Paper submitted to IEEE Trans. on CAD, for the final version see dx.doi.org/10.1109/43.743706

IEEE TRANSACTIONS ON COMPUTER AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 18, NO. 2, FEB. 1999 81

BDD Minimization Using Symmetries™

Christoph Scholl, Member, IEEE, Dirk Moller,
Paul Molitor, Member, IEEE, Rolf Drechsler Member, IEEE

Abstract—In this paper we study the effect of using infor-
mation about (partially) symmetries for the minimization
of Reduced Ordered Binary Decision Diagrams (ROBDDs).
The influence of symmetries for the integration in dynamic
variable ordering is studied for both completely and incom-
pletely specified Boolean functions.

The problems above are studied from a theoretical and
practical point of view. Statistical results and benchmark
results are reported to underline the efficiency of the ap-
proach. They prove that our techniques lead to improve-
ments of the ROBDD sizes by up to 70%.

Keywords— BDD, symmetry, sifting, incompletely speci-
fied functions, symmetry detection

I. INTRODUCTION

INARY Decision Diagrams (BDDs) as a data structure

for representation of Boolean functions were first intro-
duced by Lee [30] and further popularized by Akers [1] and
Moret [38]. In the restricted form of ROBDDs they gained
widespread application, because ROBDDs are a canonical
representation and allow efficient manipulations [5]. Some
fields of application are logic design verification, test gen-
eration, fault simulation, and logic synthesis [33], [6]. Most
of the algorithms using ROBDDs have run time polynomial
in the size of the ROBDDs. The sizes themselves depend
on the variable order used. Thus, there is a need to find
a variable order that minimizes the number of nodes in an
ROBDD.

As an example of application of ROBDDs consider the use
of Field Programmable Gate Arrays (FPGA) in the con-
struction of Combinational Logic Circuits (cLc) from a
BDD. The BDD has a direct correspondence to a CLC when
each node of the BDD is substituted by a multiplexer. Since
it is straightforward to map these multiplexer circuits on
an FPGA, where the logic blocks are based on multiplexers,
BDDs have become a good framework for logic synthesis.
Because of this direct correspondence, saving only a few
nodes in a BDD by using good variable orders already pays.
The importance of BDD minimization is also obvious for
recently proposed methods to synthesize Pass Transistor
Logic (PTL) networks directly from BDDS [7], [18]. Also

Christoph Scholl is with the Institute of Computer Sci-
ence, Albert-Ludwigs-University, 79110 Freiburg, Germany, E-mail:
scholl@informatik.uni-freiburg.de

Dirk Moller is with DResearch GmbH, 12681 Berlin, Germany, E-
mail: moeller@dresearch.de

Paul Molitor is with the Institute of Computer Science, Univer-
sity of Halle, 06099 Halle, Germany, E-mail: molitor@Qinformatik.uni-
halle.de

Rolf Drechsler is with the Institute of Computer Science,
Albert-Ludwigs-University, 79110 Freiburg, Germany, E-mail:
drechsle@informatik.uni-freiburg.de

*Parts of the article have been presented at Int’l Conf. on CAD
1993 [36], IFIP Workshop on Logic and Architecture Synthesis 199/
[37], and European Design and Test Conf. 1997 [44].

for other FPGA synthesis techniques like functional decom-
position (see e.g. [28], [50], [45]) it is a good heuristic to
start with minimized BDDs.

The existing heuristic methods for finding good variable
orders can be classified into two categories: initial heuris-
tics which derive an order by inspection of a logic circuit
[33], [20], [21], [19] and dynamic reordering heuristics which
try to improve on a given order [26], [43], [17], [2], [14].
Sifting introduced by Rudell [43] has emerged so far as the
most successful algorithm for dynamic reordering of vari-
ables. This algorithm is based on finding the local optimum
position of a variable, assuming all other variables remain
fixed. The position of a variable in the order is determined
by moving the variable to all possible positions while keep-
ing the other variables fixed. As already observed in [40],
one limitation of sifting, however, is that it uses the ab-
solute position of a variable as the primary objective, and
only considers the relative positions of groups of variables
indirectly.

In this paper we consider partially symmetric Boolean
functions, i.e., Boolean functions that are invariant un-
der the permutation of some input variables. Knowing a
Boolean function to be symmetric allows application of spe-
cial logic synthesis tools that can improve the results of the
design [16], [27], [13]. Furthermore, knowing the variables
of a Boolean function which are symmetric often restricts
the search space of a logic design problem which may yield
in a remarkable decrease of run time for that problem. Such
problems are, e.g., permutation independent Boolean com-
parison [29], [9], [34], [35] and technology mapping [32].

We show that symmetry properties can be used to ef-
ficiently construct good variable orders for ROBDDs using
modified gradual improvement heuristics [37], [41]*.

The crucial point is to locate symmetric variables side
by side and to treat them as fixed block. This technique is
motivated by the following three facts:

1. The exchange of two symmetric variables does not
change the size of the ROBDD, because the function
remains the same.

2. The size of the ROBDD of any totally symmetric func-
tion f:{0,1}" — {0,1} is O(n?).

3. The value of a function which is symmetric in some
variables {z;,,...,z;,} does not depend on the ex-
act assignment of these variables but only on their
weight >1_ z;;.

Using the first fact, the heuristics can skip over the ex-
change of symmetric variables and so the run time de-
creases. However, the resulting ROBDD sizes will be the

I The methods of paper [41] are similar to ours and have been inde-
pendently developed.

scholl
Schreibmaschinentext
Paper submitted to IEEE Trans. on CAD, for the final version see dx.doi.org/10.1109/43.743706

IEEE TRANSACTIONS ON COMPUTER AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 18, NO. 2, FEB. 1999 82

same. The second and third fact leads to the special class of
variable orders of our technique, i.e, variable orders where
the symmetric variables are located side by side.

If we locate the symmetric variables side by side and
treat them as a fixed block, we receive a modification of
sifting: the symmetric sifting algorithm, which sifts sym-
metric groups simultaneously. Regular sifting usually puts
symmetric variables together in the order, but the sym-
metric groups tend to be in sub-optimal positions. The
sub-optimal solutions result from the fact that regular sift-
ing is unable to recognize that the variables of a symmetric
group have a strong attraction to each other and should be
sifted together. When a variable of a symmetric group is
sifted by regular sifting, it is likely to return to its initial
position due to the attraction of the other variables of the
group [40].

To give an impressive example for the fact that it helps
to locate the symmetric variables side by side, consider the
function z1xp41 + T2Zpy2 + ... + TpTe, of 2n variables
[5]. The size of the corresponding ROBDD with variable
ordering z1, 2, T3,..., T2y is exponential in n whereas the
size of any ROBDD with an order where the symmetries are
side by side is linear in n.

We present statistical facts for Boolean functions with up
to 5 input variables and experimental results for functions
taken from the LGSYNTH91 benchmark set proving the new
class of orders to be very efficient with respect to ROBDD
size. The benchmark results show that the modified re-
ordering heuristic, which does not reorder single variables
but whole symmetric blocks, outperforms the original one.

Although, in general, it is reasonable to locate the sym-
metric variables side by side, it does not lead to optimal re-
sults in all cases. A counterexample has been given in [37].
By iterating one of these ‘bad’ Boolean functions a fam-
ily of parameterized Boolean functions can be constructed
such that there is a linear gap between optimal orders and
best symmetric orders [40].

The second part of this paper handles the problem of
detecting partial symmetries for both completely and in-
completely specified Boolean functions. Of course before
exploiting symmetries we need to detect them.

First we concentrate on completely specified Boolean
functions. So far, logic synthesis tools that work with
ROBDDs use the well-known naive symmetry check which
compares certain cofactor functions.?2 The problem of this
naive approach is that it needs to construct the ROBDD of
the considered cofactor functions first. Especially for func-
tions with a large number of inputs and a large ROBDD size
that may be impractical regarding to ROBDD construction
time and storage place.

We present an improved method that tries to detect as
many asymmetries of the function as possible without time
consuming manipulations of the ROBDD data structure it-

2In this paper, we do not handle approaches of symmetry detection
which do not use ROBDDs as, e.g., the approach proposed in [42] where
maximal sets of symmetric inputs of completely specified Boolean
functions are computed using test generation procedures for single
stuck-at faults.

self before using the naive symmetry check. For these
asymmetry checks, we use structural properties of ROBDD
as well as simple function properties.

Experimental results on a large suit of benchmarks show
that this approach is promising. In many cases, the CPU
time decreases dramatically using our sophisticated sym-
metry check instead of the naive one.

In many applications (e.g. checking the equivalence of
two Finite State Machines (FSMs) [11], minimizing the tran-
sition relation of an FSM or logic synthesis for FPGA realiza-
tions [28], [50], [45]) incompletely specified Boolean func-
tions play an important role. As determining the symmet-
ric groups and applying symmetric sifting results in good
variable orders for completely specified functions, it also
seems to be a good idea in the case of incompletely specified
functions to first determine symmetric groups and then to
apply symmetric sifting. However, the symmetric groups of
incompletely specified functions are not uniquely defined as
will be demonstrated by some counterexamples. Therefore
we have to ask for good partitions of the Boolean variables
into symmetric groups with respect to ROBDD minimization
and their computation.

To the best of our knowledge, no variable ordering algo-
rithm exploiting don’t cares has been presented in litera-
ture. First approaches [8], [47], [15] investigate the ROBDD
minimization problem for incompletely specified Boolean
functions, but there it is assumed that the variable order-
ing is fixed. However, the resulting ROBDD sizes heavily
depend on the initial variable order. Thus, there is a strong
need to determine good variable orders in the case of in-
completely specified functions, too.

In [27] an algorithm has been presented which decides for
an incompletely specified Boolean function (represented by
a cube array) whether a given set A of input variables forms
a symmetric group or not. However, for our problem to
partition the input variables into symmetric groups there
remain two difficulties: first the question, how to find large
candidate sets A (of course, we cannot test for each sub-
set of the variables whether it is a symmetric group) and
secondly the question, how to combine symmetric groups
to a partition of the input variables, such that the incom-
pletely specified function is symmetric in each set of the
partition at the same time (in Section V-A we will show
that this cannot be done in a straightforward manner). To
the best of our knowledge, no technique has been devel-
oped so far that targets on computing minimal partitions
into symmetric groups for incompletely specified functions.
The efficiency of our approach is underlined by experimen-
tal results.

The paper is structured as follows: In Section IT we intro-
duce basic notations and review the main definitions. Sym-
metries for completely specified and incompletely specified
functions are defined. The effect of symmetries for ROBDDs
representing completely specified Boolean functions is de-
scribed in Section III. In Section IV we present our asym-
metry test. Algorithms for incompletely specified functions
are given in Section V. For all methods we give experimen-

IEEE TRANSACTIONS ON COMPUTER AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 18, NO. 2, FEB. 1999 83

tal results in Section VI. Finally, the results are summa-
rized.

II. PRELIMINARIES

In this section we review some basics that are needed for
the understanding of the paper. First, BDDs are defined and
the effect of the variable ordering is discussed. After intro-
ducing some notations that are needed for the descriptions
of the asymmetry detection algorithm, the definitions of
symmetry for (in-)completely specified functions are given.

A. Binary Decision Diagrams

We start with a brief review of the essential definitions
and properties of Binary Decision Diagrams as introduced
in [5].

Definition 1: A Binary Decision Diagram (BDD) is a
rooted directed acyclic graph G = (V,E) with vertex
set V containing two types of vertices, non-terminal and
terminal vertices. A non-terminal vertex v has as la-
bel a variable index(v) € {zi1,...,z,} and two children
low(v), high(v) € V. A terminal vertex v is labeled with a
value value(v) € {0,1} and has no outgoing edge.

A BDD can be used to compute a Boolean function
f(z1,...,2,) in the following way: FEach input a =
(a1,...,an) € {0,1}" defines a computation path through
the BDD that starts at the root. If the path reaches a non-
terminal node v that is labeled by x; it follows the path
low(v) iff a; = 0 and it follows the path high(v) iff a; = 1.
On all paths a terminal vertex is reached since a BDD is
directed and acyclic. The label of the terminal vertex de-
termines the return value of the BDD on input a.

More formally, we can define the Boolean function cor-
responding to a BDD recursively.

Definition 2: A BDD having root vertex v denotes a
Boolean function f, defined as follows:

1. If v is a terminal vertex and value(v) = 1 (value(v) =

0), then f, =1 (f, = 0).

2. If v is a non-terminal vertex and indez(v) = z;, then

fv is the function

fo(ze, ..., zp) ,Tn) +

7xn)-

= T;- flow(v)(mla cee
i+ fhigh(v) (T1, - -

The variable z; is called the decision variable for v.
It is well-known that for each Boolean function f there
exists a BDD denoting f. BDDs are often used as a data
structure in design automation and logic synthesis. Thus
there is a need of efficient manipulation of BDDs. Unfor-
tunately, this property is not fulfilled by the general BDDs
defined above (see [23]). Therefore we need further restric-
tions on the structure of the BDDs.
Definition 3: A Reduced Ordered BDD (ROBDD) is a BDD
with the following two properties:
1. The BDD is ordered, i.e., there is a fixed order
r : {l,...,n} = {z1,...,z,} such that for any
non-terminal vertex v index(low(v)) = w(k) with
k > n l(index(v)) (index(high(v)) = 7(q) with ¢ >
7~ (indez(v))) holds if low(v) (high(v)) is also a non-
terminal vertex.

0

Fig. 1. BDD for f = z122 + 23

2. The BDD is reduced, i.e., there exists no v € V with
low(v) = high(v) and there are no two vertices v and
v’ such that the sub-BDDs rooted by v and v’ are iso-
morphic.

Ezxample 1: In Figure 1 the reduced ordered BDD for
function f = z12s + x5 is given. The left (right) outgo-
ing edge of each node v is low(v) (high(v)).

Functions denoted by ROBDDs can be manipulated effi-
ciently [5]. For our practical experiments we use a ROBDD
package with complemented edges as described in [3].

Since we work only with ROBDDs in the following we
briefly call them BDDs.

B. Variable Ordering

The size of a BDD is largely influenced by the choice of
the variable ordering. This is illustrated by the following
example from [5]:

Ezxample 2: Let f = x122 + ... + Top—1Tap.

If the variable ordering is given by (z1,z2,...,Z2,), i.€.,
m(1) = =z; Vi, the size of the resulting BDD is 2n. On
the other hand if the variable ordering is chosen as
(z1,23,...,Z2n—1,22,Z4,...,L2n) the size of the BDD is
©(2™). Thus the number of nodes in the graph varies
from linear to exponential depending on the variable or-
dering. In Figure 2 the BDDs of the function f = ziz2 +
Z3T4 + 5T with variable orderings (z1, T2, z3, T4, Ts5, Tg)
and (z1,zs3, 5, T2, T4, Tg) are illustrated.

C. Notations

For a constant b € {0,1} and a variable z; € X
flei=s(z1,-+-y20) = f(z1,...,Ti—1,b,Tit1,..., @,) de-
notes the Shannon cofactor or restriction of f with respect
to z; = b. Instead of f|;,—0 and f|;,=1 we also write fz,
and f,,, respectively.

The restriction of f with respect to a set of variables and
constants is defined inductively:

f

The satisfy set of f is the set of all inputs for which the
function value is 1. The satisfy count of f, denoted by |f],
is the cardinality of this set.

It is easy to see that each node of a BDD is itself the
root of a BDD which represents one or more restrictions of
f. Two sets of those restrictions will be introduced in the

P= i = — = _y=br_ =
ziy=by,yoszin=by = (flai,=br,zi,_ =br_1)zi,=b,-

IEEE TRANSACTIONS ON COMPUTER AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 18, NO. 2, FEB. 1999 84

Fig. 2. BDDs of the function f = z122 + 324 + 2526

following. When using these restrictions for our purposes
in this paper, we can assume w.l.o.g. that the variable order
is (z1,22,...,2,). For a variable z; we define

'7:9{1 = {f|z1:b1,"'7$i—1:bi—1 S {0’ 1}i_1}

as the set of all restrictions of f with respect to all variables
that precede z;. For z; we set F{ = {f}. The node
which represents a restriction in 7 can be found if we
follow the path from the root using the appropriate vector
of constants b. We stop at the first node with label greater
than z;_;.

The second set is a little bit more complicated. For two
variables z;, z; (z; precedes z;) and a restriction g € F;.
we define

Rg;ﬁj = {g @=L,z 41=by, -, 2;=0 * be {0’ 1}j_i_1}

as the set of all restrictions of g with respect to the variables
T, Tip1,...,Tj—1,T; with z; set to 1 and z; set to 0. The
set R%m]_ is defined in the same way except that x; is set to
0 and z; is set to 1. The node which represents a restriction
in Rgﬁj can be found as described for F/ starting at the

node that represents g and branching to the right(left) son
for nodes with label z;(z;). E.g. for the variables z; and
z3,and g = f € .7-'zf1 we have

R U,
T1T3 - g$1wgmgagm1$2$3 M

We will use these sets to formulate necessary conditions
for symmetry and to develop preprocessing algorithms that
check these conditions. Note that in the next sections we
use the terms Ff and Rgﬁj to denote a set of functions as
well as to denote the set of the nodes that represent these
functions.

We also use the fact, that a function f which is repre-
sented by a BDD G depends essentially on z; if and only if
at least one node in G is labeled with z;.

D. Symmetry for (In-)Completely Specified Functions

In the following, let X = {z1,...,z,} be the set of vari-
ables of a Boolean function f and D some subset of {0,1}".

First, we will briefly review definitions and basic prop-
erties of symmetries of completely specified Boolean func-
tions. We start with the definition of symmetry in two
variables, in a set of variables, and in a partition of the set
of input variables of a completely specified Boolean func-
tion.

Definition 4: A completely specified Boolean function
f:{0,1}" — {0,1} is symmetric in a pair of input vari-
ables (z;,z;) if and only if f(e1,...,€,..., €j,...,€n) =
fler, .. €5, ,€...,€y) holds Ve € {0,1}". f is sym-
metric in a subset A of X iff f is symmetric in z; and z;
Vi, z; € A fis symmetricin a partition P = {Aq,..., A\x}
of the set of input variables iff f is symmetric in);
V1<i<k.

If f is symmetric in a subset A\ of the set of input vari-
ables, then we say that ‘the variables in A form a symmetric
group’.

It is well known, that symmetry of a completely specified
Boolean function f in pairs of input variables of f leads
to an equivalence relation on X. Thus, there is a unique
minimal partition P of X (namely the set of the equivalence
classes of this relation) such that f is symmetric in P. The
computation of a minimal partition of f such that f is
symmetric in P can be done by testing for symmetry in all
pairs of input variables.

The definition of symmetry of an incompletely specified
Boolean function f is reduced to the definition of symmetry
of completely specified extensions of f. An extension of
an incompletely specified Boolean function is defined as
follows:

Definition 5: Let f : D — {0,1} (D C {0,1}") be an
incompletely specified Boolean function. f': D' — {0,1}
(D" C {0,1}") is an extension of f iff D C D' and f'(¢) =
f(e) Ve € D.

IEEE TRANSACTIONS ON COMPUTER AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 18, NO. 2, FEB. 1999 85

Definition 6: An incompletely specified Boolean func-
tion f : D — {0,1} is symmetric in a pair of input variables
(zi,2;) (in asubset A of X /in a partition P = {Aq,..., Ax}
of X) iff there is a completely specified extension f' of f,
which is symmetric in (z;, ;) (in A / in P).

III. BDDs FOrR COMPLETELY SPECIFIED FUNCTIONS

In this section we focus on completely specified Boolean
functions. A polynomial upper bound for the sizes of BDDs
of totally symmetric functions is given. Motivated by this
symmetric variable orders are defined.

A. Totally Symmetric Functions

For totally symmetric functions it is well known that
the size of the BDD is bounded by O(n?). This is due to
the observation that for functions symmetric in (z;, z;) the
equation f; .z, = fz,,; holds. For BDDs this implies that for
{m(1),m(2)} = {z;,z;} the left son of the right son of the
root is the right son of the left son of the root. Thus, BDDs
representing totally symmetric functions grow in each level
at most by one node. This is demonstrated by the following
diagram:

A more detailed analysis shows that the least upper
bound on the sizes is given by ©(n?) [49], [24], [31].

B. Symmetric Variable Orderings

We now introduce the class of symmetry variable orders
that we will use to improve the existing reordering heuris-
tics.

Definition 7: Let f be a partially symmetric function
with the set of symmetry sets S = {Aq,...,\}. A
variable order 7 is called a symmetry variable order if
for each symmetry set \; € S there exists j so that
{nlil, 7lj + 1, ol + 10l = 1} = i

By this definition, the class of symmetry variable orders
consists of all variable orders where the variables of each
symmetry set are located side by side. The BDDs that cor-
respond to symmetry orders are called symmetry ordered
BDDs. In the remainder of this section the efficiency of
symmetry orders will be motivated.

As discussed above the BDD size of any totally symmetric
function f is O(n?). In a symmetry ordered BDD there exist
a lot of sub-BDDs where all variables in the upper part form
a symmetry set. If k is the size of such a symmetry set,
the upper parts of these sub-BDDs consisting of all nodes

labeled by variables from the symmetry set have O(k2)
nodes.

Furthermore, the value of a function that is symmetric
in some variables {z;,,...,z; } does not depend on the
exact assignment of these variables but only on their weight
231':1 z;;. If one uses symmetry ordered BDDs, this weight
is computed in neighboring levels and no information about
partial weights has to be kept over several non-symmetric
levels — and keeping information may cause large BDD sizes.
Symmetry variable orders often avoid this drawback3.

It is also worth to mention that the restriction to sym-
metric variable orderings is justified not only by experi-
mental results but also from a theoretical point of view
[48].

IV. DETECTION OF SYMMETRIES OF COMPLETELY
SPECIFIED FUNCTIONS

In this section we present an efficient method for deter-
mining symmetries of completely specified Boolean func-
tions represented by BDDs. We first give some conditions
for symmetry and then present a fast algorithm that can
efficiently identify asymmetric structures in BDDs. This
algorithm is based on several ideas that have a direct cor-
respondence to efficient algorithms, i.e. algorithms that can
be carried out in polynomial time and space on the BDD
representation. We assume w.l.o.g. that the variable order
is given by (z1,z2,...,2,).

A. Conditions for Symmetries

We give some theorems that we will use to develop meth-
ods detecting symmetry and asymmetry of a function.

Lemma 1: Let z,x;,z; be three distinct variables. f is
symmetric with respect to {z;,z;} if and only if both co-
factors f and fz are symmetric with respect to {z;,z;}.
Applying Lemma 1 recursively to f, and f5 we get:*

Corollary 1: f is symmetric with respect to {z;,z;} if
and only if each function g € fzfl. is symmetric with respect
to {z;, z;}.

For this, we can restrict ourselves to the functions in F/
in order to detect symmetries in f.

Lemma 2: If g € FI is symmetric with respect to
{z;,z;} then g either depends on both z; and z; or de-
pends neither on z; nor on z;.

This is clear, because of the following fact: If g depends on
z; but does not depend on z;, then these variables cannot
be permuted without changing g. With Corollary 1 we get:

Theorem 1: If f is symmetric with respect to {z;,z;}
then each g €]-'g{i depends on both z; and z; or depends
neither on z; nor on ;.

Lemma 3: A function g € .7-'9{1, is symmetric with respect
to {z;,z;} if and only if for all w € {0,1}9 "1

Ilzi=1,zip1=wi,2;=0 = Jl&;=0,z;p1=wy,,x;=1-

3This approach has been extended to ‘nearly’ symmetric functions
in [40]. In the following we restrict our approach to ‘pure’ symmetry.

4In the following we always assume i < j, such that z; precedes x;
in the variable order.

IEEE TRANSACTIONS ON COMPUTER AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 18, NO. 2, FEB. 1999 86

In Lemma 3, a sufficient and necessary condition for pair-
wise symmetry is given. Unfortunately, it requires to verify
2i—i=1 equations. However, if we consider the two sets of
functions that are on the left and on the right side of these
equations (that are Rgﬁj and R%iz,-’ respectively), we see
that they are equal in the case of symmetry. Note, that the
cardinality of these sets is restricted by the number of nodes
in the BDD of f. Of course, the equality Rgﬁj = R%iz,- does
not necessarily imply that all the 2/7i~! equations given
above must hold. So, we obtain more efficiency losing suf-
ficiency:

Theorem 2: If f is symmetric with respect to {z;,z;}
then for all g € FZ we have

g — PRI
TiTj Tizj"

That means, if there exists at least one function g in .7-';:
which is not symmetric in {z;, z; } because of the inequality
of the sets Rgﬁj and R%izj, then f is not symmetric in
{ziyz;}.

Now let us consider a special case of Theorem 2, namely
Zj = Tiy1, i.e., symmetric variables which are neighbors
with respect to the variable order. For g € .7-'{1, we have

Ri@-“ = {g Ei:17$i+1:0}
and analogous for R%iziﬂ. Both sets contain only one func-
tion and they are equal if and only if the equation in Lemma
3 holds. Note that we have to test only one equation. By
this we get a necessary and sufficient condition for symme-
try for pairs {z;, 2,1 }:

Theorem 3: f is symmetric with respect to {z;, z;41} if
and only if for all g € .7"{1,

g _ — 9
T;T;41 Ii-TiJrl.

B. Symmetries and Asymmetries

First the basic underlying ideas of our method to find the
symmetries of a function f are explained. For that we use
structural properties of BDDs as well as function properties.

First, we know that f is symmetric with respect to
{zi,z;} if and only if f,.z, = fz.2;,- That can easily be
checked by testing if the BDDs of f,.z, and fz,,, are iso-
morphic. We call it the naive method.

Although this method is very popular, a handicap of
it is that creating the necessary BDDs may be very time
consuming. That is why we have tried to find methods to
accelerate symmetry detection by detecting as many asym-
metric pairs of variables as possible to be able to avoid the
naive symmetry check for those pairs. Of course, these
tests have to be done with as little effort as possible and
without creating new BDDs.

According to these constraints, we have developed four
ideas to detect asymmetric pairs. The first idea is based
on a simple function property. The other three ideas make
use of Theorem 1, Theorem 2, Theorem 3, and of certain
properties of BDDs.

B.1 Idea 1

Our first method uses the fact that the satisfy count
|fz:| is a characteristic of z; which is independent of the
permutation of the input variables of f [34]. Thus, if two
variables z; and z; are symmetric, then the restrictions f;;
and f,; have the same satisfy count, such that the following
lemma holds:

Lemma 4: f:{0,1}"™ — {0,1} is asymmetric in {z;, z;}
i1 fo] # |

These satisfy counts can be computed by a bottom—up
traversal of the BDD of f, i.e., without constructing the
BDDs of the restrictions [34]. This can be done in time
O(n - |G]), where |G| indicates the number of nodes in the
BDD of f. (Note that such an asymmetry test can be done
by using any time efficient signature.)

B.2 Idea 2

The background of this idea is Theorem 1. Because of
this theorem two variables z; and ; (i < j) do not form
a symmetric pair if at least one of the restrictions in F/
depends essentially on z; but does not depend on z;, or
vice versa.

Consider a restriction g € .7-'{ The node v which rep-
resents g may be labeled either with z; or with a variable
greater than z;. In the first case ¢ depends on z;. How-
ever, if the BDD, rooted by the node v, does not contain
any node with label z;, then g does not depend on z; and
thus z; and z; do not form a symmetric pair. Thus, we
have:

Lemma 5: f:{0,1}"™ — {0,1} is asymmetric in {z;, z;}
if a node in the BDD of f with label x; does not have any
successor with label x;.

In the second case g does not depend on z;. If the BDD,
rooted by the node v, contains a node with label z;, then g
depends on z; and thus z; and z; do not form a symmetric
pair. With other words, there exists a path from the root
(of the BDD of f) to a node with label z;, which does not
contain any node with label z;, and we have:

Lemma 6: f:{0,1}"™ — {0,1} is asymmetric in {z;, z;}
if in the BDD of f a node with label z; can be reached from
the root via a path which does not contain any node with
label z;.

To realize this idea, we first establish, for each node v
in the BDD of f, the set of all variables which are labels
of any successor of v and the set of all variables which are
labels of nodes on each path from the root to the node v.
The sets can be determined for all nodes simultaneously in
one bottom—up and one top—down traversal of the BDD of
f in time O(n - |G|). Finally, to detect the asymmetries we
have to look for missing variables in these sets. This can
be done in time O(n - |G|).

B.3 Idea 3

Now, we want to make use of Theorem 2. Here, our task
is to construct the two sets of nodes Rgﬁj and R%iz,- for

each function g €]-'g{i and to check their equivalence.

IEEE TRANSACTIONS ON COMPUTER AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 18, NO. 2, FEB. 1999 87

Suppose, we have already checked that {z;,z;} is not
asymmetric according to Theorem 1. Then each restriction
g in .7-'{1, depends on neither z; nor z; or depends on both,
z; and z;. If g depends on neither z; nor z;, then Rgﬁj
and R%mj are equal, because the variables z; and z; will
not be tested. So, we do not have to construct these sets.
For the case that g depends on both, z; and z;, let us
establish the sets R%m]_ and Rgﬁj. The root node v of
the BDD of g is labeled with z;. Constructing R%m]_ means
to collect the right sons of nodes with label z; in the left
subgraph of v. In the following, we call these sons right
zj-sons. Analogous, Rgﬁj contains the left sons of nodes
with label z; in the right subgraph of v. These sons are
called left x;-sons in the following. If the left z;-sons in the
right subgraph of v are different from the right z;-sons in
the left subgraph of v, then the set prﬁj is different from

R%izj. Together with the fact that v is labeled with z; we
get our sufficient condition for asymmetry:

Lemma 7: f:{0,1}"™ — {0,1} is asymmetric in {z;, z;}
if in the BDD of f one node v with label z; exists such
that the set of the left z;-sons in the right subgraph of
v is different from the set of the right x;-sons in the left
subgraph of v.

To realize this idea, we start for each node v with label z;
a depth—first—search (dfs) procedure on the left subgraph
and on the right subgraph of v to collect the right z;-sons
and the left z;-sons, respectively, and compare these sets.
Unfortunately, we have to run (at most) 2-n of the dfs pro-
cedures for each node in the BDD of f. Each dfs procedure
visits (at most) |G| nodes. This implies an overall run time
of O(n - |G|?). However, the number of nodes that are vis-
ited in one search is not very large if the distance between
the two variables z; and z; is small. Furthermore, there is
a hope that an existing asymmetry is detected early and
so the number of searches keeps small. Thus, it seems pos-
sible that the run time on average is not quadratic in the
size of the BDD. This presumption is clearly underlined by
our experimental results.

For pairs of neighboring variables we get a special case
of idea 3 which we will call idea 3,, in the following:

B.4 Idea 3,

Using Theorem 3 we can formulate:

Lemma 8: f : {0,1}™ — {0,1} is symmetric in {z;,
z;+1} if and only if in the BDD of f for all nodes v with
label z; the left z;1-son in the right subgraph of v is the
same node as the right z;;1-son in the left subgraph of v.

The procedure to test this condition works similar to the
one for idea 3. For each node we have to start only two
dfs calls that visit at most four nodes. So, the complete
procedure requires time O(|G|). Note, that, similarly to
idea 3, we need to filter out asymmetries with idea 1 in
order to guarantee the correctness of this procedure.

Although the introduced ideas work very well in practice,
it cannot be guaranteed that all asymmetries of a function
can be detected using them. For all other pairs, for that
no symmetry or asymmetry could be established so far, we

use the naive method to test if they are symmetric or not.

V. SYMMETRIES OF INCOMPLETELY SPECIFIED
FuNcTIONS

In this section we discuss the problem of detecting sym-
metries of incompletely specified Boolean functions repre-
sented by BDDs. First, we outline the occurring difficulties.
This leads to the definition of ‘strong symmetries’. Then,
we discuss an algorithm to solve the minimum sized parti-
tioning of the variables of an incompletely specified func-
tion into symmetry groups. And finally, we investigate the
relationship of our don’t care assignment to maximize the
number of symmetries and the BDD minimization proce-
dure presented by Chang [8] and Shiple [47].

A. Difficulties with Symmetry of Incompletely Specified
Functions

In order to minimize the BDD size for an incompletely
specified Boolean function f, we are looking for a minimal
partition (or for maximal variable sets) such that f is sym-
metric in this partition (or these sets). Unfortunately there
are some difficulties in the computation of such partitions:
First of all, symmetry of f in two variables does not form
an equivalence relation on X in the case of incompletely
specified Boolean functions (see also [12] or [27]):

Ezxample 3: The following function shows that symmetry
in two variables does not lead to an equivalence relation
on the variable set in the case of incompletely specified
Boolean functions:

1 fore=(1,0,0)
dc for e =(0,1,0)
for e = (0,0,1)
0 otherwise

It is easy to see that f is symmetric in z; and zy (for
the corresponding completely specified extension f' of f
f'(0,1,0) = 1 holds) and f is symmetric in z2 and z3.
However f is not symmetric in z; and z3.

Since symmetry in pairs of variables does not form an
equivalence relation, it will be much more difficult to de-
duce symmetries in larger variable sets from symmetries in
pairs of variables than in the case of completely specified
Boolean functions.

In the rest of the paper we use symmetry graphs to il-
lustrate symmetries of Boolean functions. The symmetry
graph Gﬁym = (X, E) of a Boolean function f : D — {0,1}
is a undirected graph with node set X (the set of input
variables of f) and edges {z;,z;} € E iff f is symmetric
in (2;,2;). For completely specified Boolean functions f
nym has a special structure: The connected components
of the graph form cliques as symmetry in two variables
forms an equivalence relation. For incompletely specified
functions there is not any structural property. On the con-
trary one can prove (see proof of Theorem 4), that for every
graph G with n nodes, there is an (incompletely specified)
Boolean function f : D — {0,1} such that the symmetry
graph of f coincides with G. All possible graphs can occur
as symmetry graphs of an incompletely specified function.

IEEE TRANSACTIONS ON COMPUTER AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 18, NO. 2, FEB. 1999 88

%)
o

Fig. 3. Symmetry graph of the function of Example 2

Even if f is symmetric in all pairs of variables z; and
z; of a subset A of the variable set of f, f is not neces-
sarily symmetric in A. This is illustrated by the following
example:

Example 4: Consider f: D — {0,1}, D C {0,1}*.

1 fore=(0,0,1,1)

dc for e =(0,1,0,1),¢ = (0,1,1,0),
f(e): GZ(707071)762(707170)

0 fore=(1,1,0,0)

0 otherwise

It is easy to see, that f is symmetric in all pairs of vari-
ables z; and z;, 4,7 € {1,2,3,4}. The symmetry graph of
f is shown in Figure 3. It is the complete graph. For each
completely specified extension f' of f, which is symmetric
in (z1,z3), f'(0,1,1,0) = 0 holds and for each completely
specified extension f' of f, which is symmetric in (23, z4),
f"(0,1,1,0) = 1 holds. Hence there is no completely spec-
ified extension of f which is symmetric in (z;,23) and
(z2,z4) and therefore no extension which is symmetric in
{Ila T2,T3, £E4}.

Example 4 also points out another fact: If an incom-
pletely specified Boolean function f is symmetric in all vari-
able sets A; of a partition P = {\q,..., ¢}, it is not nec-
essarily symmetric in P (choose P = {{z1, 23}, {®2,24}}).

B. Strong Symmetry

The difficulties with the detection of large symmetry
groups of incompletely specified functions result from the
fact that symmetry in pairs of variables does not form an
equivalence relation on the variable set X. If we change the
definition of symmetry of incompletely specified functions
as given in the following, symmetry in pairs of variables
provides an equivalence relation as in the case of completely
specified functions:

Definition 8 (Strong symmetry) An incompletely speci-
fied Boolean function f : D — {0,1} is called strongly sym-
metric in a pair of input variables (z;, ;) iff V(e1,...,€,) €
{0,1}™ either (a) or (b) holds.

(a) (61,...,€i,...,€j,...,€n)¢D
and (€1,...,€5,...,€y...,€6n) € D

(b) (€1, 1€irev . €jy...,€n) €D
and (61,...,€j,...,€i,...,€n)GD
and f(er, ..., €. €5,...,€6n) =
fler, o os€jyeiny€iynnny€n).

In contrast to strong symmetry of incompletely speci-
fied functions the symmetry defined so far is called weak
symmetry. (Notice that for completely specified Boolean
functions strong symmetry and weak symmetry are identi-
cal.)

The following lemma holds for strong symmetry:

Lemma 9: Strong symmetry in pairs of variables of an
incompletely specified Boolean function f : D — {0,1}
forms an equivalence relation on the variable set X of f.

Due to Lemma 9 there is a unique minimal partition
P of the set X of input variables such that f is strongly
symmetric in P. As in the case of completely specified
Boolean functions, f is strongly symmetric in a subset A
of X iff Va;,z; € A f is strongly symmetric in (z;,z;). f
is strongly symmetric in a partition P = {\;,...,Ax} of X
iff V1 <i <k f is strongly symmetric in A;.

Of course, if a function f is weakly symmetric in a par-
tition P, it needs not to be strongly symmetric in P, but it
follows directly from Definition 6 that there is an extension
of f which is strongly symmetric in P.

Before we deal with the computation of extensions of in-
completely specified Boolean functions which are strongly
symmetric in minimum sized variable partitions, we will
characterize weak and strong symmetry in variable parti-
tions in more detail. To do this, we need the term of the
‘weight class’ of a given partition.

Definition 9 (Weight class of a partition P)

Let P = {A1, ..., A} be a partition of {z1,..., z,}. We
call w'(er,...,6,) = Y., € the 1-weight of (e1,...,¢€,)
and w°(er,...,en) = n — w'(er,...,€,) the O-weight

of (e1,...,en) € {0,1}". For \; = {zi,...,2;},
W}, (€1,-+1€n) = Yicriy, iny € 18 the 1-weight of the ‘\;-
part’ of (e1,...,€p)-

0517...,1111(, = {(617 AR Gn) € {07 l}n ’wil\Z (617 AR Gn) =
w;, 1 < i < k} is called weight class of the partition P
with weights (wyq, ..., wg).

Ezample 5: Let P = {{z1, 22}, {xs, 4, 25}}. Cf, is the
subset of all vertices of {0,1}" with a 1-weight 1 of the
{z1,z2}-part and a 1-weight 2 of the {zs,z4,z5}—part,
i.e., the subset of all vertices with exactly one 1 in the
first two components and exactly two 1’s in the remaining
components:

C].sz = {(0’ 1’ 0’ 1’ 1)’ (0’ 1’ 1’ 0’ 1)’ (0’ 1’ 1’ 1’ 0)’
(17 07 07]‘7 1)7 (17 07]‘7 07 1)7 (17 07]‘7]‘7 0)}'

By means of ‘weight classes’ there is an easy characteri-
zation of weak and strong symmetry:

Lemma 10: Let P = {A1,...,A\r} be a partition of
{z1,...,2n}. f: D —{0,1} is

(1) strongly symmetric in P iff

Y0 <wr <IN (1<i <R
{0} or

{1} or
{dc}

F(Co) =

(2) (weakly) symmetric in P iff

VO <w; < [Ni| (1<i<k) {0,1}Z f(Cr,, -
Proof: See Appendix A. [|

IEEE TRANSACTIONS ON COMPUTER AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 18, NO. 2, FEB. 1999 89

C. Minimum Sized Partition

We have to solve the following problem MSP (Minimal
Symmetry Partition):

Incompletely specified function f : D —

{0,1}, represented by BDDs for f,, and

fac- (fon is the completely specified Boolean

function with the same on-set as f and

fac is the completely specified function with

{0,1}™\ D as on-set.)

Partition P of the set X = {z1,...,2,} such

that

e f is symmetric in P and

e for any partition P’ of X in which f
is symmetric, the inequation |P| < | P’
holds.

We can prove the following theorem by a polynomial—
time transformation from the NP—complete problem ‘Par-
tition into Cliques’ (PC) (see [22]) to MSP:

Theorem 4: MSP is NP-hard.

Proof: See Appendix B. |

To solve the problem heuristically, we use a heuristic for
‘Partition into Cliques’ for the symmetry graph Ggym of
f. However, the examples in Section V-A showed that f is
not symmetric in all partitions into cliques of chym. The
heuristic has to be changed in order to guarantee that f is
symmetric in the resulting partition P.

The heuristic to solve the problem PC makes use of the
following well known lemma:

Lemma 11: A graph G = (V, E) can be partitioned into
k disjoint cliques iff G = (V,E) can be colored with k&
colors. (G is the inverse graph of G, which has the same
node set V' as G and an edge {v,w} between two nodes v
and w iff there is no edge {v,w} in G, i.e., E = {{v,w} :
{v,w} ¢ E}.)

Thus, heuristics for node coloring can be directly used
for the solution of partition into cliques. Nodes with the
same color in G form an ‘independent set’ and thus a clique
in G. Our implementation is based on Brélaz algorithm
for node coloring [4] which has a run time of O(N) in an
implementation of Morgenstern [39], where N denotes the
number of nodes of the graph which has to be colored. It
is a greedy algorithm, which colors node by node and does
not change the color of a node which is already colored. In
the algorithm there are certain criteria to choose the next
node to color and the color to use for it in a clever way (see
], [39]).

Figure 4 shows our heuristic for the problem MSP, which
is derived from the Brélaz/Morgenstern heuristic for node
coloring. First of all the symmetry graph G, of f (or

sym
the inverse graph nym) is computed. The nodes of nym
are the variables z1,...,z,. These nodes are colored in
the algorithm. Nodes with the same color form a clique in
G{,,.- Note that partition P (see line 3) has the property
that it contains set {z;} for any uncolored node z; and
that nodes with the same color are in the same set of P, at

any moment. The crucial point of the algorithm is that the

Given:

Find:

invariant ’f is strongly symmetric in P’ of line 6 is always
maintained.

Now let us take a look at the algorithm in more detail.
At first glance, the set of all admissible colors for the next
node z; is the set of all colors between 1 and n except the

colors of nodes which are adjacent to x; in nym. In the
original Brélaz/Morgenstern algorithm the minimal color
among these colors is chosen for z; (curr_color in lines 10,
11). However, since we have to guarantee that f is sym-
metric in the partition P which results from coloring, it is
possible that we are not allowed to color x; with curr_color.
If there is already another node z; which is colored by
curr_color, then f has to be symmetric in the partition P’
which results by union of {z;} and [z;] ([x;] denotes A4,
if x; € Ay and P = {\1,...,Ag}). If there is such a node
z, we have to test whether f is symmetric in (z;, ;) (line
14). (This test can have a negative result, since the don’t
care set of f is reduced during the algorithm). If f is not
symmetric in (z;,z;), curr_color is removed from the set
of color candidates for z; (line 20) and the minimal color
in the remaining set is chosen as the new color candidate
(line 10). If the condition of line 14 is true, the new par-
tition P results from the old partition P by union of {z;}
and [z;] (line 16). Now f is symmetric in the new partition
P (invariant (*) from line 17, see Lemma 12), and we can
assign don’t cares of f such that f is strongly symmetric
in P (line 18).

The fact that the conditions given in the algorithm im-
ply that f is symmetric in the new partition P is shown
in Lemma 12. In addition we have to point out how f can
be made strongly symmetric in P (line 18). At the end
we receive an extension of the original incompletely spec-
ified Boolean function which is strongly symmetric in the
resulting partition P.

To prove invariant (*) in line 17, we need the following
lemma:

Lemma 12: Let f : D — {0,1} be strongly symmetric
in P, [z;],[z;] € P two subsets with |[z;]| = 1, and let
f be symmetric in (z;,z;), then f is symmetric in P’ =
P\ {[aj], {1 ULl U {ai}).

Proof: Let P = {\,...,\x} and w.lLo.g. Ay = {z;},
A2 = [z;]. Then we have P' = {A; U X2, Az, ..., Ap}.
Because of Lemma 10, we have to show that there is no
weight class C5 of P’ with {0,1} C f(CL’
Case 1: ws >1
CL ... can be written as a disjoint union of two
weight classes of P:

sWE -’wk)'

P _ P P
sz,---’wk - CU’wz,---’wk U Cl,wZ—l,wg,...,wk-

Since f is strongly symmetric in P, [f(C§ y, 0| =
|F(CF st 05....0,)] = 1 holds according to Lemma
10. Suppose {0,1} C f(CL), then we have
F(CGrn,) = cand f(CF,,, 1 =cforce
(0,1}

This leads to a contradiction to the condition that f is
symmetric in z; and z;, since there are € € C{.

andé € CF

1,11}271,...,

on)

W2yeee Wi
w, such that e results from ¢ only by

IEEE TRANSACTIONS ON COMPUTER AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 18, NO. 2, FEB. 1999 90

Input: Incompletely specified function f: D — {0,1}, D C {0,1}", represented by f,, and fq.
Output: Partition P of {z1,...,z,}, such that f is symmetric in P

Algorithm:

1 Compute symmetry graph nym = (V,E) of f (or Gg‘ym = (V,E)).

2 V1 <k < n:color(zy) := undef.

3 P:{{xl},{zz},...,{xn}}

4 node_candidate_set := {x1,...,2n}

5 while (node_candidate_set # () do

6 /* f is strongly symmetric in P */

7 Choose z; € node_candidate_set according to Brélaz/Morgenstern criterion

8 color_candidate_set := {c : 1 < ¢ <n, Az; with {z;,2;} € E and color(z;) = c}
9 while (color(z;) = undef.) do
10 curr_color := min(color_candidate_set)
11 color(z;) := curr_color
12 if (3 colored node z; with color(z;) = color(z;))

13 then

14 if (f symmetric in (z;,2;))

15 then

16 P = P\ {[a], {m 1} ULls] U {1}

17 /* f is symmetric in P */ *)
18 Make f strongly symmetric in P. (**)
19 else
20 color_candidate_set := color_candidate_set \ {curr_color}
21 color(z;) := undef.
22
23 fi
24 od
25 node_candidate_set := node_candidate_set \ {z;}
26 od

Fig. 4. Algorithm to solve MSP

exchange of the ith and jth component, but f(e) = ¢
and f(§) =c.

Case 2: wy =0
0527._.7% = C(I)’wa...,wk and {0,1} £ f(011;27---,wk:) fol-
lows from the strong symmetry of f in P.
|

Remark 1: The statement of Lemma 12 is not correct,
if we replace ‘f strongly symmetric in P’ by ‘f (weakly)
symmetric in P’ or if we don’t assume |[z;]| = 1. But
note that the given conditions coincide exactly with the
conditions existing in the algorithm.

Next we have to explain how f is made strongly symmet-
ric in the partition P in line 18 of the algorithm. From the
definition of symmetry of incompletely specified functions
it is clear that it is possible to extend a function f, which
is (weakly) symmetric in a partition P, to a function which
is strongly symmetric in P. From the set of all extensions
of f which are strongly symmetric in P we choose the ex-
tension with a maximum number of don’t cares. If f is
(weakly) symmetric in a pair of variables (z;, z;), the ex-
tension f of f, which is strongly symmetric in (z;, z;) and
which has a maximal don’t care set among all extensions
of f with that property, can be easily computed from the
BDD representations of fo,,, f4c and for¢ by the procedure
make_strongly_symm in Figure 5.

We can use a sequence of calls of the procedure
make_strongly_symm to make f strongly symmetric in the
partition P in line 18 of the algorithm. For this purpose
we can prove the following theorem:

Theorem 5: Let f : D — {0,1} strongly symmetric in P,
{z:}, [zjl] € P, [331'1] = {xju-) I]’k}’ = f(O) symmetric

in (2;,2,).
Y = make_strongly_symm(f©, z;, zj,)
@ = make-strongly_symm(f(l), i, Zj,)
f* = make_strongly_symm(f*=Y, z;, zj,)

Then f(*) is strongly symmetric in

P' = P\ {[z;], {z:}} J{lzsn] U {=i}}.
Proof: See Appendix C. |
There are examples where we need the complete sequence
of calls given in the theorem. However, in many cases there
is a p < k such that f® does not differ from f—1). We
can prove that the sequence of calls can be stopped in such
cases with the result f(*) = f(»-1),

D. Compatibility with other BDD Minimization Tech-
niques

In the last section we presented an algorithm to compute
a minimum sized partition P of the input variables in which
an incompletely specified function f is symmetric. In ad-
dition we assigned values to don’t cares to make f strongly
symmetric in P. Usually the result will still contain don’t
cares after this assignment.

We try to make use of these remaining don’t cares by
applying the technique of Chang [8] and Shiple [47] to fur-
ther minimize BDD sizes. Since this method removes don’t
cares, we have to ask the question, if the method can de-
stroy symmetries which were found earlier.

IEEE TRANSACTIONS ON COMPUTER AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 18, NO. 2, FEB. 1999 91

Procedure make_strongly_symm

Input: f:D — {0,1}, represented by fon, forf, fac- f is (weakly) symmetric in (z;, z;).
Output: minimal extension f' of f (represented by f’,,., f',;s, f'4c), Which is strongly symmetric in

(acl-, z;) .
Algorithm:

L f'on =TiTj fonzz, + TiTjfong,a, + (2:Tj + Tizj) (fong,z7 + fonza;,)
2. flopr =TiTjfoffzz, + Titiforty,,, T (@iTj + Titj)(for sty + forfam,)

3. fldc:flon_'_floff

Fig. 5. Procedure make_strongly_symm

The answer to this question given in this section is that
we can preserve these symmetries using a slightly modified
version of Chang’s technique.

The algorithm proposed by Chang [8] minimizes the
number of nodes at every level of the BDD by an opera-
tion remove_z assigning as few don’t cares as possible to
either the on-set or the off-set, i.e., the number of so-called
linking nodes immediately below a cut line between two
adjacent variables is minimized. After the minimization of
nodes at a certain level of the BDD they use the remaining
don’t cares to minimize the number of nodes at the next
level. The cut line is moved from top to bottom in the BDD.
We can prove that under certain conditions, this method
does preserve strong symmetry:

Lemma 13: Let f be an incompletely specified Boolean
function which is strongly symmetric in P = {A1,..., Ax}
and assume that the variable order of the BDD representing
f is a symmetric order with the variables in \; before the
variables in \;y1 (1 <4 < k). If we restrict the operation
remove_z presented in [8] to cut lines between two symmet-
ric groups A; and A;41, then it preserves strong symmetry
in P.

Proof: See Appendix D. |

Since we will use such ‘symmetric orders’ to mini-
mize BDD sizes (see Section VI), we only have to restrict
remove_z to cut lines between symmetric groups to guar-
antee that we will not lose any symmetries.

VI. EXPERIMENTAL RESULTS
A. Completely Specified Functions

In this section we present experimental results for com-
pletely specified functions, in the next section results for
incompletely specified functions.

A.1 Asymmetry Test

We compare the performance of our sophisticated sym-
metry check with the naive one. For that we have imple-
mented the ideas described in the last section. We have
used the ¢MU-BDD package contained in S1S-1.2 [46]. This
package is based on the ideas of [3]. The algorithms were
tested for the multi-level circuits® from the LGSYNTHI1
benchmark set. In Table I we give only results for bench-
marks where run times for the naive symmetry check (or

5except C6288.blif and i10.blif

our procedure) were larger than 10 CPU seconds measured
on a SPARC station 20.

In Table I the first four columns provide information
about the name of the circuit, the number of primary in-
puts, the number of primary outputs, and the number of
nodes in the BDDs. Columns 5-9 show CPU times in sec-
onds for the naive method and implementations of our ideas
of Section IV, respectively. Column 6 shows CPU times for
the symmetry detection using only idea 1, column 7 CPU
times using idea 1 followed by idea 2. In column 8 CPU
times for the sequence of running idea 1, idea 2, and idea 3,
are given and in column 9 CPU times for idea 1, idea 2,
idea 3,,, and idea 3. The CPU times include the run times
of the naive tests applied to those variable pairs for which
asymmetry has not been detected. Note, that the realiza-
tion of idea 3 starts with a realization of the special case
for neighboring variables in order to filter out symmetries
of those pairs of variables. Column 10 (symsets) gives in-
formation on symmetries of the benchmark circuits: 2(5)
means that there are two symmetry sets of five variables.

For the circuits in Table I the run time for our method
decreases drastically compared with the naive method. The
experimental results show that already the application of
idea 1 leads to a large reduction of run times. For larger
examples (e.g. C2670, C7552) application of ideas 2, 3,
and 3 leads to further reductions.

The reason for this is the obviously large ratio of asym-
metric pairs detected by the asymmetry preprocessing, as
shown by Table II. Table IT gives the number of com-
putations of cofactors to check symmetry for the different
methods. The number of cofactor computations needed to
check symmetry is decreased step by step by the sequence
of running idea 1, idea 2, idea 3,, and idea 3. In many
cases ideas 1, 2, 3,, and 3 to check asymmetry (and sym-
metry in case of idea 3,,) are sufficient in the sense that no
cofactor computation is necessary at the end, i.e., a 0 in
column Idea 1,2, 3,,,3 denotes that all pairs of asymmetric
variables have been found by ideas 1, 2, 3 or 3,, and that all
pairs of symmetric variables have been found by idea 3,,.
The last column gives the number of cofactors which have
to be computed after application of ideas 1, 2, 3,, and 3 for
pairs of variables in which the function is asymmetric. It
shows that almost all pairs of asymmetric variables could
be detected by the sequence of idea 1, 2, 3,, and 3.

TABLE 1

CPU TIMES IN SECONDS.

IEEE TRANSACTIONS ON COMPUTER AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 18, NO. 2, FEB. 1999

circuit time symsets
name n out nodes naive Idea | Idea Idea Idea
1 1,2 1,2,3, 1,2,3,,3
C1355 41 32 | 29609 109.9 2.9 2.9 2.9 2.9 41(1)
C1908 33 25 7764 19.3 0.6 0.6 0.6 0.7 33(1)
C2670 | 233 | 140 | 7469 || 1404 | 17.5 | 11.4 8.9 7.2 1(8) 2(2) 221(1)
C3540 50 22 | 27666 40.4 3.0 3.0 3.0 3.0 50(1)
C499 41 32 | 34113 128.5 3.4 4.0 4.0 4.0 41(1)
CB315 | 178 | 123 | 2433 || 231.9 | 1.9 | 2.1 2.1 2.1 2(2) 174(1)
C7562 | 207 | 108 | 9808 || 186.5 | 14.5 | 13.8 9.3 9.3 || 2(5) 4(4) 1(3) 6(2) 166(1)
apex6 135 99 1621 90.9 0.8 1.1 1.0 0.9 1(2) 133(1)
dalu 75 | 16 | 2235 58| 04 06 0.6 0.6 1(2) 73(1)
des 256 | 245 7255 1100.1 5.6 5.6 5.7 5.6 256(1)
example2 85 66 757 13.9 0.2 0.3 0.3 0.3 1(2) 83(1)
frg2 143 | 130 | 3748 || 1426 | 1.8 | 2.7 2.7 2.7 1(2) 141(1)
i2 201 1| 1585 626 | 24 | 25 0.6 0.6 2(64) 3(16) 3(4)
id 192 6 348 416 | 04| 05 0.2 0.2 16(3) 50(2) 44(1)
i5 133 66 961 97.5 0.4 0.4 0.4 0.4 133(1)
i6 138 67 415 47.9 0.2 0.2 0.2 0.2 138(1)
i7 199 67 503 113.7 0.4 0.4 0.4 0.4 199(1)
i8 133 81 2637 93.8 1.1 1.2 1.1 1.1 133(1)
i9 88 63 2391 66.8 0.7 0.7 0.7 0.7 88(1)
pair 173 | 137 | 4918 || 132.4 | 2.6 | 3.9 3.8 3.8 2(2) 169(1)
rot 135 | 107 | 10223 556.8 4.9 6.9 5.9 5.7 2(3) 2(2) 125(1)
too_large 38 3 4402 31.5 0.8 0.9 0.5 0.5 1(3) 3(2) 29(1)
x3 135 | 99 996 52.0 | 05 | 0.7 0.7 0.7 1(2) 133(1)
x4 94 | 71 756 243 | 02| 04 0.4 0.4 1(2) 92(1)
TABLE II
NUMBER OF COFACTORS WHICH HAVE TO BE COMPUTED
circuit No. of cofactors No. of cofactors
naive | Ideal | Idea 1,2 | Idea 1,2,3, | Idea 1,2,3,,3 | for asymmetric pairs
C1355 1640 0 0 0 0 0
C1908 1056 0 0 0 0 0
C2670 3639353 | 118546 13012 10660 1560 12
C3540 9925 0 0 0 0 0
C499 1640 2 2 0 0 0
C5315 1336816 10719 563 123 123 0
C7552 1734673 14203 4369 1669 1525 17
apex6 282351 621 321 74 0 0
dalu 11246 17 17 16 16 0
des 3173371 0 0 0 0 0
example2 114807 66 66 0 0 0
frg2 789287 139 139 0 0 0
i2 4794 180 180 2 2 0
i4 80308 492 492 72 72 0
i5 239690 0 0 0 0 0
i6 421264 0 0 0 0 0
i7 859421 0 0 0 0 0
i8 150515 0 0 0 0 0
i9 84488 0 0 0 0 0
pair 152263 1232 274 0 0 0
rot 233762 659 643 107 107 0
too_large 1318 15 15 0 0 0
x3 283519 336 336 83 0 0
x4 169498 71 71 0 0 0

92

A.2.a Statistical Results. Due to the remarks in Section
ITI-B and the theoretical results proven in [48], it seems to
be reasonable to consider only symmetric variable orders
for BDD minimization. To check this assumption, we inves-
tigated all partially symmetric functions with three, four

A.2 Sifting Using Symmetries

Here we consider statistical and benchmark results with
respect to completely specified Boolean functions.

IEEE TRANSACTIONS ON COMPUTER AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 18, NO. 2, FEB. 1999 93

and five inputs. For each function we determined the num-
ber of general orders and the number of symmetry orders
that create a BDD with % more nodes than the minimum
BDD. Using these data, we computed the probability to get
a BDD with more than 2% more nodes than the minimum
for an arbitrary function and an arbitrary order. Figure 6
shows the result obtained for the four and five input func-
tions. The dashed line shows the probability that the BDD
for an arbitrary partially symmetric function with an arbi-
trary symmetry order has more than 2% additional nodes
with respect to the minimum. The solid line shows the
same for general orders. It turns out that the probability
to get an % oversized BDD with a symmetry order is al-
ways smaller than it is for general orders. This shows from
a statistical point of view that symmetry orders constitute
an efficient subclass of variable orders.

Furthermore, this statistical study gives a negative an-
swer to the question, whether for each BDD a symmetry
order exists that gives the minimal number of nodes. Con-
sider the {zo, 1 }-symmetric function shown in Figure 7.
For this function each symmetry ordered BDD has 4 internal
nodes while the minimum BDD has only 3 internal nodes.

For completeness, we computed the number of partially
symmetric functions for that each symmetry order results
in a non-minimal BDD. For the 120 partially symmetric
functions with three inputs there are 24 (20%) such func-
tions.

For the 20.548 partially symmetric functions with four
inputs there are 960 (4.7%) and for the 162.535.140 par-
tially symmetric functions with five inputs there are only
972.280 (0.6%) such functions. The distance of the best
symmetry order to the minimum was at most two nodes.
We confirmed our results by performing experiments with
some functions with more than five inputs. Thus, it seems
to be a good heuristic to confine ourselves to the subclass
of symmetry variable orders.

In [41] it was conjectured that for BDDs without comple-
mented edges for each function one of its symmetry orders
results in a BDD of minimal size. A negative answer to this
conjecture was given by our experiments with this kind of
BDDs. For the four input function

f=T1xox3 + £1T223 + T122T3 + T1T2T3T4

which is symmetric in {z;,zs,z3} the BDD with best
symmetry order has size 9 and the minimum size is 8
(with variable orders 1,2, 3,24 and x1,x2, 24,23, TE-
spectively). For BDDs without complemented edges there
are 80 (0.4%) partially symmetric functions with four in-
puts and 1.262.800 (0.8%) functions with five inputs with-
out a minimum symmetry order.

A.2.b Benchmark Results. Now we will show the ef-
ficiency of the symmetry variable orders in practical ap-
plication. We processed 109 combinational two-level and
multi-level circuits from the LGSYNTHI1 benchmark set.
We also processed each primary output of each circuit sep-
arately, since the single primary outputs of a multiple out-
put function sometimes have more symmetry. Symmetry

detection was executed on the BDDs using the algorithm
proposed above. We slightly modified this algorithm to de-
tect equivalence symmetry as well. The notion of equiva-
lence symmetry was introduced by Hurst [25] and describes
the situation that not {z;,z;} but {z;,Z;} is a symmetric
pair. The additional consideration of equivalence symme-
try results in about 10% more symmetry.

If a BDD is to be created from a circuit description, a
heuristic [33] generates a good initial order which is not
necessarily a symmetry order. As discussed above, the size
of the BDD may be reduced, if the initial non-symmetry
order is transformed into a symmetry one. We have applied
three algorithms to get a symmetry order. They differ only
in the way they select the new position for a symmetry set.
Heuristic first selects as position for a symmetry set the
position of the first variable of the symmetry set, median
selects the position of the middle variable and last selects
the position of the last symmetric variable.

Heuristic best calls all three methods and then selects the
best order. The suffix _so denotes the methods that handle
each primary output separately. The results obtained by
initial reordering are shown in Table III. The first column
gives the name of the reordering heuristic. The second,
third and fourth column shows the total number of bench-
mark functions where the size of the symmetry ordered BDD
is smaller, equal-sized, or larger than the initial one when
it was reordered with the corresponding heuristic. The last
column shows the total number of nodes of all BDDs and
the average improvement over all benchmarks.

For the 109 multiple output functions we detected 56
to be partially symmetric. The initial ordering heuristic
already generates a symmetry order for 39 of these func-
tions. For more than half of the remaining non-symmetry
ordered BDDs the order has been improved by each of the
three symmetry reordering methods and the overall num-
ber of nodes decreases. The best heuristic seems to be last
and we select it for our next experiments. However, row
best shows that the heuristics work well on different func-
tions. There are only three of the single output functions
for which all three heuristics generate a symmetry ordered
BDD that is larger than the initial one. This shows that
symmetry orders are also good in practice.

To reduce the size of a BDD several reordering heuristics
have been developed. Two of them, win3 and sift [43] are
implemented in the cMU-BDD package. To work with sym-
metry orders we make use of the variable blocking feature
of the cMU-BDD package. Before starting reordering, we
block the symmetric variables which were made adjacent
by last. The modified heuristics are called Swin3 and Ssift,
respectively.

For all symmetric functions from the benchmark set the
original heuristics win3 and sift and the modified heuristics
Swin3 and Ssift were applied to the initial BDDs. Results
are presented in Table IV. The first column denotes the
reordering heuristic. The second, third and fourth column
shows the total number of benchmark functions for that
the modified heuristics generate a smaller, equal-sized, or
larger BDD than the original heuristic. Column nodes shows

IEEE TRANSACTIONS ON COMPUTER AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 18, NO. 2, FEB. 1999 94

4 Inputs 5 Inputs
1 T T T T T T T T T 1 T T T T T T
general orders —— general orders ——
08 L symmetry orders ---- | 08 | symmetry orders ---- |
£ £ 06 i
o o
]]
Qo =)
£ 2 04 | i
02 | -
0 .
0 5 10 15 20 25 30 35 40 45 50 0 10 20 30 40 50 60 70
Distance of more than x% from minimum Distance of more than x% from minimum
Fig. 6. Distribution of general orders and symmetry orders
Fig. 7. BDDs of f = ZoZT1 + zoz1Z2
TABLE III
INITIAL ORDERING WITH SYMMETRY ORDERS
Heuristic BDD size nodes Heuristic BDD size nodes
<I=1> <]l =1>
initial 58688 initial_so 49199
first 9 5 3 | 58432 1.3% first_so 312 | 236 | 101 | 47275 1,2%
median 14 3 0 | 58020 1.5% median_so | 398 | 174 77 | 46353 1.5%
last 14 3 0 | 58007 1.8% last_so 409 | 161 79 | 46362 1.6%
best 15 2 0 | 57888 2.5% best_so 534 | 112 3 [45252 2.4%
TABLE IV generate better or same results in most cases. Swin3 saves
REORDERING WITH SYMMETRY ORDERS 5.7% nodes and Ssift3 saves 7.1% nodes on the average. The
run time for symmetric reordering remains nearly the same.
Heuristic DD size e fime (se0) Unforiiunately,‘t}{ere is the extra run time f.or §ymmetry
<1 = [> detection. This increases the run time of sift in general
win3 66350 14 by factor 2 and of win3 up to factor 7. One can overcome
Swin3 25 20 | 2] 64200 5.7% 16 this difficulty if the symmetry detection is integrated in the
sift 33878 92 reordering method following idea 3,, above (see also [41]).
Ssift 26 26 4 [33149 7.1% 93 Table V sh he off £ b d deri
Win3.50 67961 36 able v s.o.ws the eftect of symmetry based reor ‘ermg
Swin3_so | 693 | 1443 | 42 | 63668 3.4% a1 for some individual benchmarks. In column symsets infor-
sift_so 58177 116 mation on symmetry is given (like in the previous section
Ssiftso [452 | 1695 | 4 [54970 2.6% 99 2(3) means that there are two symmetry sets of three in-

the number of nodes of all the optimized BDDs and the
average improvement over all benchmarks. Column time
shows the run time® of the heuristics. The additional over-
all run time for symmetry detection for multiple-output
and single-output functions is about 88 seconds.

It is shown that the heuristics that use symmetry orders

6All run times are seconds on SPARCstation 10/64 MB.

put variables). The following columns show the BDD size
achieved by the mentioned heuristics. The leading S de-
notes the symmetric version. (Column init gives the initial
BDD sizes (sifting was used as a dynamic reordering method
to compute these BDDs) and column Sinit gives the result
of making symmetric variables adjacent by heuristic last as
described above.) If the symmetric reordering results in
the same size as the original the results are omitted.

It is shown that the symmetry modified algorithms in
general outperform the original ones. Furthermore, even

IEEE TRANSACTIONS ON COMPUTER AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 18, NO. 2, FEB. 1999

TABLE V
BENCHMARK RESULTS OF REORDERING WITH SYMMETRY ORDERS

95

[circuit | symsets [init | Sinit [[win3 [Swin3 [[sift | Ssift |

C2670 13) 202 7306 | 7300

C5315 2(2) 2407 2406 2379 | 2378
C7552 205) _4(4) 1(3) 6(2) 9747 | 9727 || 9415 | 8838
C880 3(2) 7134 7132 5164 4879
apex2 1(3) 3(2) || 2047 | 2846 || 910 | 634 || 700 | 654
cps 1(4) 1455 1445 1301 1294 1035 991
ex4 14(2) 895 822 692 691 537 539
seq 2(2) 5638 5532 3737 2586

t481 8(2) 63 33 33 21 33 31
vg2 2(2) 390 385 132 146
comp 16(2) 146 128 | 146 | 107
count 1(2) 232 201 201 82
dalu 1(2) || 4575 | 4346 1322 | 1323
frg2 12) 2207 | 2171
2 2(64) 3(16) 3(4) || 1586 | 1582 || 795 | 208

i 16(3) 50(2) 340 | 333 || 333 | 245 || 308 | 233
lal 5(2) 122 110 97 95 75 72
my_adder 13) 15(2) 457 | 452 || 457 | 4il
pcler8_cl 1(2) 138 122 130 86
rot 2(3) 2(2) 10224 10222 8212 8204 4574 4568
too_large 13) 3(2) 667 | 676 | 500 | 439
x1 1(2) 1211 1190 784 799 544 518
z4ml 13) 2(2) 37 30 21 17 24 | 17

a small number of symmetry sets and variables can cause
a large improvement. For example, for seq with only two
symmetry sets of size two Swin3 saves about 30% of all
nodes and for count with only one symmetry pair Ssift saves
about 60%. Thus, symmetry based ordering is not only
suitable for functions with a very large number of symme-
tries.

B. Incompletely Specified Functions

We have carried out experiments to test the effect of the
algorithms for symmetry detection in the case of incom-
pletely specified Boolean functions.

To generate incompletely specified functions from com-
pletely specified functions, we used a method proposed in
[8]: After collapsing each benchmark circuit to two level
form, we randomly selected cubes in the on-set with a prob-
ability of 40% to be included into the don’t care set”. The
last three Boolean functions in Table VI are partial multi-
pliers partmult,®.

We performed three experiments: First of all, we ap-
plied symmetric sifting to the BDDs representing the on-
set of each function. The results are shown in column 6
(sym_sift) of Table VI. The entries are BDD sizes in terms
of internal nodes.

In a second experiment, we applied our algorithm to min-
imize the number of symmetric groups followed by sym-

"Because of this method to generate incompletely specified func-
tions we had to confine ourselves to benchmark circuits which could
be collapsed to two level form.

8The n2 inputs are the bits of the n partial products and the 2n out-
puts are the product bits. The don’t care set contains all input vectors
which cannot occur for the reason that the input bits are not inde-
pendent from each other, because they are conjunctions a;b; of bits
of the operands (a1,...,an) and (b1, ...,b,) of the multiplication.

metric sifting. Column sym_group of Table VI shows the
results. sym_group provides a partition P = {A1,..., Ax}
and an extension f’ of the original function f, such that
f' is strongly symmetric in P. On the average, we can
improve the BDD size by 51%.

In a last experiment we started with the results of
sym_group and then went on with a slightly modified ver-
sion of the technique of Chang [8] and Shiple [47] according
to Lemma 13. Lemma 13 leads to a modification of the
technique of Chang which does not destroy strong sym-
metry supplied by sym_group: We restrict the remove_z
operation [8] only to cut lines between groups of symmet-
ric variables. Since our technique to restrict remove_z to
cut lines between symmetric groups does not destroy the
symmetric groups, we can perform symmetric sifting after
the node minimization with the same symmetric groups
as before. Figure 8 illustrates our modification of Chang’s
technique. Column sym_cover of Table VI shows the re-
sulting BDD sizes. On the average, the new technique leads
to an improvement of the BDD sizes by 70%.

A comparison to the results of the restrict operator [10]
(applied to BDDs whose variable order was optimized by
regular sifting) in column restrict of Table VI shows that
our BDD sizes are on the average 44% smaller. Even if
sifting is called again after the restrict operator has been
applied, the improvement is still more than 40% on average
(see column restrict_sift).

Finally, we carried out the same experiment once more,
but this time the probability for a cube to be included in
the don’t care set was reduced to 10% (instead of 40%)°.

9Note that the sizes of the don’t care sets for the partial multipliers
partmult, are fixed, since these don’t care sets arise in a ‘natural

IEEE TRANSACTIONS ON COMPUTER AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 18, NO. 2, FEB. 1999

96

TABLE VI
EXPERIMENTAL RESULTS. THE TABLE SHOWS THE NUMBER OF NODES IN THE BDDS OF EACH FUNCTION. NUMBERS IN PARENTHESIS SHOW THE
CPU TIMES (MEASURED ON A SPARCSTATION 20 (96 MBYTE RAM)).

[circuit | in | out [[restrict | restrict_sift | sym_sift | sym_group | sym_cover |
Bxpl 7] 10 63 63 67 | 66 (02s) | 53 (055
9symml 9| 1 67 65 108 | 25 (03s)| 25 (0.4s)
alu2 10| 6 192 182 201 | 201 (0.7s) | 152 (2.65)
apex6 135 99 993 940 1033 983 (267.6 s) 612 (459.7 s)
apex? 19 | 37 730 716 814 | 728 (27.7s) | 340 (52.25)
b9 a1 | 21 213 211 256 | 185 (8.6s) | 122 (11.5s)
c8 28 | 18 110 98 156 | 95 (1.7s)| 70 (3.25)
example2 | 85 | 66 497 496 491 | 484 (69.25) | 416 (119.4s)
mux 21 | 1 32 32 34| 20 (06s)| 20 (0.7s)
pelers 27 | 17 111 111 8| 73 (L9s) | 72 (3.3
rd73 7] 3 75 74 76 | 34 (03s) | 27 (0.4s)
rdsd 8| 4 135 132 144 | 42 (07s) | 42 (0.75s)

5202 10| 4 89 89 104 | 104 (04s)| 70 (0.85s)
x4 94 | 71 814 812 829 | 633 (121.9s) | 485 (203.4s)
z4ml 7| 4 a7 46 51| 32 (02s)| 17 (0.3s)
partmult3 | 9 | 6 70 65 152 | 35 (1.0s)| 29 (125s)
partmultd | 16 | 8 307 204 971 | 222 (49.5s) | 114 (50.6 5)
partmults | 25 | 10 857 843 4574 | 998 (1540.4s) | 365 (1548.4 s)
total 5402 5269 10139 | 4969 3040
4 N
(O D .1
: : i . :
. jg8 M,
la
|) Xis | | } Ay symfnjetric xia
. . sifting .
| | | P = =
- 2 Xin,
)\A 2)/(;((i"z } 7\‘k—1 i1
- : K
A X, 7S\ E
0] 0]
> 2

Fig. 8. On the left hand side the method presented by Chang is illustrated (cut lines between all levels). On the right hand side our method

is illustrated.

The numbers for sym_sift, sym_group and sym_cover are
given in Table VII in columns 4, 5 and 6, respectively. It
can easily be seen that the reduction ratio decreases, when
only a smaller number of don’t cares is available, but with
only 10% don’t cares still more than 30% of the nodes can
be saved on average.

VII. CONCLUSIONS

We presented methods for symmetry detection for com-
pletely specified functions represented by BDDs. The main
idea of our symmetry detection algorithm is to use fast pre-
processing algorithms to detect asymmetric variable pairs.
These methods were applied to improve the quality of BDD
reordering heuristics for the class of partially symmetric
functions by using symmetry variable orders. The concept
of symmetry variable orders was successfully extended to
incompletely functions, where there are two means to min-

way’ as described above.

imize BDD sizes: the assignment of values to don’t cares
and the optimization of the variable order. Experimental
results prove our approach to be very effective.

APPENDIX
A. Proof of Lemma 10

Proof:

1. ?*«<="": Suppose [is not strongly symmetric in
P. Then there must be \; € P, such that f is
not strongly symmetric in A; and there must be
a pair of variables (z;,z;) € X\;, such that f is
not strongly symmetric in (z;,2;). By definition
there must be e1 = (e1,...,€i,...,€j,...,€,) and
es = (€1,..+,€5,...,€iy...,€p), such that e; € D
and es ¢ D or e;,es € D and f(e1) # f(e2). But
e1; and ey belong to the same weight class C' of P.

Both cases lead to a contradiction: In the first case
we have {dc, 1} or {de,0} C f(C), in the second case

IEEE TRANSACTIONS ON COMPUTER AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 18, NO. 2, FEB. 1999

TABLE VII
EXPERIMENTAL RESULTS. THE TABLE SHOWS THE NUMBER OF NODES

IN THE BDDS OF EACH FUNCTION WITH 10% DON’T CARES.

[circuit | in | out [sym_sift [sym_group | sym_cover |
5xpl 7 10 75 73 68
9symml 9 1 75 25 25
alu2 10 6 199 199 166
apex6 135 99 961 911 585
apex7 49 37 807 753 428
b9 41 21 203 195 141
c8 28 18 180 161 83
example2 85 66 547 540 464
mux 21 1 40 35 33
pcler8 27 17 83 83 81
rd73 7 3 65 35 31
rd84 8 4 126 42 42
sao2 10 4 106 106 79
x4 94 71 677 670 499
z4ml 7 4 50 30 17
total 4194 3858 2742

{0,1} C f(C).

Yoig : {0,1}" — {0,137, oy (e1,. ..

€. {o, 13"

=" If f is strongly symmetric in P, then the

following holds for all o € ¥ = {0,
Pwithz;,z; € M} Ve

EDVINS
(e1,...,€,) € {0,1}"

fle) = f(o(e)) (including the extended interpre-

tation f(e) = f(o(e)) = dc).

Let e; and ey be

members of a arbitrary weight class C' of P. Then
there is a sequence of permutations o;...0; € ¥

with €y = (0’10...

oo)(er)-

Thus f(e1) = f(e2)

holds, such that f(C) = {0} or f(C) = {1} or

f(C) = {de}.

9. 7ee—="": Let V0 < w; < MJ(1 < i < k) {0,1} ¢

F(Cy)

We have to prove that there is a completely speci-
fied extension f’ of f, which is symmetric in P.

Define f' as follows:

If f(C) ={e} (e € {0,1}) for a weight class C, then

f1(C) = f(O).

If f(C) = {dc} for a weight class C, then f'(C) = 0.
If f(C) = {e,dc} (e € {0,1}) for a weight class C,

then f'(C) =e.

Then f' is a completely specified function and be-
cause of part 1 of the theorem f’ is strongly symmet-
ric in P and thus symmetric in P according to the
symmetry definition for completely specified func-

tions.

7¢="": Let f be (weakly) symmetric in P. Thus
there is a completely specified extension f’ of f,
which is symmetric in P. If there would be a weight
class C with {0,1} C f(C), then {0,1} C f'(C),
since f’ is an extension of f. Since f’ is completely
specified, we have for all weight classes C' of P ac-
cording to part 1 of the theorem: f'(C) = {0} or
f'(C) = {1} which contradicts our assumption.

ciy€iyenay€N) VEL, ... €n €

 €iy e

97

B. Proof of Theorem /

Proof: Let an instance of PC be given by a graph
G = (V,E) and a number K < |V|. We can determine in
polynomial time BDDs fg,, and fg,. of an incompletely
specified function fg with the property that there is a par-
tition of G into K cliques iff there is a partition P of the
variable set X of f, such that f is symmetric in P and
|P| =K.

Wlog V ={z,...,2,} = X.

fa € S(D) (D C {0,1}") is defined by

1 if € = =¢ =1,
€i+1:---:€n:03
1<:1<n-1
0 if €1 = ':61'—1:17
felersoven) = AR
€ =1,
€j+1 = .=€n=0,
1<i<n—1,7>1
and {z;,z;} ¢ E
dc otherwise

From the definition of fg it is easy to see that if fg is
symmetric in a partition P = {)\;,...,Ag} of the input
variables, then the variables (nodes) from \; form a clique
in G.

Let P = {\1,..., Ak} be a partition of the input vari-
ables, such that the nodes from \; form cliques in G. Sup-
pose f is not symmetric in P.

According to lemma 10 there is a weight class 0517._.71“{
for P with {0,1} C fe(CE ,.). From the definition of

P . . .
fc the only vertex of C,, ,, with function value 1 is

e® :=(1,...,1,0,...,0) (w =¥, w;). There has to be
———

w times

j > w with €® = (1,...,1

——
w — 1 times
with f(e®) = 0, i.e. (zy,z;) ¢ E. Let ' € P with
2,y € N. If z; ¢ N, then wl, () = w}, (e) — 1. This
contradicts the fact that €(*) and 1) are in the same weight
class. If z; € A', then we obtain a contradiction to the fact

that (z.,,z;) ¢ E.

Since ON(fg) and OF F(f¢) are of polynomial size, the
BDDs for fg,, and fg,. can be computed in polynomial
time. ||

,0,0,...,0, 1 ,0,...,0)
~

0
J

C. Proof of Theorem 5

Proof: Let P = {\1, A2, A3,..., N} and w.lo.g. A\;
{z;} and Ao = {zj,,..., 2. }.
f is strongly symmetric in P and we have to show that f(¥)
is strongly symmetric in P’ = {A\; U X3, As,..., i}
Because of lemma 10 we have to show that for all weight
classes CE’ of P’ holds:

w1,2,W3,..., W]

’ {0} or
f(k)(051,2,w3,...7wn+1,k) = {1} or
{dc}

Case 1: wi,2 = 0 or w12 = k+1
Then the following holds:

P _ P
Ow1,2,w3’~~~,wl - CO,O,wg,...,w, or
P _ P
C’w1 \2,W3 50 W Cl7k7w37---7w1
and thus |f(CP . .uy)| = 1 because of the strong

symmetry of fin P

If f(Crpyss,.. M) =c, c€{0,1},
then f p)(C’P’ swnga) = tc forall 1 <p <k,

w1,2,Ws3,--
since f() is an extension of f.

If f(CL 4 awn) = {de}y
then f p>(0}j§ s wany) = {dc} for all 1 < p < k, since

make_strongly_symm(f(pfl), z;,z;,) provides a mini-
mal extension, which is strongly symmetric in (z;, z;,)
and w}, () = w3, (e) = 0 or w} (e) = wy, (e) = 0 for
all e € 051 oW1
Case 2: 1<wip <k

In this case we have the following disjoint union
CP’ — (P UCcP

W1,2,W3,.-, WY 0,w1,2,ws3,...,w; Lwi2—1ws,...,w
It follows from our precondition

{0} or
{1} or
{dc}

P
f(OO,w1,z,w37---7wl) =

and
{0} or
) =14 {1}or
{dc}

Case 2.1: f(C£w1,27w37...7w1) = f(05w1,2—17w37...
Since the calls of
make_strongly_symm(f®~1 z;, r;,) give minimal
extensions, which are strongly symmetric in
(z4,2;,), the assignment for

;. and C(1 ,wi,2—1,w3,...,w;

f(p)(c

Q
f(Ol,wl,gfl,wg,...

,wl)

is not changed.
;) holds

0 ,2W1,2,W3,...,W]

f(p) (CO ,W1,2,W3,. . ,wl)
and thus

1,wi,2—1,ws,..

{0} or
{1} or
{dc}

Case 2.2: f(CO ,W1,2,W3,.. ,wl) # f(1wy, 2—1,ws3,.. ,wl)
Since f is symmetric in (z;, z;,), there are ¢ € {0,1}

and u € {0,1}, such that
f(5w1,2—u7w37...,wl) = {dc} a‘nd
f(05w1,2—ﬂ7w37...,wl) = {C}
In the following we assume u = 0 (case u = 1 is
analogous).

From the definition of make_strongly_symm fol-
lows that for all 1 < p < k fP)(e) € {c,dc} Ve €
cf L uct

0,w1,2,w3,...,w

f(p (w1,2,W3,.. 7'w1) =

1wy 2—1,wsg,...,w*
A call of make_strongly_symm(f(p),aci,acjpﬂ) as-
signs the function values to vectors e €

P ; . I
Co w1 2,ws,w, With € = 0 and €;,,, = 1, namely

IEEE TRANSACTIONS ON COMPUTER AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 18, NO. 2, FEB. 1999 98

to the value f™ (o .,(€)) = c (0ij,,.(€) €
2

P
1,11}17271,11}3,...,11}[.

It remains to be shown that f(F)(¢) = ¢ Ve €

(fwl,z,w:i,---,wl’ i.e. that the sequence of k calls is

enough to assign function value ¢ to all elements of
p
0,w1,2,w3,...,wr *

The following statement is proven by induction:

f(p)() = ¢ Ve € C’O,w”,wg,___wl with €, = 1 or
€, =1lor...ore€j, =1.

p = 0: Trivial.

p—p+1:

Because of the inductive assumption and since
f®+1) i an extension of f(®), we have:
f@t(e) = ¢ Ve € C(fw1,z,w3,...,wz with €;, =1
orej, =1lor...ore;, =1.
We have to show that fPTD(e) = ¢ Ve €
P : _
0,w1,2,W3,.- S with €, = 1.

with

Let § € CP

111)12 1w3 W

S =& =14¢; =0

pb1 = Cipy1
and &; = ¢ for [# ¢, jpt1,

thus § = O'l"ijrl(E). (There is such a § €

cr w13 Lows,.u Decause of 1 <wi).
We have
F06) = 1(6) = ¢
and thus
FIE) = £ (03,01 () = F7(6) = .

It follows from the statement shown by induction:

B (e) =cVee Ol

sW1,2,W3,..., W]

with ej, =1or ... ore; =1

or

f®(e) =cVee C’(f with wy, (€) > 1.

W1,2,W3,..., W

But w} () =
P
0,w1,2,w3,...,w;

> 1 holds for all ¢ €
(assumption in Case 2).

w12

D. Proof of Lemma 13 (sketch)

U?:i—i—l A]' = {:cp+1, N

Proof: ~ W.lo.g. let U;’:l/\j

afcn}-

= {z1,...,2p} and

Suppose we apply the remove_z operation defined in [8]
to a cut line between two symmetric groups A; and ;1.
The remove_z operation works as follows:

e The BDD nodes below the cut line correspond to all

2

(e1,.-
fFor all elements e of the weight class CéJ

different cofactors of f with respect to the first p
variables. Let the set of these cofactors be COF =
{cofi,...,cofi}. Note that these cofactors are incom-
pletely specified functions.

{0,1}*

7 P

— {0,1}",0‘,']'(61,...,Ei,...,Ej,...,En) =

€y ,€n

is €, = 0.
yW1,2,W3 .- W v

o Two cofactors cof; and cof; are compatible iff there is

no (€p+1,-..,€n) € {0,1}"7P such that

cofileptiy. . y€n) =c,cofj(€pt1y... €n) =T
for c € {0, 1}.
A partition Pcorp = {COF;,...,COF,,} of COF is
computed such that all pairs cof;, cof; € COFy (1 <
g < m) are compatible.

o For a set COF; of compatible cofactors an extension
extension, is computed as follows:
extensiong(ept1,.-.,6n) = ¢ (¢ € {0,1}) iff
deof; € COF, with cofj(ep+1,...,€n) = c¢ and
extensiong(ept1,...,€,) = dec iff VYeof; € COF,
cofj(ept1,-- . €n) = de.

o The cofactors cof; € COF, are all replaced by their
(common) extension extension,. This leads to an ex-
tension f’ of f, the result of the remove_z operation.
The number of BDD nodes of the representation for f’
which are located immediately below the cut line be-
tween A; and ;41 equals the size m of the partition
Pcor.

We have to prove that f’ is strongly symmetric in all sets

)\j € PZ{Al,...,Ak}.

Case 1: j <i

Let Tj, and Tj, €)\j.
Choose €, e(?) € {0,1}" arbitrarily with
e = (

€1yeevy€ipyeny€lnyesny€n)

2) _
and € = (€1, 1 €jpyerer€jryesry€n).

Since f is strongly symmetric in z;, , z;, the cofactors
f|z1:el,...,zj1:eh,...,zjzze]-z,...,zp:ep
and flei=e;, 25, =cjp,tiy=cjyr...tp=c, ar€ equal. By
remove_z this cofactor is replaced by some ex-
tension extension, and of course the correspond-
ing cofactors f'ls,—c, .2, =¢; .. tiy=cpr . 2p=c, aNd
fl|z1=61,---’wj1=f]‘2~~~,z]‘2=€j1,---’Ip=fp of the result f’ of
this replacement are still equal. Thus, f/(eV) =
f'(¢®) and f' is strongly symmetric in z;, and z;,.
Case2: j>i+1
Let Tj, and Tj, €)\j.
Choose €1, e(?) € {0,1}" arbitrarily with

e = (eq,... .5 €n)

S PR = PRI = PR

2
ande()=(61,...,ep,...,ejz,...,ejl...,en).

Suppose the cofactor fl|s —c, ... z,=, is in the set
COF,. All cofactors € COFy are strongly symmet-
ric in z;, and zj,.
If for all cofactors

cof; € COFy cofj(€pt1s- vy €jryevrs€jnyer.s€n) =deC
then also for all cofactors
cofj € COF, cofj(€pt1y.vy€jnyevry€jryer-y€n) =dc

(1]

[12]

(13]

IEEE TRANSACTIONS ON COMPUTER AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 18, NO. 2, FEB. 1999 99

because of strong symmetry and according to the def-
inition of extension, given above

,Ejz,...,En) =

,€n) = dc.

extensiong(€ptiy . .y €jyye .-

extensiong(Eptiy . y€joyervy€jpyene

If cof; € COF, exists with

COfj(€ptiyevs€jryenry€inye.ry€n) =c(c€ {0,1})

then

COfj(Eptiy v s€joyenss€jisesey€n) =C

because of strong symmetry and according to the def-
inition of extension,

extensiong(€pti, .- s€jyy e s €jpyrsvy€n) =

extensiong(Eptiy - y€joye ey €ipyerey€n) = C

flei=e1,...,z,=¢, is replaced by extension, and for the
result f’ we have

FI(€1y ey €pyey€ryeney€lnyen€p) =

Fl(€1y ey €pyeeey €y €jryene€n).

REFERENCES

S.B. Akers, “Binary decision diagrams,” IEEE Trans. on Comp.,
vol. 27, pp. 509-516, 1978.

B. Bollig, M. Lobbing, and I. Wegener, “Simulated annealing to
improve variable orderings for OBDDs,” In Int’l Workshop on
Logic Synth., pp. 5b:5.1-5.10, May 1995.

K.S. Brace, R.L. Rudell, and R.E. Bryant, “Efficient implemen-
tation of a BDD package,” In Proc. Design Automation Conf.,
pp. 40-45, June 1990.

D. Brélaz, “New methods to color vertices of a graph,” Comm.
of the ACM, vol. 22, pp. 251-256, 1979.

R.E. Bryant, “Graph - based algorithms for Boolean function
manipulation,” IEEE Trans. on Comp., vol. 35, no. 8, pp. 677—
691, Aug. 1986.

R.E. Bryant, “Symbolic Boolean manipulation with ordered bi-
nary decision diagrams,” ACM, Comp. Surveys, vol. 24, pp. 293—
318, 1992.

P. Buch, A. Narayan, A.R. Newton, and A.L. Sangiovanni-
Vincentelli, “Logic Synthesis for Large Pass Transistor Circuits,”
In Proc. Int’l Conf. on CAD, pp. 663-670, Nov. 1997.

S. Chang, D. Cheng, and M. Marek-Sadowska, “Minimizing
ROBDD size of incompletely specified multiple output func-
tions,” In Proc. European Design & Test Conf., pp. 620-624,
Mar. 1994.

D.I. Cheng and M. Marek-Sadowska, “Verifying equivalence of
functions with unknown input correspondence,” In Proc. Euro-
pean Conf. on Design Automation, pp. 81-85, Feb. 1993.

O. Coudert, C. Berthet, and J.C. Madre, “Verification of se-
quential machines based on symbolic execution,” In Proc. Au-
tomatic Verification Methods for Finite State Systems, LNCS
407, pp. 365-373, 1989.

0. Coudert, C. Berthet, and J.C. Madre, “Verification of sequen-
tial machines using Boolean functional vectors,” In Proc. IFIP
International Workshop on Applied Formal Methods for Correct
VLSI Design, pp. 111-128, 1989.

D.L. Dietmeyer and P.R. Schneider, “Identification of symmetry,
redundancy and equivalence of Boolean functions,” IEEE Trans.
on Electronic Comp., vol. 16, pp. 804-817, 1967.

R. Drechsler and B. Becker, “Sympathy: Fast exact minimization
of fixed polarity Reed-Muller expressions for symmetric func-
tions,” In Proc. European Design € Test Conf., pp. 91-97,
Mar. 1995.

IEEE TRANSACTIONS ON COMPUTER AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 18, NO. 2, FEB. 1999

[14]

[15]

[16]

[17]

(18]

(19]

(20]

(21]

(22]

23]

24]

(25]

(26]

(27]

29]

(30]

31]

32]

(33]

(34]

(35]

(36]

R. Drechsler, B. Becker, and N. Gockel, “A genetic algorithm
for variable ordering of OBDDs,” In Int’l Workshop on Logic
Synth., pp. 5¢:5.55-5.64, May 1995.

R. Drechsler and N. Gockel, “Minimization of BDDs by evolu-
tionary algorithms,” In Int’l Workshop on Logic Synth., May
1997.

C.R. Edwards and S.L. Hurst, “A digital synthesis procedure un-
der function symmetries and mapping methods,” IEEE Trans.
on Comp., vol. 27, pp. 985-997, 1978.

E. Felt, G York, R. Brayton, and A. Sangiovanni-Vincentelli,
“Dynamic variable reordering for BDD minimization,” In
Proc. Ewuropean Design Automation Conf., pp. 130-135,
Sept. 1993.

F. Ferrandi, A. Macii, E. Macii, M. Poncino, R. Scarsi, and
F. Somenzi, “Symbolic Algorithms for Layout-Oriented Synthe-
sis of Pass Transistor Logic Circuits,” In Proc. Int’l Conf. on
CAD, Nov. 1998.

H. Fujii, G. Ootomo, and C. Hori, “Interleaving based vari-
able ordering methods for ordered binary decision diagrams,” In
Proc. Int’l Conf. on CAD, pp. 38-41, Nov. 1993.

M. Fujita, H. Fujisawa, and N. Kawato, “Evaluation and im-
provements of Boolean comparison method based on binary deci-
sion diagrams,” In Proc. Int’l Conf. on CAD, pp. 2-5, Nov. 1988.
M. Fyjita, Y. Matsunaga, and T. Kakuda, “On variable ordering
of binary decision diagrams for the application of multi-level
synthesis,” In Proc. European Conf. on Design Automation,
pp- 50-54, Feb. 1991.

M.R. Garey and D.S. Johnson, Computers and Intractability -
A Guide to NP-Completeness. Freemann, San Francisco, 1979.
J. Gergov and C. Meinel, “Analysis and manipulation of Boolean
functions in terms of decision graphs,” In WG’92, LNCS,
pp.- 310-320, 1992.

M. Heap, “On the exact ordered binary decision diagram size
of totally symmetric functions,” Jour. of Electronic Testing:
Theory and Applications, vol. 4, pp. 191-195, 1993.

S.L. Hurst, “Detection of symmetries in combinatorial functions
by spectral means,” IEE Electronic Circuits and Systems, vol. 5,
pp- 173-180, 1977.

N. Ishiura, H. Sawada, and S. Yajima, “Minimization of binary
decision diagrams based on exchange of variables,” In Proc. Int’l
Conf. on CAD, pp. 472-475, Nov. 1991.

B.-G. Kim and D.L. Dietmeyer, “Multilevel logic synthesis of
symmetric switching functions,” IEEE Trans. on CAD, vol. 10,
no. 4, 1991.

Y.-T. Lai, M. Pedram, and S.B.K. Vrudhula, “EVBDD-based
algorithms for integer linear programming, spectral transfor-
mation, and function decomposition,” IEEE Trans. on CAD,
vol. 13, no. 8, pp. 959975, 1994.

Y.-T. Lai, S. Sastry, and M. Pedram, “Boolean matching us-
ing binary decision diagrams with applications to logic synthesis
and verification,” In Proc. Int’l Conf. on CAD, pp. 452-458,
Nov. 1992.

C.Y. Lee, “Representation of switching circuits by binary deci-
sion diagrams,” Bell System Technical Jour., vol. 38, pp. 985—
999, 1959.

L. Litan, P. Molitor, and D. Moller, “Least upper bounds on the
sizes of symmetric variable order based OBDDs,” In Proc. Great
Lakes Symp. VLSI, pp. 126-129, 1996.

F. Mailhot and G. De Micheli, “Technology mapping using
Boolean matching and don’t care sets,” In Proc. European Conf.
on Design Automation, pp. 212-216, Feb. 1990.

S. Malik, A.R. Wang, R.K. Brayton, and A.L. Sangiovanni-
Vincentelli, “Logic verification using binary decision diagrams
in a logic synthesis environment,” In Proc. Int’l Conf. on CAD,
pp. 6-9, Nov. 1988.

J. Mohnke and S. Malik, “Permutation and phase independent
Boolean comparison,” In Proc. European Conf. on Design Au-
tomation, pp. 86-92, Feb. 1993.

J. Mohnke, P. Molitor, and S. Malik, “Limits of using signa-
tures for permutation independent Boolean comparison,” In
Proc. ASP Design Automation Conf., pp. 459464, Aug. 1995.
D. Moller, J. Mohnke, and M. Weber, “Detection of symmetry
of Boolean functions represented as ROBDDs,” In Proc. Int’l
Conf. on CAD, pp. 680—-684, Nov. 1993.

D. Moller, P. Molitor, and R. Drechsler, “Symmetry based vari-
able ordering for ROBDDs,” In Proc. IFIP Workshop on Logic
and Architecture Synthesis, pp. 47-53, Dec. 1994.

(38]

(39]

(40]

[41]

[42]

(43]

(44]

(45]

(46]

100

B.M.E. Moret, “Decision trees and diagrams,”

Surveys, vol. 14, pp. 593623, 1982.

C. Morgenstern, “A new backtracking heuristic for rapidly four-
coloring large planar graphs,” Technical Report CoSc-1992-2,
Texas Christian University, Fort Worth, Texas, 1992.

S. Panda and F. Somenzi, “Who are the variables in your neigh-
borhood,” In Proc. Int’l Conf. on CAD, pp. 74-77, Nov. 1995.
S. Panda, F. Somenzi, and B.F. Plessier, “Symmetry detec-
tion and dynamic variable ordering of decision diagrams,” In
Proc. Int’l Conf. on CAD, pp. 628-631, Nov. 1994.

I. Pomeranz and S.M. Reddy, “On determining symmetries in
inputs of logic circuits,” In VLSI Design Conf., pp. 255-260,

In Computing

Jan. 1994.
R. Rudell, “Dynamic variable ordering for ordered binary de-
cision diagrams,” In Proc. Int’l Conf. on CAD, pp. 42-47,
Nov. 1993.

C. Scholl, S. Melchior, G. Hotz, and P. Molitor, “Minimizing
ROBDD sizes of incompletely specified functions by exploiting
strong symmetries,” In Proc. Furopean Design € Test Conf.,
pp. 229-234, Mar. 1997.

C. Scholl and P. Molitor, “Communication based FPGA synthe-
sis for multi-output Boolean functions,” In Proc. ASP Design
Automation Conf., pp. 279-287, Aug. 1995.

E. Sentovich, K. Singh, L. Lavagno, Ch. Moon, R. Mur-
gai, A. Saldanha, H. Savoj, P. Stephan, R. Brayton, and
A. Sangiovanni-Vincentelli, “SIS: A system for sequential cir-
cuit synthesis,” Technical report, University of Berkeley, 1992.

T.R. Shiple, R. Hojati, A.L. Sangiovanni-Vincentelli, and R.K.
Brayton, “Heuristic minimization of BDDs using don’t cares,”
In Proc. Design Automation Conf., pp. 225-231, June 1994.

D. Sieling, “Variable orderings and the size of OBDDs for par-
tially symmetric Boolean functions,” In SASIMI, pp. 189-196,
Nov. 1996.

I. Wegener, “Optimal decision trees and one-time-only branching
programs for symmetric Boolean functions,” Information and
Control, vol. 62, pp. 129-143, 1984.

B. Wurth, K. Eckl, and K. Antreich. “Functional multiple-
output decomposition: Theory and implicit algorithm,” In
Proc. Design Automation Conf., pp. 5459, June 1995.

Christoph Scholl studied computer science
and electrical engineering at University of Saar-
land, Germany, from 1988 to 1993. He received
the Dipl.-Inform. and Dr.-Ing. degrees in 1993,
and 1997, respectively, from University of Saar-
land.

In 1993 he was with the Sonderforschungs-
bereich “VLSI Design Methods and Paral-
lelism”, and from 1993 to 1996 with the
Graduiertenkolleg “Efficiency and Complexity

of Algorithms and Computers” at the Univer-

sity of Saarland. Since 1996 he is working at the Institute of Com-
puter Science of Albert-Ludwigs-University, Freiburg im Breisgau,
Germany.

His research interests include logic synthesis, verification and test of
VLSI circuits.

Dirk Mboéller received the diploma degree in computer science
from the Humboldt-University Berlin, Germany in 1992.
Between 1992 to 1994, he was with the Sonderforschungsbereich
“VLSI Design Methods and Parallelism” at the Humboldt-University.
From 1995 to 1996 he was with the Computer Science Department

at Martin-Luther University Halle-Wittenberg.

In 1996 he joined

Dresearch Digital Media Systems GmbH, Germany.
His research interests are logic and physical synthesis.

IEEE TRANSACTIONS ON COMPUTER AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 18, NO. 2, FEB. 1999

Paul Molitor studied computer science at
University of Saarland, Germany, from 1978
to 1986. He received the Dipl.-Inform., the
Dr.rer.nat., and the Dr.habil. degrees in 1982,
1986, and 1992, respectively.

Between 1982 to 1992, he was with the re-
search group on VLSI design methods and par-
allelism at the University of Saarland. After
being visiting professor at the University of
Halle (1992/93) and the University of Freiburg
i.Br. (1993), he was an associate professor in
the Computer Science Department of the Humboldt-University Berlin
in 1993/94. Since 1994, he is a full professor at the Martin-Luther
University Halle-Wittenberg, Germany. He is author and coauthor of
two books and about 35 international papers in the field of physical
design, logic synthesis, verification of digital circuits, and genetic al-
gorithms.

Dr. Molitor is a member of IEEE, the ACM, and the GI.

Rolf Drechsler received his diploma and
Ph.D. degree in computer science from the
J.W. Goethe-University in Frankfurt am Main,
Germany, in 1992 and 1995, respectively.

He is currently working at the Institute of
Computer Science at the Albert-Ludwigs-
University of Freiburg im Breisgau, Germany.
He is the Symposium’s Chair of the IEEE
International Symposium on Multiple-Valued
Logic 1999 in Freiburg.

He recently published two books with Kluwer
Academic Publishers, one on BDD techniques co-authored by Bernd
Becker and one on using evolutionary algorithms for VLSI CAD.
His research interests include verification, logic synthesis, and evolu-
tionary algorithms.

101

