P :

C

P

0

w

2

;:::;w

k

= C

P

0;w

2

;:::;w

k

[C

P

1;w

2

�1;w

3

;:::;w

k

:

Sin
e f is strongly symmetri
 in P , jf(C

P

0;w

2

;:::;w

k

)j =

jf(C

P

1;w

2

�1;w

3

;:::;w

k

)j = 1 holds a

ording to Lemma

10. Suppose f0; 1g � f(C

P

0

w

2

;:::;w

k

), then we have

f(C

P

0;w

2

;:::;w

k

) =
 and f(C

P

1;w

2

�1;:::;w

k

) =
 for
 2

f0; 1g.

This leads to a
ontradi
tion to the
ondition that f is

symmetri
 in x

i

and x

j

, sin
e there are � 2 C

P

0;w

2

;:::;w

k

and Æ 2 C

P

1;w

2

�1;:::;w

k

su
h that � results from Æ only by

IEEE TRANSACTIONS ON COMPUTER AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 18, NO. 2, FEB. 1999 90

Input: In
ompletely spe
i�ed fun
tion f : D ! f0; 1g, D � f0; 1g

n

, represented by f

on

and f

d

Output: Partition P of fx

1

; : : : ; x

n

g, su
h that f is symmetri
 in P

Algorithm:

1 Compute symmetry graph G

f

sym

= (V;E) of f (or G

f

sym

= (V;E)).

2 81 � k � n :
olor(x

k

) := undef:

3 P = ffx

1

g; fx

2

g; : : : ; fx

n

gg

4 node
andidate set := fx

1

; : : : ; x

n

g

5 while (node
andidate set 6= ;) do

6 /* f is strongly symmetri
 in P */

7 Choose x

i

2 node
andidate set a

ording to Br�elaz/Morgenstern
riterion

8
olor
andidate set := f
 : 1 �
 � n; 6 9x

j

with fx

i

; x

j

g 2 E and
olor(x

j

) =
g

9 while (
olor(x

i

) = undef:) do

10
urr
olor := min(
olor
andidate set)

11
olor(x

i

) :=
urr
olor

12 if (9
olored node x

j

with
olor(x

j

) =
olor(x

i

))

13 then

14 if (f symmetri
 in (x

i

; x

j

))

15 then

16 P := P n f[x

j

℄;fx

i

gg

S

f[x

j

℄ [fx

i

gg

17 /* f is symmetri
 in P */ (*)

18 Make f strongly symmetri
 in P . (**)

19 else

20
olor
andidate set :=
olor
andidate set n f
urr
olorg

21
olor(x

i

) := undef:

22 �

23 �

24 od

25 node
andidate set := node
andidate set n fx

i

g

26 od

Fig. 4. Algorithm to solve MSP

ex
hange of the ith and jth
omponent, but f(�) =

and f(Æ) =
.

Case 2: w

2

= 0

C

P

0

w

2

;:::;w

k

= C

P

0;w

2

;:::;w

k

and f0; 1g 6� f(C

P

0

w

2

;:::;w

k

) fol-

lows from the strong symmetry of f in P .

Remark 1: The statement of Lemma 12 is not
orre
t,

if we repla
e `f strongly symmetri
 in P ' by `f (weakly)

symmetri
 in P ' or if we don't assume j[x

i

℄j = 1. But

note that the given
onditions
oin
ide exa
tly with the

onditions existing in the algorithm.

Next we have to explain how f is made strongly symmet-

ri
 in the partition P in line 18 of the algorithm. From the

de�nition of symmetry of in
ompletely spe
i�ed fun
tions

it is
lear that it is possible to extend a fun
tion f , whi
h

is (weakly) symmetri
 in a partition P , to a fun
tion whi
h

is strongly symmetri
 in P . From the set of all extensions

of f whi
h are strongly symmetri
 in P we
hoose the ex-

tension with a maximum number of don't
ares. If f is

(weakly) symmetri
 in a pair of variables (x

i

; x

j

), the ex-

tension f

0

of f , whi
h is strongly symmetri
 in (x

i

; x

j

) and

whi
h has a maximal don't
are set among all extensions

of f with that property,
an be easily
omputed from the

bdd representations of f

on

, f

d

and f

off

by the pro
edure

make strongly symm in Figure 5.

We
an use a sequen
e of
alls of the pro
edure

make strongly symm to make f strongly symmetri
 in the

partition P in line 18 of the algorithm. For this purpose

we
an prove the following theorem:

Theorem 5: Let f : D ! f0; 1g strongly symmetri
 in P ,

fx

i

g; [x

j

1

℄ 2 P , [x

j

1

℄ = fx

j

1

; : : : ; x

j

k

g, f =: f

(0)

symmetri

in (x

i

; x

j

1

).

f

(1)

= make strongly symm(f

(0)

; x

i

; x

j

1

)

f

(2)

= make strongly symm(f

(1)

; x

i

; x

j

2

)

.

.

.

f

(k)

= make strongly symm(f

(k�1)

; x

i

; x

j

k

):

Then f

(k)

is strongly symmetri
 in

P

0

= P n f[x

j

1

℄; fx

i

gg

[

f[x

j

1

℄ [fx

i

gg:

Proof: See Appendix C.

There are examples where we need the
omplete sequen
e

of
alls given in the theorem. However, in many
ases there

is a p < k su
h that f

(p)

does not di�er from f

(p�1)

. We

an prove that the sequen
e of
alls
an be stopped in su
h

ases with the result f

(k)

= f

(p�1)

.

D. Compatibility with other BDD Minimization Te
h-

niques

In the last se
tion we presented an algorithm to
ompute

a minimum sized partition P of the input variables in whi
h

an in
ompletely spe
i�ed fun
tion f is symmetri
. In ad-

dition we assigned values to don't
ares to make f strongly

symmetri
 in P . Usually the result will still
ontain don't

ares after this assignment.

We try to make use of these remaining don't
ares by

applying the te
hnique of Chang [8℄ and Shiple [47℄ to fur-

ther minimize bdd sizes. Sin
e this method removes don't

ares, we have to ask the question, if the method
an de-

stroy symmetries whi
h were found earlier.

IEEE TRANSACTIONS ON COMPUTER AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 18, NO. 2, FEB. 1999 91

Pro
edure make strongly symm

Input: f : D ! f0; 1g, represented by f

on

, f

off

, f

d

. f is (weakly) symmetri
 in (x

i

; x

j

).

Output: minimal extension f

0

of f (represented by f

0

on

, f

0

off

, f

0

d

), whi
h is strongly symmetri
 in

(x

i

; x

j

).

Algorithm:

1. f

0

on

= x

i

x

j

f

on

x

i

x

j

+ x

i

x

j

f

on

x

i

x

j

+ (x

i

x

j

+ x

i

x

j

)(f

on

x

i

x

j

+ f

on

x

i

x

j

)

2. f

0

off

= x

i

x

j

f

off

x

i

x

j

+ x

i

x

j

f

off

x

i

x

j

+ (x

i

x

j

+ x

i

x

j

)(f

off

x

i

x

j

+ f

off

x

i

x

j

)

3. f

0

d

= f

0

on

+ f

0

off

Fig. 5. Pro
edure make strongly symm

The answer to this question given in this se
tion is that

we
an preserve these symmetries using a slightly modi�ed

version of Chang's te
hnique.

The algorithm proposed by Chang [8℄ minimizes the

number of nodes at every level of the bdd by an opera-

tion remove z assigning as few don't
ares as possible to

either the on-set or the o�-set, i.e., the number of so-
alled

linking nodes immediately below a
ut line between two

adja
ent variables is minimized. After the minimization of

nodes at a
ertain level of the bdd they use the remaining

don't
ares to minimize the number of nodes at the next

level. The
ut line is moved from top to bottom in the bdd.

We
an prove that under
ertain
onditions, this method

does preserve strong symmetry:

Lemma 13: Let f be an in
ompletely spe
i�ed Boolean

fun
tion whi
h is strongly symmetri
 in P = f�

1

; : : : ; �

k

g

and assume that the variable order of the bdd representing

f is a symmetri
 order with the variables in �

i

before the

variables in �

i+1

(1 � i < k). If we restri
t the operation

remove z presented in [8℄ to
ut lines between two symmet-

ri
 groups �

i

and �

i+1

, then it preserves strong symmetry

in P .

Proof: See Appendix D.

Sin
e we will use su
h `symmetri
 orders' to mini-

mize bdd sizes (see Se
tion VI), we only have to restri
t

remove z to
ut lines between symmetri
 groups to guar-

antee that we will not lose any symmetries.

VI. Experimental Results

A. Completely Spe
i�ed Fun
tions

In this se
tion we present experimental results for
om-

pletely spe
i�ed fun
tions, in the next se
tion results for

in
ompletely spe
i�ed fun
tions.

A.1 Asymmetry Test

We
ompare the performan
e of our sophisti
ated sym-

metry
he
k with the naive one. For that we have imple-

mented the ideas des
ribed in the last se
tion. We have

used the
mu-bdd pa
kage
ontained in sis-1.2 [46℄. This

pa
kage is based on the ideas of [3℄. The algorithms were

tested for the multi-level
ir
uits

5

from the lgsynth91

ben
hmark set. In Table I we give only results for ben
h-

marks where run times for the naive symmetry
he
k (or

5

ex
ept C6288.blif and i10.blif

our pro
edure) were larger than 10 CPU se
onds measured

on a SPARC station 20.

In Table I the �rst four
olumns provide information

about the name of the
ir
uit, the number of primary in-

puts, the number of primary outputs, and the number of

nodes in the bdds. Columns 5{9 show CPU times in se
-

onds for the naivemethod and implementations of our ideas

of Se
tion IV, respe
tively. Column 6 shows CPU times for

the symmetry dete
tion using only idea 1,
olumn 7 CPU

times using idea 1 followed by idea 2. In
olumn 8 CPU

times for the sequen
e of running idea 1, idea 2, and idea 3

n

are given and in
olumn 9 CPU times for idea 1, idea 2,

idea 3

n

, and idea 3. The CPU times in
lude the run times

of the naive tests applied to those variable pairs for whi
h

asymmetry has not been dete
ted. Note, that the realiza-

tion of idea 3 starts with a realization of the spe
ial
ase

for neighboring variables in order to �lter out symmetries

of those pairs of variables. Column 10 (symsets) gives in-

formation on symmetries of the ben
hmark
ir
uits: 2(5)

means that there are two symmetry sets of �ve variables.

For the
ir
uits in Table I the run time for our method

de
reases drasti
ally
ompared with the naive method. The

experimental results show that already the appli
ation of

idea 1 leads to a large redu
tion of run times. For larger

examples (e.g. C2670, C7552) appli
ation of ideas 2, 3

n

and 3 leads to further redu
tions.

The reason for this is the obviously large ratio of asym-

metri
 pairs dete
ted by the asymmetry prepro
essing, as

shown by Table II. Table II gives the number of
om-

putations of
ofa
tors to
he
k symmetry for the di�erent

methods. The number of
ofa
tor
omputations needed to

he
k symmetry is de
reased step by step by the sequen
e

of running idea 1, idea 2, idea 3

n

and idea 3. In many

ases ideas 1, 2, 3

n

and 3 to
he
k asymmetry (and sym-

metry in
ase of idea 3

n

) are suÆ
ient in the sense that no

ofa
tor
omputation is ne
essary at the end, i.e., a 0 in

olumn Idea 1; 2; 3

n

; 3 denotes that all pairs of asymmetri

variables have been found by ideas 1, 2, 3 or 3

n

and that all

pairs of symmetri
 variables have been found by idea 3

n

.

The last
olumn gives the number of
ofa
tors whi
h have

to be
omputed after appli
ation of ideas 1, 2, 3

n

and 3 for

pairs of variables in whi
h the fun
tion is asymmetri
. It

shows that almost all pairs of asymmetri
 variables
ould

be dete
ted by the sequen
e of idea 1, 2, 3

n

and 3.

IEEE TRANSACTIONS ON COMPUTER AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 18, NO. 2, FEB. 1999 92

TABLE I

CPU times in se
onds.

ir
uit time symsets

name in out nodes naive Idea Idea Idea Idea

1 1; 2 1; 2; 3

n

1; 2; 3

n

; 3

C1355 41 32 29609 109.9 2.9 2.9 2.9 2.9 41(1)

C1908 33 25 7764 19.3 0.6 0.6 0.6 0.7 33(1)

C2670 233 140 7469 140.4 17.5 11.4 8.9 7.2 1(8) 2(2) 221(1)

C3540 50 22 27666 40.4 3.0 3.0 3.0 3.0 50(1)

C499 41 32 34113 128.5 3.4 4.0 4.0 4.0 41(1)

C5315 178 123 2433 231.9 1.9 2.1 2.1 2.1 2(2) 174(1)

C7552 207 108 9808 186.5 14.5 13.8 9.3 9.3 2(5) 4(4) 1(3) 6(2) 166(1)

apex6 135 99 1621 90.9 0.8 1.1 1.0 0.9 1(2) 133(1)

dalu 75 16 2235 15.8 0.4 0.6 0.6 0.6 1(2) 73(1)

des 256 245 7255 1100.1 5.6 5.6 5.7 5.6 256(1)

example2 85 66 757 13.9 0.2 0.3 0.3 0.3 1(2) 83(1)

frg2 143 139 3748 142.6 1.8 2.7 2.7 2.7 1(2) 141(1)

i2 201 1 1585 62.6 2.4 2.5 0.6 0.6 2(64) 3(16) 3(4)

i4 192 6 348 41.6 0.4 0.5 0.2 0.2 16(3) 50(2) 44(1)

i5 133 66 961 97.5 0.4 0.4 0.4 0.4 133(1)

i6 138 67 415 47.9 0.2 0.2 0.2 0.2 138(1)

i7 199 67 503 113.7 0.4 0.4 0.4 0.4 199(1)

i8 133 81 2637 93.8 1.1 1.2 1.1 1.1 133(1)

i9 88 63 2391 66.8 0.7 0.7 0.7 0.7 88(1)

pair 173 137 4918 132.4 2.6 3.9 3.8 3.8 2(2) 169(1)

rot 135 107 10223 556.8 4.9 6.9 5.9 5.7 2(3) 2(2) 125(1)

too large 38 3 4402 31.5 0.8 0.9 0.5 0.5 1(3) 3(2) 29(1)

x3 135 99 996 52.0 0.5 0.7 0.7 0.7 1(2) 133(1)

x4 94 71 756 24.3 0.2 0.4 0.4 0.4 1(2) 92(1)

TABLE II

Number of
ofa
tors whi
h have to be
omputed

ir
uit No. of
ofa
tors No. of
ofa
tors

naive Idea 1 Idea 1; 2 Idea 1; 2; 3

n

Idea 1; 2; 3

n

; 3 for asymmetri
 pairs

C1355 1640 0 0 0 0 0

C1908 1056 0 0 0 0 0

C2670 3639353 118546 13012 10660 1560 12

C3540 9925 0 0 0 0 0

C499 1640 2 2 0 0 0

C5315 1336816 10719 563 123 123 0

C7552 1734673 14203 4369 1669 1525 17

apex6 282351 621 321 74 0 0

dalu 11246 17 17 16 16 0

des 3173371 0 0 0 0 0

example2 114807 66 66 0 0 0

frg2 789287 139 139 0 0 0

i2 4794 180 180 2 2 0

i4 80308 492 492 72 72 0

i5 239690 0 0 0 0 0

i6 421264 0 0 0 0 0

i7 859421 0 0 0 0 0

i8 150515 0 0 0 0 0

i9 84488 0 0 0 0 0

pair 152263 1232 274 0 0 0

rot 233762 659 643 107 107 0

too large 1318 15 15 0 0 0

x3 283519 336 336 83 0 0

x4 169498 71 71 0 0 0

A.2 Sifting Using Symmetries

Here we
onsider statisti
al and ben
hmark results with

respe
t to
ompletely spe
i�ed Boolean fun
tions.

A.2.a Statisti
al Results. Due to the remarks in Se
tion

III-B and the theoreti
al results proven in [48℄, it seems to

be reasonable to
onsider only symmetri
 variable orders

for bdd minimization. To
he
k this assumption, we inves-

tigated all partially symmetri
 fun
tions with three, four

IEEE TRANSACTIONS ON COMPUTER AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 18, NO. 2, FEB. 1999 93

and �ve inputs. For ea
h fun
tion we determined the num-

ber of general orders and the number of symmetry orders

that
reate a bdd with x% more nodes than the minimum

bdd. Using these data, we
omputed the probability to get

a bdd with more than x% more nodes than the minimum

for an arbitrary fun
tion and an arbitrary order. Figure 6

shows the result obtained for the four and �ve input fun
-

tions. The dashed line shows the probability that the bdd

for an arbitrary partially symmetri
 fun
tion with an arbi-

trary symmetry order has more than x% additional nodes

with respe
t to the minimum. The solid line shows the

same for general orders. It turns out that the probability

to get an x% oversized bdd with a symmetry order is al-

ways smaller than it is for general orders. This shows from

a statisti
al point of view that symmetry orders
onstitute

an eÆ
ient sub
lass of variable orders.

Furthermore, this statisti
al study gives a negative an-

swer to the question, whether for ea
h bdd a symmetry

order exists that gives the minimal number of nodes. Con-

sider the fx

0

; x

1

g{symmetri
 fun
tion shown in Figure 7.

For this fun
tion ea
h symmetry ordered bdd has 4 internal

nodes while the minimum bdd has only 3 internal nodes.

For
ompleteness, we
omputed the number of partially

symmetri
 fun
tions for that ea
h symmetry order results

in a non-minimal bdd. For the 120 partially symmetri

fun
tions with three inputs there are 24 (20%) su
h fun
-

tions.

For the 20:548 partially symmetri
 fun
tions with four

inputs there are 960 (4.7%) and for the 162:535:140 par-

tially symmetri
 fun
tions with �ve inputs there are only

972:280 (0.6%) su
h fun
tions. The distan
e of the best

symmetry order to the minimum was at most two nodes.

We
on�rmed our results by performing experiments with

some fun
tions with more than �ve inputs. Thus, it seems

to be a good heuristi
 to
on�ne ourselves to the sub
lass

of symmetry variable orders.

In [41℄ it was
onje
tured that for bdds without
omple-

mented edges for ea
h fun
tion one of its symmetry orders

results in a bdd of minimal size. A negative answer to this

onje
ture was given by our experiments with this kind of

bdds. For the four input fun
tion

f = x

1

x

2

x

3

+ x

1

x

2

x

3

+ x

1

x

2

x

3

+ x

1

x

2

x

3

x

4

whi
h is symmetri
 in fx

1

; x

2

; x

3

g the bdd with best

symmetry order has size 9 and the minimum size is 8

(with variable orders x

1

; x

2

; x

3

; x

4

and x

1

; x

2

; x

4

; x

3

, re-

spe
tively). For bdds without
omplemented edges there

are 80 (0.4%) partially symmetri
 fun
tions with four in-

puts and 1:262:800 (0.8%) fun
tions with �ve inputs with-

out a minimum symmetry order.

A.2.b Ben
hmark Results. Now we will show the ef-

�
ien
y of the symmetry variable orders in pra
ti
al ap-

pli
ation. We pro
essed 109
ombinational two-level and

multi-level
ir
uits from the lgsynth91 ben
hmark set.

We also pro
essed ea
h primary output of ea
h
ir
uit sep-

arately, sin
e the single primary outputs of a multiple out-

put fun
tion sometimes have more symmetry. Symmetry

dete
tion was exe
uted on the bdds using the algorithm

proposed above. We slightly modi�ed this algorithm to de-

te
t equivalen
e symmetry as well. The notion of equiva-

len
e symmetry was introdu
ed by Hurst [25℄ and des
ribes

the situation that not fx

i

; x

j

g but fx

i

; x

j

g is a symmetri

pair. The additional
onsideration of equivalen
e symme-

try results in about 10% more symmetry.

If a bdd is to be
reated from a
ir
uit des
ription, a

heuristi
 [33℄ generates a good initial order whi
h is not

ne
essarily a symmetry order. As dis
ussed above, the size

of the bdd may be redu
ed, if the initial non-symmetry

order is transformed into a symmetry one. We have applied

three algorithms to get a symmetry order. They di�er only

in the way they sele
t the new position for a symmetry set.

Heuristi
 �rst sele
ts as position for a symmetry set the

position of the �rst variable of the symmetry set, median

sele
ts the position of the middle variable and last sele
ts

the position of the last symmetri
 variable.

Heuristi
 best
alls all three methods and then sele
ts the

best order. The suÆx so denotes the methods that handle

ea
h primary output separately. The results obtained by

initial reordering are shown in Table III. The �rst
olumn

gives the name of the reordering heuristi
. The se
ond,

third and fourth
olumn shows the total number of ben
h-

mark fun
tions where the size of the symmetry ordered bdd

is smaller, equal-sized, or larger than the initial one when

it was reordered with the
orresponding heuristi
. The last

olumn shows the total number of nodes of all bdds and

the average improvement over all ben
hmarks.

For the 109 multiple output fun
tions we dete
ted 56

to be partially symmetri
. The initial ordering heuristi

already generates a symmetry order for 39 of these fun
-

tions. For more than half of the remaining non-symmetry

ordered bdds the order has been improved by ea
h of the

three symmetry reordering methods and the overall num-

ber of nodes de
reases. The best heuristi
 seems to be last

and we sele
t it for our next experiments. However, row

best shows that the heuristi
s work well on di�erent fun
-

tions. There are only three of the single output fun
tions

for whi
h all three heuristi
s generate a symmetry ordered

bdd that is larger than the initial one. This shows that

symmetry orders are also good in pra
ti
e.

To redu
e the size of a bdd several reordering heuristi
s

have been developed. Two of them, win3 and sift [43℄ are

implemented in the
mu-bdd pa
kage. To work with sym-

metry orders we make use of the variable blo
king feature

of the
mu-bdd pa
kage. Before starting reordering, we

blo
k the symmetri
 variables whi
h were made adja
ent

by last. The modi�ed heuristi
s are
alled Swin3 and Ssift,

respe
tively.

For all symmetri
 fun
tions from the ben
hmark set the

original heuristi
s win3 and sift and the modi�ed heuristi
s

Swin3 and Ssift were applied to the initial bdds. Results

are presented in Table IV. The �rst
olumn denotes the

reordering heuristi
. The se
ond, third and fourth
olumn

shows the total number of ben
hmark fun
tions for that

the modi�ed heuristi
s generate a smaller, equal-sized, or

larger bdd than the original heuristi
. Column nodes shows

IEEE TRANSACTIONS ON COMPUTER AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 18, NO. 2, FEB. 1999 94

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25 30 35 40 45 50

P
ro

ba
bi

lit
y

Distance of more than x% from minimum

4 Inputs

general orders
symmetry orders

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50 60 70

P
ro

ba
bi

lit
y

Distance of more than x% from minimum

5 Inputs

general orders
symmetry orders

Fig. 6. Distribution of general orders and symmetry orders

m

x

0

m

x

1

m

x

1

m

x

2

1 0 1 0

�

�

0

�

�

1

A

A

A

1

�

�

�

�

�

�

0 1 r0

�

�

0

�

�

1

m

x

2

m

x

0

m

x

0

m

x

1

0 1 0

�

�

0

�

�

1

�

�

r0

�

�

1

�

�

�

r0

C

C

C

C

C

C

1

�

�

0

�

�

1

m

x

0

m

x

2

m

x

1

0 1 0

�

�

1

�

�

�

�

�

�

r0

�

�

�

0

C

C

C

C

C

C

1

�

�

0

�

�

1

Fig. 7. bdds of f = x

0

x

1

+ x

0

x

1

x

2

TABLE III

Initial ordering with symmetry orders

Heuristi
 bdd size nodes

< = >

initial 58688

�rst 9 5 3 58432 1.3%

median 14 3 0 58020 1.5%

last 14 3 0 58007 1.8%

best 15 2 0 57888 2.5%

Heuristi
 bdd size nodes

< = >

initial so 49199

�rst so 312 236 101 47275 1,2%

median so 398 174 77 46353 1.5%

last so 409 161 79 46362 1.6%

best so 534 112 3 45252 2.4%

TABLE IV

Reordering with symmetry orders

Heuristi
 bdd size nodes time (se
)

< = >

win3 66350 14

Swin3 25 29 2 64200 5.7% 16

sift 33878 92

Ssift 26 26 4 33149 7.1% 93

win3 so 67961 36

Swin3 so 693 1443 42 63668 3.4% 41

sift so 58177 116

Ssift so 452 1695 4 54970 2.6% 99

the number of nodes of all the optimized bdds and the

average improvement over all ben
hmarks. Column time

shows the run time

6

of the heuristi
s. The additional over-

all run time for symmetry dete
tion for multiple-output

and single-output fun
tions is about 88 se
onds.

It is shown that the heuristi
s that use symmetry orders

6

All run times are se
onds on SPARCstation 10/64 MB.

generate better or same results in most
ases. Swin3 saves

5:7% nodes and Ssift3 saves 7:1% nodes on the average. The

run time for symmetri
 reordering remains nearly the same.

Unfortunately, there is the extra run time for symmetry

dete
tion. This in
reases the run time of sift in general

by fa
tor 2 and of win3 up to fa
tor 7. One
an over
ome

this diÆ
ulty if the symmetry dete
tion is integrated in the

reordering method following idea 3

n

above (see also [41℄).

Table V shows the e�e
t of symmetry based reordering

for some individual ben
hmarks. In
olumn symsets infor-

mation on symmetry is given (like in the previous se
tion

2(3) means that there are two symmetry sets of three in-

put variables). The following
olumns show the bdd size

a
hieved by the mentioned heuristi
s. The leading S de-

notes the symmetri
 version. (Column init gives the initial

bdd sizes (sifting was used as a dynami
 reordering method

to
ompute these bdds) and
olumn Sinit gives the result

of making symmetri
 variables adja
ent by heuristi
 last as

des
ribed above.) If the symmetri
 reordering results in

the same size as the original the results are omitted.

It is shown that the symmetry modi�ed algorithms in

general outperform the original ones. Furthermore, even

IEEE TRANSACTIONS ON COMPUTER AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 18, NO. 2, FEB. 1999 95

TABLE V

Ben
hmark results of reordering with symmetry orders

ir
uit symsets init Sinit win3 Swin3 sift Ssift

C2670 1(8) 2(2) 7306 7300

C5315 2(2) 2407 2406 2379 2378

C7552 2(5) 4(4) 1(3) 6(2) 9747 9727 9415 8838

C880 3(2) 7134 7132 5164 4879

apex2 1(3) 3(2) 2947 2846 910 634 700 654

ps 1(4) 1455 1445 1301 1294 1035 991

ex4 14(2) 895 822 692 691 537 539

seq 2(2) 5638 5532 3737 2586

t481 8(2) 63 33 33 21 33 31

vg2 2(2) 390 385 132 146

omp 16(2) 146 128 146 107

ount 1(2) 232 201 201 82

dalu 1(2) 4575 4346 1322 1323

frg2 1(2) 2297 2171

i2 2(64) 3(16) 3(4) 1586 1582 795 298

i4 16(3) 50(2) 349 333 333 245 308 233

lal 5(2) 122 110 97 95 75 72

my adder 1(3) 15(2) 457 452 457 411

p
ler8
l 1(2) 138 122 130 86

rot 2(3) 2(2) 10224 10222 8212 8204 4574 4568

too large 1(3) 3(2) 667 676 500 439

x1 1(2) 1211 1190 784 799 544 518

z4ml 1(3) 2(2) 37 30 21 17 24 17

a small number of symmetry sets and variables
an
ause

a large improvement. For example, for seq with only two

symmetry sets of size two Swin3 saves about 30% of all

nodes and for
ount with only one symmetry pair Ssift saves

about 60%. Thus, symmetry based ordering is not only

suitable for fun
tions with a very large number of symme-

tries.

B. In
ompletely Spe
i�ed Fun
tions

We have
arried out experiments to test the e�e
t of the

algorithms for symmetry dete
tion in the
ase of in
om-

pletely spe
i�ed Boolean fun
tions.

To generate in
ompletely spe
i�ed fun
tions from
om-

pletely spe
i�ed fun
tions, we used a method proposed in

[8℄: After
ollapsing ea
h ben
hmark
ir
uit to two level

form, we randomly sele
ted
ubes in the on-set with a prob-

ability of 40% to be in
luded into the don't
are set

7

. The

last three Boolean fun
tions in Table VI are partial multi-

pliers partmult

n

8

.

We performed three experiments: First of all, we ap-

plied symmetri
 sifting to the bdds representing the on-

set of ea
h fun
tion. The results are shown in
olumn 6

(sym sift) of Table VI. The entries are bdd sizes in terms

of internal nodes.

In a se
ond experiment, we applied our algorithm to min-

imize the number of symmetri
 groups followed by sym-

7

Be
ause of this method to generate in
ompletely spe
i�ed fun
-

tions we had to
on�ne ourselves to ben
hmark
ir
uits whi
h
ould

be
ollapsed to two level form.

8

The n

2

inputs are the bits of the n partial produ
ts and the 2n out-

puts are the produ
t bits. The don't
are set
ontains all input ve
tors

whi
h
annot o

ur for the reason that the input bits are not inde-

pendent from ea
h other, be
ause they are
onjun
tions a

i

b

j

of bits

of the operands (a

1

; : : : ; a

n

) and (b

1

; : : : ; b

n

) of the multipli
ation.

metri
 sifting. Column sym group of Table VI shows the

results. sym group provides a partition P = f�

1

; : : : ; �

k

g

and an extension f

0

of the original fun
tion f , su
h that

f

0

is strongly symmetri
 in P . On the average, we
an

improve the bdd size by 51%.

In a last experiment we started with the results of

sym group and then went on with a slightly modi�ed ver-

sion of the te
hnique of Chang [8℄ and Shiple [47℄ a

ording

to Lemma 13. Lemma 13 leads to a modi�
ation of the

te
hnique of Chang whi
h does not destroy strong sym-

metry supplied by sym group: We restri
t the remove z

operation [8℄ only to
ut lines between groups of symmet-

ri
 variables. Sin
e our te
hnique to restri
t remove z to

ut lines between symmetri
 groups does not destroy the

symmetri
 groups, we
an perform symmetri
 sifting after

the node minimization with the same symmetri
 groups

as before. Figure 8 illustrates our modi�
ation of Chang's

te
hnique. Column sym
over of Table VI shows the re-

sulting bdd sizes. On the average, the new te
hnique leads

to an improvement of the bdd sizes by 70%.

A
omparison to the results of the restri
t operator [10℄

(applied to bdds whose variable order was optimized by

regular sifting) in
olumn restri
t of Table VI shows that

our bdd sizes are on the average 44% smaller. Even if

sifting is
alled again after the restri
t operator has been

applied, the improvement is still more than 40% on average

(see
olumn restri
t sift).

Finally, we
arried out the same experiment on
e more,

but this time the probability for a
ube to be in
luded in

the don't
are set was redu
ed to 10% (instead of 40%)

9

.

9

Note that the sizes of the don't
are sets for the partial multipliers

partmult

n

are �xed, sin
e these don't
are sets arise in a `natural

IEEE TRANSACTIONS ON COMPUTER AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 18, NO. 2, FEB. 1999 96

TABLE VI

Experimental results. The table shows the number of nodes in the bdds of ea
h fun
tion. Numbers in parenthesis show the

CPU times (measured on a SPARCstation 20 (96 MByte RAM)).

ir
uit in out restri
t restri
t sift sym sift sym group sym
over

5xp1 7 10 63 63 67 66 (0.2 s) 53 (0.5 s)

9symml 9 1 67 65 108 25 (0.3 s) 25 (0.4 s)

alu2 10 6 192 182 201 201 (0.7 s) 152 (2.6 s)

apex6 135 99 993 940 1033 983 (267.6 s) 612 (459.7 s)

apex7 49 37 730 716 814 728 (27.7 s) 340 (52.2 s)

b9 41 21 213 211 256 185 (8.6 s) 122 (11.5 s)

8 28 18 110 98 156 95 (1.7 s) 70 (3.2 s)

example2 85 66 497 496 491 484 (69.2 s) 416 (119.4 s)

mux 21 1 32 32 34 29 (0.6 s) 29 (0.7 s)

p
ler8 27 17 111 111 78 73 (1.9 s) 72 (3.3 s)

rd73 7 3 75 74 76 34 (0.3 s) 27 (0.4 s)

rd84 8 4 135 132 144 42 (0.7 s) 42 (0.7 s)

sao2 10 4 89 89 104 104 (0.4 s) 70 (0.8 s)

x4 94 71 814 812 829 633 (121.9 s) 485 (203.4 s)

z4ml 7 4 47 46 51 32 (0.2 s) 17 (0.3 s)

partmult3 9 6 70 65 152 35 (1.0 s) 29 (1.2 s)

partmult4 16 8 307 294 971 222 (49.5 s) 114 (50.6 s)

partmult5 25 10 857 843 4574 998 (1540.4 s) 365 (1548.4 s)

total 5402 5269 10139 4969 3040

0 1

...
.

xi1

xi2

xi3

xi4

xi5

xin-3

xin-2

xin-1

xin

0 1

...
.

1

2

3

k-1

k

0 1

...
.

i1

i2

i3

ik-1

i k

symmetric
sifting

Fig. 8. On the left hand side the method presented by Chang is illustrated (
ut lines between all levels). On the right hand side our method

is illustrated.

The numbers for sym sift, sym group and sym
over are

given in Table VII in
olumns 4, 5 and 6, respe
tively. It

an easily be seen that the redu
tion ratio de
reases, when

only a smaller number of don't
ares is available, but with

only 10% don't
ares still more than 30% of the nodes
an

be saved on average.

VII. Con
lusions

We presented methods for symmetry dete
tion for
om-

pletely spe
i�ed fun
tions represented by bdds. The main

idea of our symmetry dete
tion algorithm is to use fast pre-

pro
essing algorithms to dete
t asymmetri
 variable pairs.

These methods were applied to improve the quality of bdd

reordering heuristi
s for the
lass of partially symmetri

fun
tions by using symmetry variable orders. The
on
ept

of symmetry variable orders was su

essfully extended to

in
ompletely fun
tions, where there are two means to min-

way' as des
ribed above.

imize bdd sizes: the assignment of values to don't
ares

and the optimization of the variable order. Experimental

results prove our approa
h to be very e�e
tive.

Appendix

A. Proof of Lemma 10

Proof:

1. "`(="': Suppose f is not strongly symmetri
 in

P . Then there must be �

i

2 P , su
h that f is

not strongly symmetri
 in �

i

and there must be

a pair of variables (x

i

; x

j

) 2 �

i

, su
h that f is

not strongly symmetri
 in (x

i

; x

j

). By de�nition

there must be e

1

= (�

1

; : : : ; �

i

; : : : ; �

j

; : : : ; �

n

) and

e

2

= (�

1

; : : : ; �

j

; : : : ; �

i

; : : : ; �

n

), su
h that e

1

2 D

and e

2

=2 D or e

1

; e

2

2 D and f(e

1

) 6= f(e

2

). But

e

1

and e

2

belong to the same weight
lass C of P .

Both
ases lead to a
ontradi
tion: In the �rst
ase

we have fd
; 1g or fd
; 0g � f(C), in the se
ond
ase

IEEE TRANSACTIONS ON COMPUTER AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 18, NO. 2, FEB. 1999 97

TABLE VII

Experimental results. The table shows the number of nodes

in the bdds of ea
h fun
tion with 10% don't
ares.

ir
uit in out sym sift sym group sym
over

5xp1 7 10 75 73 68

9symml 9 1 75 25 25

alu2 10 6 199 199 166

apex6 135 99 961 911 585

apex7 49 37 807 753 428

b9 41 21 203 195 141

8 28 18 180 161 83

example2 85 66 547 540 464

mux 21 1 40 35 33

p
ler8 27 17 83 83 81

rd73 7 3 65 35 31

rd84 8 4 126 42 42

sao2 10 4 106 106 79

x4 94 71 677 670 499

z4ml 7 4 50 30 17

total 4194 3858 2742

f0; 1g � f(C).

"`=)"': If f is strongly symmetri
 in P , then the

following holds for all � 2 � = f�

i;l

: 9�

j

2

Pwithx

i

; x

l

2 �

j

g

1

: 8e = (�

1

; : : : ; �

n

) 2 f0; 1g

n

f(e) = f(�(e)) (in
luding the extended interpre-

tation f(e) = f(�(e)) = d
). Let e

1

and e

2

be

members of a arbitrary weight
lass C of P . Then

there is a sequen
e of permutations �

1

: : : �

l

2 �

with e

2

= (�

1

Æ : : : Æ �

l

)(e

1

). Thus f(e

1

) = f(e

2

)

holds, su
h that f(C) = f0g or f(C) = f1g or

f(C) = fd
g.

2. "`(="': Let 80 � w

i

� j�

i

j(1 � i � k) f0; 1g 6�

f(C

P

w

1

;:::;w

k

).

We have to prove that there is a
ompletely spe
i-

�ed extension f

0

of f , whi
h is symmetri
 in P .

De�ne f

0

as follows:

If f(C) = f�g (� 2 f0; 1g) for a weight
lass C, then

f

0

(C) = f(C).

If f(C) = fd
g for a weight
lass C, then f

0

(C) = 0.

If f(C) = f�; d
g (� 2 f0; 1g) for a weight
lass C,

then f

0

(C) = �.

Then f

0

is a
ompletely spe
i�ed fun
tion and be-

ause of part 1 of the theorem f

0

is strongly symmet-

ri
 in P and thus symmetri
 in P a

ording to the

symmetry de�nition for
ompletely spe
i�ed fun
-

tions.

"`=)"': Let f be (weakly) symmetri
 in P . Thus

there is a
ompletely spe
i�ed extension f

0

of f ,

whi
h is symmetri
 in P . If there would be a weight

lass C with f0; 1g � f(C), then f0; 1g � f

0

(C),

sin
e f

0

is an extension of f . Sin
e f

0

is
ompletely

spe
i�ed, we have for all weight
lasses C of P a
-

ording to part 1 of the theorem: f

0

(C) = f0g or

f

0

(C) = f1g whi
h
ontradi
ts our assumption.

1

�

i;l

: f0; 1g

n

! f0; 1g

n

, �

i;l

(�

1

; : : : ; �

i

; : : : ; �

l

; : : : ; �

n

) = (�

1

; : : : ;

�

l

; : : : ; �

i

; : : : ; �n) 8�

1

; : : : ; �

n

2 f0; 1g

n

B. Proof of Theorem 4

Proof: Let an instan
e of PC be given by a graph

G = (V;E) and a number K � jV j. We
an determine in

polynomial time bdds f

G

on

and f

G

d

of an in
ompletely

spe
i�ed fun
tion f

G

with the property that there is a par-

tition of G into K
liques i� there is a partition P of the

variable set X of f , su
h that f is symmetri
 in P and

jP j = K.

W.l.o.g. V = fx

1

; : : : ; x

n

g = X .

f

G

2 S(D) (D � f0; 1g

n

) is de�ned by

f

G

(�

1

; : : : ; �

n

) =

8

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

:

1 if �

1

= : : : = �

i

= 1;

�

i+1

= : : : = �

n

= 0;

1 � i � n� 1

0 if �

1

= : : : = �

i�1

= 1;

�

i

= : : : = �

j�1

= 0;

�

j

= 1;

�

j+1

= : : : = �

n

= 0;

1 � i � n� 1; j > i

and fx

i

; x

j

g =2 E

d
 otherwise

From the de�nition of f

G

it is easy to see that if f

G

is

symmetri
 in a partition P = f�

1

; : : : ; �

K

g of the input

variables, then the variables (nodes) from �

i

form a
lique

in G.

Let P = f�

1

; : : : ; �

K

g be a partition of the input vari-

ables, su
h that the nodes from �

i

form
liques in G. Sup-

pose f is not symmetri
 in P .

A

ording to lemma 10 there is a weight
lass C

P

w

1

;:::;w

K

for P with f0; 1g � f

G

(C

P

w

1

;:::;w

K

). From the de�nition of

f

G

the only vertex of C

P

w

1

;:::;w

K

with fun
tion value 1 is

�

(1)

:= (1; : : : ; 1

| {z }

w times

; 0; : : : ; 0) (w =

P

k

i=1

w

i

). There has to be

j > w with �

(0)

:= (1; : : : ; 1

| {z }

w � 1 times

; 0; 0; : : : ; 0; 1

|{z}

�

(0)

j

; 0; : : : ; 0)

with f(�

(0)

) = 0, i.e. (x

w

; x

j

) =2 E. Let �

0

2 P with

x

w

2 �

0

. If x

j

=2 �

0

, then w

1

�

0

(�

(0)

) = w

1

�

0

(�

(1)

) � 1. This

ontradi
ts the fa
t that �

(0)

and �

(1)

are in the same weight

lass. If x

j

2 �

0

, then we obtain a
ontradi
tion to the fa
t

that (x

w

; x

j

) =2 E.

Sin
e ON(f

G

) and OFF (f

G

) are of polynomial size, the

bdds for f

G

on

and f

G

d

an be
omputed in polynomial

time.

C. Proof of Theorem 5

Proof: Let P = f�

1

; �

2

; �

3

; : : : ; �

l

g and w.l.o.g. �

1

=

fx

i

g and �

2

= fx

j

1

; : : : ; x

j

k

g.

f is strongly symmetri
 in P and we have to show that f

(k)

is strongly symmetri
 in P

0

= f�

1

[�

2

; �

3

; : : : ; �

l

g.

Be
ause of lemma 10 we have to show that for all weight

lasses C

P

0

w

1;2

;w

3

;:::;w

l

of P

0

holds:

f

(k)

(C

P

0

w

1;2

;w

3

;:::;w

n+1�k

) =

8

<

:

f0g or

f1g or

fd
g

IEEE TRANSACTIONS ON COMPUTER AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 18, NO. 2, FEB. 1999 98

Case 1: w

1;2

= 0 or w

1;2

= k + 1

Then the following holds:

C

P

0

w

1;2

;w

3

;:::;w

l

= C

P

0;0;w

3

;:::;w

l

or

C

P

0

w

1;2

;w

3

;:::;w

l

= C

P

1;k;w

3

;:::;w

l

and thus jf(C

P

0

w

1;2

;w

3

;:::;w

l

)j = 1 be
ause of the strong

symmetry of f in P .

If f(C

P

0

w

1;2

;w

3

;:::;w

l

) =
,
 2 f0; 1g,

then f

(p)

(C

P

0

w

1;2

;w

3

;:::;w

n+1�k

) = f
g for all 1 � p � k,

sin
e f

(p)

is an extension of f .

If f(C

P

0

w

1;2

;w

3

;:::;w

l

) = fd
g,

then f

(p)

(C

P

0

w

1;2

;w

3

;:::;w

l

) = fd
g for all 1 � p � k, sin
e

make strongly symm(f

(p�1)

; x

i

; x

j

p

) provides amini-

mal extension, whi
h is strongly symmetri
 in (x

i

; x

j

p

)

and w

1

�

1

(�) = w

1

�

2

(�) = 0 or w

0

�

1

(�) = w

0

�

2

(�) = 0 for

all � 2 C

P

0

w

1;2

;w

3

;:::;w

l

.

Case 2: 1 � w

1;2

� k

In this
ase we have the following disjoint union

C

P

0

w

1;2

;w

3

;:::;w

l

= C

P

0;w

1;2

;w

3

;:::;w

l

[C

P

1;w

1;2

�1;w

3

;:::;w

l

.

It follows from our pre
ondition

f(C

P

0;w

1;2

;w

3

;:::;w

l

) =

8

<

:

f0g or

f1g or

fd
g

and

f(C

Q

1;w

1;2

�1;w

3

;:::;w

l

) =

8

<

:

f0g or

f1g or

fd
g

Case 2.1: f(C

P

0;w

1;2

;w

3

;:::;w

l

) = f(C

P

1;w

1;2

�1;w

3

;:::;w

l

)

Sin
e the
alls of

make strongly symm(f

(p�1)

; x

i

; x

j

p

) give minimal

extensions, whi
h are strongly symmetri
 in

(x

i

; x

j

p

), the assignment for

C

P

0;w

1;2

;w

3

;:::;w

l

and C

P

1;w

1;2

�1;w

3

;:::;w

l

is not
hanged.

f

(p)

(C

P

0;w

1;2

;w

3

;:::;w

l

) = f

(p)

(C

P

1;w

1;2

�1;w

3

;:::;w

l

) holds

and thus

f

(p)

(C

P

0

w

1;2

;w

3

;:::;w

l

) =

8

<

:

f0g or

f1g or

fd
g

Case 2.2: f(C

P

0;w

1;2

;w

3

;:::;w

l

) 6= f(C

P

1;w

1;2

�1;w

3

;:::;w

l

)

Sin
e f is symmetri
 in (x

i

; x

j

1

), there are
 2 f0; 1g

and u 2 f0; 1g, su
h that

f(C

P

u;w

1;2

�u;w

3

;:::;w

l

) = fd
g and

f(C

P

u;w

1;2

�u;w

3

;:::;w

l

) = f
g.

In the following we assume u = 0 (
ase u = 1 is

analogous).

From the de�nition of make strongly symm fol-

lows that for all 1 � p � k f

(p)

(�) 2 f
; d
g 8� 2

C

P

0;w

1;2

;w

3

;:::;w

l

[C

P

1;w

1;2

�1;w

3

;:::;w

l

.

A
all of make strongly symm(f

(p)

; x

i

; x

j

p+1

) as-

signs the fun
tion values to ve
tors � 2

C

P

0;w

1;2

;w

3

;:::;w

l

with �

i

= 0 and �

j

p+1

= 1, namely

to the value f

(p)

(�

ij

p+1

(�)) =
 (�

ij

p+1

(�) 2

C

P

1;w

1;2

�1;w

3

;:::;w

l

).

2

It remains to be shown that f

(k)

(�) =
 8� 2

C

P

0;w

1;2

;w

3

;:::;w

l

, i.e. that the sequen
e of k
alls is

enough to assign fun
tion value
 to all elements of

C

P

0;w

1;2

;w

3

;:::;w

l

.

The following statement is proven by indu
tion:

f

(p)

(�) =
 8� 2 C

P

0;w

1;2

;w

3

;:::;w

l

with �

j

1

= 1 or

�

j

2

= 1 or . . . or �

j

p

= 1.

p = 0: Trivial.

p! p+ 1:

Be
ause of the indu
tive assumption and sin
e

f

(p+1)

is an extension of f

(p)

, we have:

f

(p+1)

(�) =
 8� 2 C

P

0;w

1;2

;w

3

;:::;w

l

with �

j

1

= 1

or �

j

2

= 1 or . . . or �

j

p

= 1.

We have to show that f

(p+1)

(�) =
 8� 2

C

P

0;w

1;2

;w

3

;:::;w

l

with �

j

p+1

= 1.

Let Æ 2 C

P

1;w

1;2

�1;w

3

;:::;w

l

with

Æ

i

= �

i

= 1

z

; Æ

j

p+1

= �

j

p+1

= 0

and Æ

l

= �

l

for l 6= i; j

p+1

;

thus Æ = �

i;j

p+1

(�). (There is su
h a Æ 2

C

P

1;w

1;2

�1;w

3

;:::;w

l

be
ause of 1 � w

1;2

).

We have

f

(p)

(Æ) = f(Æ) =

and thus

f

(p+1)

(�) = f

(p)

(�

i;j

p+1

(�)) = f

(p)

(Æ) =
:

It follows from the statement shown by indu
tion:

f

(k)

(�) =
 8� 2 C

P

0;w

1;2

;w

3

;:::;w

l

with �

j

1

= 1 or : : : or �

j

k

= 1

or

f

(k)

(�) =
 8� 2 C

P

0;w

1;2

;w

3

;:::;w

l

with w

1

�

2

(�) � 1:

But w

1

�

2

(�) = w

1;2

� 1 holds for all � 2

C

P

0;w

1;2

;w

3

;:::;w

l

(assumption in Case 2).

D. Proof of Lemma 13 (sket
h)

Proof: W.l.o.g. let [

i

j=1

�

j

= fx

1

; : : : ; x

p

g and

[

n

j=i+1

�

j

= fx

p+1

; : : : ; x

n

g.

Suppose we apply the remove z operation de�ned in [8℄

to a
ut line between two symmetri
 groups �

i

and �

i+1

.

The remove z operation works as follows:

� The bdd nodes below the
ut line
orrespond to all

di�erent
ofa
tors of f with respe
t to the �rst p

variables. Let the set of these
ofa
tors be COF =

f
of

1

; : : : ;
of

l

g. Note that these
ofa
tors are in
om-

pletely spe
i�ed fun
tions.

2

�

ij

: f0; 1g

n

! f0; 1g

n

; �

ij

(�

1

; : : : ; �

i

; : : : ; �

j

; : : : ; �

n

) =

(�

1

; : : : ; �

j

; : : : ; �

i

; : : : ; �

n

)

z

For all elements � of the weight
lass C

P

0;w

1;2

;w

3

;:::;w

l

is �

i

= 0.

IEEE TRANSACTIONS ON COMPUTER AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 18, NO. 2, FEB. 1999 99

� Two
ofa
tors
of

i

and
of

j

are
ompatible i� there is

no (�

p+1

; : : : ; �

n

) 2 f0; 1g

n�p

su
h that

of

i

(�

p+1

; : : : ; �

n

) =
;
of

j

(�

p+1

; : : : ; �

n

) =

for
 2 f0; 1g.

A partition P

COF

= fCOF

1

; : : : ; COF

m

g of COF is

omputed su
h that all pairs
of

i

,
of

j

2 COF

q

(1 �

q � m) are
ompatible.

� For a set COF

q

of
ompatible
ofa
tors an extension

extension

q

is
omputed as follows:

extension

q

(�

p+1

; : : : ; �

n

) =
 (
 2 f0; 1g) i�

9
of

j

2 COF

q

with
of

j

(�

p+1

; : : : ; �

n

) =
 and

extension

q

(�

p+1

; : : : ; �

n

) = d
 i� 8
of

j

2 COF

q

of

j

(�

p+1

; : : : ; �

n

) = d
.

� The
ofa
tors
of

j

2 COF

q

are all repla
ed by their

(
ommon) extension extension

q

. This leads to an ex-

tension f

0

of f , the result of the remove z operation.

The number of bdd nodes of the representation for f

0

whi
h are lo
ated immediately below the
ut line be-

tween �

i

and �

i+1

equals the size m of the partition

P

COF

.

We have to prove that f

0

is strongly symmetri
 in all sets

�

j

2 P = f�

1

; : : : ; �

k

g.

Case 1: j � i

Let x

j

1

and x

j

2

2 �

j

.

Choose �

(1)

; �

(2)

2 f0; 1g

n

arbitrarily with

�

(1)

= (�

1

; : : : ; �

j

1

; : : : ; �

j

2

; : : : ; �

n

)

and �

(2)

= (�

1

; : : : ; �

j

2

; : : : ; �

j

1

; : : : ; �

n

):

Sin
e f is strongly symmetri
 in x

j

1

; x

j

2

the
ofa
tors

f j

x

1

=�

1

;:::;x

j

1

=�

j

1

;:::;x

j

2

=�

j

2

;:::;x

p

=�

p

and f j

x

1

=�

1

;:::;x

j

1

=�

j

2

;:::;x

j

2

=�

j

1

;:::;x

p

=�

p

are equal. By

remove z this
ofa
tor is repla
ed by some ex-

tension extension

q

and of
ourse the
orrespond-

ing
ofa
tors f

0

j

x

1

=�

1

;:::;x

j

1

=�

j

1

;:::;x

j

2

=�

j

2

;:::;x

p

=�

p

and

f

0

j

x

1

=�

1

;:::;x

j

1

=�

j

2

;:::;x

j

2

=�

j

1

;:::;x

p

=�

p

of the result f

0

of

this repla
ement are still equal. Thus, f

0

(�

(1)

) =

f

0

(�

(2)

) and f

0

is strongly symmetri
 in x

j

1

and x

j

2

.

Case 2: j � i+ 1

Let x

j

1

and x

j

2

2 �

j

.

Choose �

(1)

; �

(2)

2 f0; 1g

n

arbitrarily with

�

(1)

= (�

1

; : : : ; �

p

; : : : ; �

j

1

; : : : ; �

j

2

: : : ; �

n

)

and �

(2)

= (�

1

; : : : ; �

p

; : : : ; �

j

2

; : : : ; �

j

1

: : : ; �

n

):

Suppose the
ofa
tor f j

x

1

=�

1

;:::;x

p

=�

p

is in the set

COF

q

. All
ofa
tors 2 COF

q

are strongly symmet-

ri
 in x

j

1

and x

j

2

.

If for all
ofa
tors

of

j

2 COF

q

of

j

(�

p+1

; : : : ; �

j

1

; : : : ; �

j

2

; : : : ; �

n

) = d

then also for all
ofa
tors

of

j

2 COF

q

of

j

(�

p+1

; : : : ; �

j

2

; : : : ; �

j

1

; : : : ; �

n

) = d

be
ause of strong symmetry and a

ording to the def-

inition of extension

q

given above

extension

q

(�

p+1

; : : : ; �

j

1

; : : : ; �

j

2

; : : : ; �

n

) =

extension

q

(�

p+1

; : : : ; �

j

2

; : : : ; �

j

1

; : : : ; �

n

) = d
:

If
of

j

2 COF

q

exists with

of

j

(�

p+1

; : : : ; �

j

1

; : : : ; �

j

2

; : : : ; �

n

) =
(
 2 f0; 1g)

then

of

j

(�

p+1

; : : : ; �

j

2

; : : : ; �

j

1

; : : : ; �

n

) =

be
ause of strong symmetry and a

ording to the def-

inition of extension

q

extension

q

(�

p+1

; : : : ; �

j

1

; : : : ; �

j

2

; : : : ; �

n

) =

extension

q

(�

p+1

; : : : ; �

j

2

; : : : ; �

j

1

; : : : ; �

n

) =
:

f j

x

1

=�

1

;:::;x

p

=�

p

is repla
ed by extension

q

and for the

result f

0

we have

f

0

(�

1

; : : : ; �

p

; : : : ; �

j

1

; : : : ; �

j

2

; : : : �

n

) =

f

0

(�

1

; : : : ; �

p

; : : : ; �

j

2

; : : : ; �

j

1

; : : : �

n

):

Referen
es

[1℄ S.B. Akers, \Binary de
ision diagrams," IEEE Trans. on Comp.,

vol. 27, pp. 509{516, 1978.

[2℄ B. Bollig, M. L�obbing, and I. Wegener, \Simulated annealing to

improve variable orderings for OBDDs," In Int'l Workshop on

Logi
 Synth., pp. 5b:5.1{5.10, May 1995.

[3℄ K.S. Bra
e, R.L. Rudell, and R.E. Bryant, \EÆ
ient implemen-

tation of a BDD pa
kage," In Pro
. Design Automation Conf.,

pp. 40{45, June 1990.

[4℄ D. Br�elaz, \New methods to
olor verti
es of a graph," Comm.

of the ACM, vol. 22, pp. 251{256, 1979.

[5℄ R.E. Bryant, \Graph - based algorithms for Boolean fun
tion

manipulation," IEEE Trans. on Comp., vol. 35, no. 8, pp. 677{

691, Aug. 1986.

[6℄ R.E. Bryant, \Symboli
 Boolean manipulation with ordered bi-

nary de
ision diagrams," ACM, Comp. Surveys, vol. 24, pp. 293{

318, 1992.

[7℄ P. Bu
h, A. Narayan, A.R. Newton, and A.L. Sangiovanni-

Vin
entelli, \Logi
 Synthesis for Large Pass Transistor Cir
uits,"

In Pro
. Int'l Conf. on CAD, pp. 663{670, Nov. 1997.

[8℄ S. Chang, D. Cheng, and M. Marek-Sadowska, \Minimizing

ROBDD size of in
ompletely spe
i�ed multiple output fun
-

tions," In Pro
. European Design & Test Conf., pp. 620{624,

Mar. 1994.

[9℄ D.I. Cheng and M. Marek-Sadowska, \Verifying equivalen
e of

fun
tions with unknown input
orresponden
e," In Pro
. Euro-

pean Conf. on Design Automation, pp. 81{85, Feb. 1993.

[10℄ O. Coudert, C. Berthet, and J.C. Madre, \Veri�
ation of se-

quential ma
hines based on symboli
 exe
ution," In Pro
. Au-

tomati
 Veri�
ation Methods for Finite State Systems, LNCS

407, pp. 365{373, 1989.

[11℄ O. Coudert, C. Berthet, and J.C. Madre, \Veri�
ation of sequen-

tial ma
hines using Boolean fun
tional ve
tors," In Pro
. IFIP

International Workshop on Applied Formal Methods for Corre
t

VLSI Design, pp. 111{128, 1989.

[12℄ D.L. Dietmeyer and P.R. S
hneider, \Identi�
ation of symmetry,

redundan
y and equivalen
e of Boolean fun
tions," IEEE Trans.

on Ele
troni
 Comp., vol. 16, pp. 804{817, 1967.

[13℄ R. Dre
hsler and B. Be
ker, \Sympathy: Fast exa
t minimization

of �xed polarity Reed-Muller expressions for symmetri
 fun
-

tions," In Pro
. European Design & Test Conf., pp. 91{97,

Mar. 1995.

IEEE TRANSACTIONS ON COMPUTER AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 18, NO. 2, FEB. 1999 100

[14℄ R. Dre
hsler, B. Be
ker, and N. G�o
kel, \A geneti
 algorithm

for variable ordering of OBDDs," In Int'l Workshop on Logi

Synth., pp. 5
:5.55{5.64, May 1995.

[15℄ R. Dre
hsler and N. G�o
kel, \Minimization of BDDs by evolu-

tionary algorithms," In Int'l Workshop on Logi
 Synth., May

1997.

[16℄ C.R. Edwards and S.L. Hurst, \A digital synthesis pro
edure un-

der fun
tion symmetries and mapping methods," IEEE Trans.

on Comp., vol. 27, pp. 985{997, 1978.

[17℄ E. Felt, G York, R. Brayton, and A. Sangiovanni-Vin
entelli,

\Dynami
 variable reordering for BDD minimization," In

Pro
. European Design Automation Conf., pp. 130{135,

Sept. 1993.

[18℄ F. Ferrandi, A. Ma
ii, E. Ma
ii, M. Pon
ino, R. S
arsi, and

F. Somenzi, \Symboli
 Algorithms for Layout-Oriented Synthe-

sis of Pass Transistor Logi
 Cir
uits," In Pro
. Int'l Conf. on

CAD, Nov. 1998.

[19℄ H. Fujii, G. Ootomo, and C. Hori, \Interleaving based vari-

able ordering methods for ordered binary de
ision diagrams," In

Pro
. Int'l Conf. on CAD, pp. 38{41, Nov. 1993.

[20℄ M. Fujita, H. Fujisawa, and N. Kawato, \Evaluation and im-

provements of Boolean
omparison method based on binary de
i-

sion diagrams," In Pro
. Int'l Conf. on CAD, pp. 2{5, Nov. 1988.

[21℄ M. Fujita, Y. Matsunaga, and T. Kakuda, \On variable ordering

of binary de
ision diagrams for the appli
ation of multi-level

synthesis," In Pro
. European Conf. on Design Automation,

pp. 50{54, Feb. 1991.

[22℄ M.R. Garey and D.S. Johnson, Computers and Intra
tability -

A Guide to NP-Completeness. Freemann, San Fran
is
o, 1979.

[23℄ J. Gergov and C. Meinel, \Analysis and manipulation of Boolean

fun
tions in terms of de
ision graphs," In WG'92, LNCS,

pp. 310{320, 1992.

[24℄ M. Heap, \On the exa
t ordered binary de
ision diagram size

of totally symmetri
 fun
tions," Jour. of Ele
troni
 Testing:

Theory and Appli
ations, vol. 4, pp. 191{195, 1993.

[25℄ S.L. Hurst, \Dete
tion of symmetries in
ombinatorial fun
tions

by spe
tral means," IEE Ele
troni
 Cir
uits and Systems, vol. 5,

pp. 173{180, 1977.

[26℄ N. Ishiura, H. Sawada, and S. Yajima, \Minimization of binary

de
ision diagrams based on ex
hange of variables," In Pro
. Int'l

Conf. on CAD, pp. 472{475, Nov. 1991.

[27℄ B.-G. Kim and D.L. Dietmeyer, \Multilevel logi
 synthesis of

symmetri
 swit
hing fun
tions," IEEE Trans. on CAD, vol. 10,

no. 4, 1991.

[28℄ Y.-T. Lai, M. Pedram, and S.B.K. Vrudhula, \EVBDD-based

algorithms for integer linear programming, spe
tral transfor-

mation, and fun
tion de
omposition," IEEE Trans. on CAD,

vol. 13, no. 8, pp. 959{975, 1994.

[29℄ Y.-T. Lai, S. Sastry, and M. Pedram, \Boolean mat
hing us-

ing binary de
ision diagrams with appli
ations to logi
 synthesis

and veri�
ation," In Pro
. Int'l Conf. on CAD, pp. 452{458,

Nov. 1992.

[30℄ C.Y. Lee, \Representation of swit
hing
ir
uits by binary de
i-

sion diagrams," Bell System Te
hni
al Jour., vol. 38, pp. 985{

999, 1959.

[31℄ L. Litan, P. Molitor, and D. M�oller, \Least upper bounds on the

sizes of symmetri
 variable order based OBDDs," In Pro
. Great

Lakes Symp. VLSI, pp. 126{129, 1996.

[32℄ F. Mailhot and G. De Mi
heli, \Te
hnology mapping using

Boolean mat
hing and don't
are sets," In Pro
. European Conf.

on Design Automation, pp. 212{216, Feb. 1990.

[33℄ S. Malik, A.R. Wang, R.K. Brayton, and A.L. Sangiovanni-

Vin
entelli, \Logi
 veri�
ation using binary de
ision diagrams

in a logi
 synthesis environment," In Pro
. Int'l Conf. on CAD,

pp. 6{9, Nov. 1988.

[34℄ J. Mohnke and S. Malik, \Permutation and phase independent

Boolean
omparison," In Pro
. European Conf. on Design Au-

tomation, pp. 86{92, Feb. 1993.

[35℄ J. Mohnke, P. Molitor, and S. Malik, \Limits of using signa-

tures for permutation independent Boolean
omparison," In

Pro
. ASP Design Automation Conf., pp. 459{464, Aug. 1995.

[36℄ D. M�oller, J. Mohnke, and M. Weber, \Dete
tion of symmetry

of Boolean fun
tions represented as ROBDDs," In Pro
. Int'l

Conf. on CAD, pp. 680{684, Nov. 1993.

[37℄ D. M�oller, P. Molitor, and R. Dre
hsler, \Symmetry based vari-

able ordering for ROBDDs," In Pro
. IFIP Workshop on Logi

and Ar
hite
ture Synthesis, pp. 47{53, De
. 1994.

[38℄ B.M.E. Moret, \De
ision trees and diagrams," In Computing

Surveys, vol. 14, pp. 593{623, 1982.

[39℄ C. Morgenstern, \A new ba
ktra
king heuristi
 for rapidly four-

oloring large planar graphs," Te
hni
al Report CoS
-1992-2,

Texas Christian University, Fort Worth, Texas, 1992.

[40℄ S. Panda and F. Somenzi, \Who are the variables in your neigh-

borhood," In Pro
. Int'l Conf. on CAD, pp. 74{77, Nov. 1995.

[41℄ S. Panda, F. Somenzi, and B.F. Plessier, \Symmetry dete
-

tion and dynami
 variable ordering of de
ision diagrams," In

Pro
. Int'l Conf. on CAD, pp. 628{631, Nov. 1994.

[42℄ I. Pomeranz and S.M. Reddy, \On determining symmetries in

inputs of logi

ir
uits," In VLSI Design Conf., pp. 255{260,

Jan. 1994.

[43℄ R. Rudell, \Dynami
 variable ordering for ordered binary de-

ision diagrams," In Pro
. Int'l Conf. on CAD, pp. 42{47,

Nov. 1993.

[44℄ C. S
holl, S. Mel
hior, G. Hotz, and P. Molitor, \Minimizing

ROBDD sizes of in
ompletely spe
i�ed fun
tions by exploiting

strong symmetries," In Pro
. European Design & Test Conf.,

pp. 229{234, Mar. 1997.

[45℄ C. S
holl and P. Molitor, \Communi
ation based FPGA synthe-

sis for multi-output Boolean fun
tions," In Pro
. ASP Design

Automation Conf., pp. 279{287, Aug. 1995.

[46℄ E. Sentovi
h, K. Singh, L. Lavagno, Ch. Moon, R. Mur-

gai, A. Saldanha, H. Savoj, P. Stephan, R. Brayton, and

A. Sangiovanni-Vin
entelli, \SIS: A system for sequential
ir-

uit synthesis," Te
hni
al report, University of Berkeley, 1992.

[47℄ T.R. Shiple, R. Hojati, A.L. Sangiovanni-Vin
entelli, and R.K.

Brayton, \Heuristi
 minimization of BDDs using don't
ares,"

In Pro
. Design Automation Conf., pp. 225{231, June 1994.

[48℄ D. Sieling, \Variable orderings and the size of OBDDs for par-

tially symmetri
 Boolean fun
tions," In SASIMI, pp. 189{196,

Nov. 1996.

[49℄ I. Wegener, \Optimal de
ision trees and one-time-only bran
hing

programs for symmetri
 Boolean fun
tions," Information and

Control, vol. 62, pp. 129{143, 1984.

[50℄ B. Wurth, K. E
kl, and K. Antrei
h. \Fun
tional multiple-

output de
omposition: Theory and impli
it algorithm," In

Pro
. Design Automation Conf., pp. 54{59, June 1995.

Christoph S
holl studied
omputer s
ien
e

and ele
tri
al engineering at University of Saar-

land, Germany, from 1988 to 1993. He re
eived

the Dipl.{Inform. and Dr.{Ing. degrees in 1993,

and 1997, respe
tively, from University of Saar-

land.

In 1993 he was with the Sonderfors
hungs-

berei
h \VLSI Design Methods and Paral-

lelism", and from 1993 to 1996 with the

Graduiertenkolleg \EÆ
ien
y and Complexity

of Algorithms and Computers" at the Univer-

sity of Saarland. Sin
e 1996 he is working at the Institute of Com-

puter S
ien
e of Albert-Ludwigs-University, Freiburg im Breisgau,

Germany.

His resear
h interests in
lude logi
 synthesis, veri�
ation and test of

VLSI
ir
uits.

Dirk M�oller re
eived the diploma degree in
omputer s
ien
e

from the Humboldt-University Berlin, Germany in 1992.

Between 1992 to 1994, he was with the Sonderfors
hungsberei
h

\VLSI Design Methods and Parallelism" at the Humboldt-University.

From 1995 to 1996 he was with the Computer S
ien
e Department

at Martin-Luther University Halle-Wittenberg. In 1996 he joined

Dresear
h Digital Media Systems GmbH, Germany.

His resear
h interests are logi
 and physi
al synthesis.

IEEE TRANSACTIONS ON COMPUTER AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 18, NO. 2, FEB. 1999 101

Paul Molitor studied
omputer s
ien
e at

University of Saarland, Germany, from 1978

to 1986. He re
eived the Dipl.-Inform., the

Dr.rer.nat., and the Dr.habil. degrees in 1982,

1986, and 1992, respe
tively.

Between 1982 to 1992, he was with the re-

sear
h group on VLSI design methods and par-

allelism at the University of Saarland. After

being visiting professor at the University of

Halle (1992/93) and the University of Freiburg

i.Br. (1993), he was an asso
iate professor in

the Computer S
ien
e Department of the Humboldt-University Berlin

in 1993/94. Sin
e 1994, he is a full professor at the Martin-Luther

University Halle-Wittenberg, Germany. He is author and
oauthor of

two books and about 35 international papers in the �eld of physi
al

design, logi
 synthesis, veri�
ation of digital
ir
uits, and geneti
 al-

gorithms.

Dr. Molitor is a member of IEEE, the ACM, and the GI.

Rolf Dre
hsler re
eived his diploma and

Ph.D. degree in
omputer s
ien
e from the

J.W. Goethe-University in Frankfurt am Main,

Germany, in 1992 and 1995, respe
tively.

He is
urrently working at the Institute of

Computer S
ien
e at the Albert-Ludwigs-

University of Freiburg im Breisgau, Germany.

He is the Symposium's Chair of the IEEE

International Symposium on Multiple-Valued

Logi
 1999 in Freiburg.

He re
ently published two books with Kluwer

A
ademi
 Publishers, one on BDD te
hniques
o-authored by Bernd

Be
ker and one on using evolutionary algorithms for VLSI CAD.

His resear
h interests in
lude veri�
ation, logi
 synthesis, and evolu-

tionary algorithms.

