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Abstract

Pass Transistor Logic has attracted more and more interest d
ing last years, since it has proved to be an attractive akirre to
static CMOS designs with respect to area, performance amepo
consumption. Existing automatic PTL synthesis tools useeatd
mapping of (decomposedpDs to pass transistors. Thereby, struc-
tural properties ofsDDs like the ordering restriction and the fact
that the select signals of the multiplexers (correspondmgbD
nodes) directly depend on input variables, are imposed dnd#F
cuits although they are not necessary for PTL synthesis.

General Multiplexer Circuits can be used instead and should
provide a much higher potential for optimization comparedat
pure BDD approach. Nevertheless — to the best of our knowledge
— an optimization of general Multiplexer Circuitm€s) for PTL
synthesis was not tried so far due to a lack of suitable ogtition
approaches. In this paper we present such an algorithm wisich
based on efficiereDD optimization techniques. Our experiments
prove that there is indeed a high optimization potential iy tise
of generalmcs — both concerning area and depth of the resulting
PTL networks.

1 Introduction

Pass Transistor Logic (PTL) has proved to be an attractteersl-
tive to static CMOS designs with respect to area, performamg
power consumption [23, 14, 9, 12]. In earlier works using Rfid
main disadvantage was that the PTL circuits were designéaivg
and there was a lack of automatic synthesis tools.

Recently, several approaches for amtomaticPTL synthesis

flow were proposed [22, 6, 3, 10, 8, 13]. They are all based on a

mapping ofsDDs [5] (in most cases of decomposenDs) to PTL.
The advantage of this method is that the PTL circuits oritjiiga

from BDDs are sneak-path-free [3, 6], i.e. there is no assignment to

the inputs which produces a conducting path from power sujopl
ground. HoweverpDDs use an ordering restriction, which is not
necessary for PTL synthesis. Moreover even the restrittidree
BDDS [2] or generabDDs [1] is not necessary. It is easy to see that
we can also use general Multiplexer Circuitsos)! as a basis to
synthesize PTL circuits without losing the property of dapath
absence. Of course, there are more degrees of freedomdor
optimization compared t@8DD optimization, sinceBDDS can be
viewed as special cases ats. Thus,mcs should provide better
PTL solutions tharsDDs.

However — to the best of our knowledge — all existing auto-
matic PTL synthesis procedures are basedbns. One reason
for this could be the fact, that there are efficiend packages (see

Imcs are basically the same as if-then-else DAGs [11].

e.g. [19]), which provide efficiers DD optimization techniques by
variable reordering like sifting [15], whereas powerfutiogization
techniques fomcs have been missing. In this paper we present
such a powerful optimization procedure facs, which makes use
of the additional degrees of freedom comparedi@s. Our novel
technique is able to improve on both size and depthood based
circuits (see Section 5). Although the result of our alduritare
Mcs, we can make use of well matured and efficeEmb optimiza-
tion techniques to compute thecs.

In Section 2 we give a comparison betwembDs andMmcCs.
Section 3 reviews howDDs orMcs are mapped to Path Transistor
Logic. In Section 4 we present our algorithm fiac minimiza-
tion. After giving experimental results for PTL synthessng this
algorithm in Section 5 we conclude the paper with Section 6.

2 BDDs versus MCs

BDDS provide a canonical representation of Boolean functiéss.
defined in [5], they are ordered, i.e. on each path from ttogit to
a terminal node each input variable occurs only once and cm ea
path the input variables occur in the same order.

In contrast, Multiplexer CircuitsMcs) are more general:

Definition 1 A Multiplexer Circuit (c) M is modeled as a di-
rected acyclic graph(V, E). The node seV is partitioned into
four Sets‘/consty ‘/inpy ‘/inv and Vmuz:

e The nodes of..,s+ are constants, have indegree 0 and are
labeled by O or 1.

e The nodes df;,, are inputs, have indegree 0 and are labeled
by Boolean variables.

e The nodes oV;,,, are inverters and have indegree 1.
e The nodes oV, are multiplexers and have indegree 3.

There is a bijective mappingN : {1,...,|Vinp|} — Vinp such
that 7N (i) defines the&th input of the function defined by tivec
M. There is a mappin®@UT : {1,...,m} — V such that
OUT (i) defines theth output of the function defined by tiec

Thus mcs are Boolean circuits consisting only of multiplex-
ers, inverters and constants and it is straightforward fmel¢he
Boolean function represented by &ia.

Since aBDD node labeled by a variable can be viewed as a
multiplexer with select input;, it is clear, thaBbDs can be viewed
as a restricted class sfcs. BecauseDDs correspond only to ie-
strictedclass ofMcs, it is also clear, that there are more degrees of



F

=
ﬁé\ —> x{iﬁ]%i
H G H

G

Figure 1: Implementation of a multiplexer by path trangisto
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Figure 2: Mapping of &DbD to an NMOS PTL implementation

freedom inmc optimization compared tBDD optimization. How-
ever the question arises how to exploit these additionalegegof
freedom. Our answer to this question can be found in Section 4

Before we deal with our approach tec optimization, we give
a brief review of Pass Transistor Logic (PTL) in the next mect

3 Path Transistor Logic

Path Transistor Logic has proved to be an attractive atemto
static CMOS desigriswith respect to area, performance and power
consumption [23, 14, 9, 12, 22, 6, 3, 10, 8, 13].

The basic unit in PTL is a MOS transistor which is used as a
switch. Itis very easy to implement a multiplexer as a wiréd O
of two MOS transistors (see Figure 1). For this reason remetat-
matic PTL synthesis tools usoDs as a basis for PTL synthesis.
Figure 2 shows an example ofeD mapped to an NMOS PTL
implementation. MappingDDs to PTL is easy and has the addi-
tional advantage that the resulting circuits are sneak-frate. But
note that the same is also true for general Multiplexer Giscu

4 Our Algorithm for MC minimization

A mapping to PTL is not only easy f&DbDs, but also for general
MCs. Sincemcs are more general, there is a higher potential for
optimization both concerning area and depth.

A BDD realizing ann—input Boolean function typically con-
tains paths oBDD nodes/multiplexers of length, such that the
delay of a corresponding PTL implementation is lineanirMore
precisely, a chain of transistors in series even has a quadratic de-

lay inn [21] and buffers have to be inserted after a constant number

of levels to achieve a linear delay. We will show in the follog/
that a path of length can be avoided by usingcs.

To present our algorithm fanc minimization we need the fol-
lowing definition which characterizes special nodes at th¢om
of aBDD:

Definition 2 A BDD node is called gositive variable noddf its
low son is constand and its high son is constart It is called a
negative variable nodé its low son is constant and its high son
is constan® and it is called avariable nodséff it is a positive or a
negative variable node.

2which are in fact restricted cases of PTL

A BDD node is called anultiplexer noddff both, low son and
high son, are a constant node or a variable node and at least on
of the sons is a variable node. If both sons of a multiplexeteno
are variable nodes it is called tue multiplexer node, otherwise a
pseudanultiplexer node.

Intuitively, our algorithm now successively removes npléker
nodes from the originadbD thereby replacing “parts of thedbD”
by “new” variables. The “meaning” of the new variables is com
puted in a separatec. Finally, the wholeBDD has been trans-
formed into armc.

Our algorithm starts with &bpD for a single-output Boolean
function. (Note that it can easily be extended to multi-esl®DDs
and BDDs with complemented edges [4].) The algorithm uses a
mappingmc_map between{z1,...,z,} and the input nodes of
themc, i.e., me_map(z;) gives themc input node labeled by;.
In the course of the algorithmuc_map is extended to newly intro-
duced variables, heremc_map(x) gives the signal line in theic
corresponding ta:.

The algorithm now proceeds as follows (for illustration ats®
Figure 3):
Input: BDD B representing functiorf : {0,1}" — {0, 1} with
input variablesey, . . ., z,.

Output: mc for f.

1. (a) Compute all multiplexer nodes BbD B.

(b) If there is a true multiplexer node, choasg... as the
true multiplexer node with most incoming edgedf
there are only pseudo multiplexer nodes, chogsg.
as the pseudo multiplexer node with most incoming
edges.

(c) Build theBDD BDD. for a new intermediate variable
C.

(d) Replacev,,.. and the corresponding SHBD in B by
BDD..

A new multiplexer is introduced in thec. If vy, iS
labeled by variable, the select input of the multiplexer
is connected taac nodemc-map(z). If the low son
of vmuz IS constant 0 (1), the O-data-input of the multi-
plexer is connected to constant O (1) node ofiie If
the low son is the positive variablg the 0-data-input
of the multiplexer is connected tac_map(y) and if
the low son is the negative varialije the O-data-input
of the multiplexer is connected to a new inverter, which
itself is connected tonc_map(y). The 1-data-input is
assigned in the same way.

(e)

2. Optimize the resultingdD B by variable reordering.

3. Repeat steps 1 and 2 until theD consists only of one vari-
able node.

Note that reordering can cause a change of the variabledébel
the next multiplexer node to be replaced. (Experimentsgusin
algorithm formc optimization show that this happens indeed.)

In each step of the algorithm the initial Boolean functipiis
represented by two parts: BbD part and avc part. Of course,
we may interpret theDb part as armc. If we connect the select-
inputs of the multiplexers foBDD nodes labeled by variable to
mc_map(x), then we obtain amc for f.

The Mc size achieved so far can be determined by the size of
the already constructedc part and the size of the remainisgD.

3The intuition behind this selection is that this multiplexsde is the “most im-
portant” for the computation of thebD in some sense.



Figure 3: lllustration of step 1) of the algorithmj is a primary input variable;; andc, intermediate variables for multiplexers introduced
in previous steps of the algorithm. The multiplexer nodelad byc;. is replaced by a new variabteand a new multiplexer is introduced in
themc which computes the assignmentcofAfter reordering in step 2) the next selected multiplexadais not necessarily labeled by.

Optimizing the size of the remainirgpD corresponds to optimiz-
ing this preliminary size.

But we can also optimize thdepthof the currentmc circuit:
Each variable of th&DD corresponds to a primary input variable
or a multiplexer of the already constructect. This means that
a circuit depth information can be assigned to eapb variable.

If we interpret theBDD part as armc again, we can compute the
current depth of the circuit. Changing the variable ordeheBDD
does also change the depth of the circuit.

To optimize size and depth of the resultimg (step 2. of the
algorithm) we use a variant of sifting [15], which we cadlay sift-
ing. (Ordinary) sifting is based on finding the locally optimal-p
sition of a variable assuming that all other variables renfixied.
To determine the optimal position of a variable in the vagatr-
der it is sifted to all possible positions and then, the pasjtwhere
the resulting BDD size is minimized, is selected. The costfu
tion during sifting is only the size of the resulting BDD. Take
account of our two optimization goals (area and depth) wagha
the cost function of sifting: We use some combinatiompb size
and depth of the overall circuit.

For each position of the variable we determine the new size
size™*" of the resultinggDD and the new depth of the overall cir-
cuitdepth™®™. Then we choose the position for the variable where
the expression

size™V depth™®"

+(1=a) deptheld

sizeold @)
is minimized. gize®'? anddepth®'?, respectively, mean the BDD
size and depth of the overall circuit before moving the \@dax
is a number between 0 and 1 to influence the trade off beteeen
sizes and depth.)

If the already constructed part of thec circuit gives depth
informationd,, for variablez at leveli, we say that provides depth
contributiond,. + 7. The depth of the overall circuit is estimated
by the maximum depth contribution over all levéls This gives
us only an approximation of the total depth, but the apprdash
the advantage that the depth estimation can adjustedyahaiing
level exchange, such that asymptotic complexity of deléyngi
remains the same as for original sifting.

Figure 4 gives an interesting example for our algorithm tt-op
mizemcs. We consider thezor function with8 inputs. Note that
for this example in each step of the algorithm the functiqoree
sented by the remainirgpD is totally symmetric, such that chang-
ing the position of a variable does not change #im® size, i.e.
in formula 1 only the second part concerning depth plays aley r

Starting from & DD with linear depth our algorithm constructs step
by step avc for the same function. The resultingc has logarith-

mic depth. The improvement on the depth is due to the fact that
intermediate variables are used as select inputs of mexeps in

our approach.

5 Experimental Results

In this section we present our results for PTL synthesisgutie
MC optimization algorithm of Section 4. For our experiments we
use the implementation of [6] which is integrated in the sigi-e
ronment [17]. Buch et al. [6] transform a Boolean circuibiatso-
called “decomposed@DD” to prevent a size explosion of a mono-
lithic BDD approachBDDs are constructed starting from the inputs.
When a certain size or depth limit of the resultiBgd would be
reached, an intermediate variable or cut point is introdudée re-
sultis a set of clusters of the circuit, which are represthiesDbDs
depending on primary input variables or intermediate cirttpari-
ables. After that in [6] thesDDs for these clusters are mapped to
PTL. A “PTL cell” is computed for each cluster. To cope witketh
quadratic delay of transistors in series buffers are ingéidr the
outputs of the PTL cells.

In this paper we replace tiBbD based PTL mapping of [6] by
anMc based mapping as described in Section 4. Of courseiour
optimization approach can also be used as a post-procestgipg
of othersbD based PTL synthesis tools like [10, 8] to optimize the
PTL cells originating fronBDD representations.

Since the clusters produced by [6] are very small (the depth
of the BDDs is not larger than 3), we first enlarge the clusters to
some extent to increase the optimization potential ofMiaeap-
proach. We remove cut point variables by composition as &sg
the overallBDD size will not increase in this way. The orders of the
BDDSs for each cluster are optimized separately. Afterwards-clu
ters with similar support set are transformed into the saani@ble
order again, if this transformation improves the ovegalb size'.
Moreover all operations are carried out only if a maximaobD
size for a cluster is not exceeded (in our experiments we liseta
of 100). Since the sizes of PTL cells are larger now, we cannot
do without buffer insertion within PTL cells to prevent toaany
unbuffered transistors in series. We insert a buffer (moeeipely
two inverters), when the longest chain of pass transistaraezls a
given limit (3 in our experiments). After that we perform agdy
inverter minimization similar to [24, 20].

“4clusters with same variable order can stgme nodes
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,xg). Here we usaDDs with complement edges. The numbers besidesthe nodes

represent the depth informations which are assigned todtiesnand which are used by delay sifting.

We tried two different optimization strategies: optiminatonly
for area (weighty = 1, see Section 4) and optimization for a com-
bination of area and depth with = 0.3. Our depth minimization
makes use of depth information assigned to the alreadyrcmbstl
MC part as described in Section 4. As already proposed in [6],
we can additionally use also depth informations for the iamf
the cluster, which is presently optimized, since the chgstehich
compute these input signals are optimized before.

Table 1 shows our preliminary results for ISCAS89 benchmark
compared to the initial solution of the tool from [6]. ColumB—4
show the results of the tool from [6], columns 5-8 the rexfithe
area minimization and columns 9-12 the results of the coatbin
area and depth minimization. Columns “mux/inv”’ give the Arum
bers of multiplexers and inverters of the result, colummsé&agive
the active transistor area for a realization using only NM@®-
sistors (the size of an NMOS transistor is assumed thiex 1))
and columns “md” give the maximum number of multiplexers on a
path from primary inputs to primary outputs. Both [6] and tuol
use buffer insertion to force the maximum number of transssin
series to be 3. The experiments were performed on a SPARC UI-
tra 2. Columns “time” give CPU times in seconds to transfanm t
BDDS into Mcs both for the area minimization and the combined
area and depth minimization.

The experiments prove that there is indeed a high optinoizati
potential ofMc minimization compared teDD minimization:

Our area minimization is able to achieve considerable ingro
ments on the multiplexer/inverter counts and thus alsa&msistor
area in comparison to [6]. In all cases the transistor arém-s
proved (up to 44.49% for C5315). On the average the multigolex
and inverter counts are improved by 28.5% and 30.7% respécti
and the transistor area is improved by 29.8%. Interestialygady
the area optimization is able to improve the depths of the Eif-L
cuits in 9 out of 11 cases. The overall improvement is 12.8%.

As expected, the combined area and delay optimization needs
slightly more area than our results for pure area minimiratbut
is still better than the results of [6]. (It remains an averagea
improvement of 23.0%.) The experiments show that we catyreal
exploit an area/depth trade off by our parameter for deltiingi
In all cases the depth results of [6] are improved (up to 3%.29
for C2670) while maintaining better area results. On theaye
the depth results of the area optimization are further ivgadoy
23.4%, such that compared to [6] the depth could be improyed b
33.2%.

As already mentioned, an inspection of the resulkimircuits
of our optimization algorithm shows, that they are subsadiptdif-
ferent fromsDD realizations, since we get rid both of the ordering
restriction and the restriction tacs with only input variables as
selector inputs of the multiplexers. Thus, we really oledia gen-
eral Mc structure by using algorithms working on the (restricted)
BDD structures.

6 Conclusions and Future Work

In this paper we presented for the first time an automatic PTL
synthesis approach which is based on general Multiplexeu@s
rather than orBDDs. Our experiments show, that we are able to
exploit the additional degrees of freedom both for area amd d
lay optimization. These degrees of freedom arise from réngov
restrictions ofsDDs, which are important for verification applica-
tions, but not for PTL synthesis.

We put our experiments on top of the results of [6], but it is
obvious, that oumc optimization approach can also be used as a
post-processing step of othebD based PTL synthesis tools like
[10, 8] to optimize the PTL cells originating froBDD representa-
tions.
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mux/inv__ | area | mux/inv._| area| md | mux/inv_| area| md | time

Cl17 7/12 75 4 6/6 45 3 0.32 6/6 45 3 0.33
C432 207/250 1746 | 47 196/231 | 1627.5| 51 24.26 2147244 1740 | 32 20.15
C499 414/413 31005 26 302/288 2202 | 23 40.54 339/337 25335 22 39.38
C880 354/401 2866.5| 32 313/311 | 2338.5| 29 47.53 323/345 25215| 21 35.51
C1355 510/465 3622.5| 34 326/318 2409 | 28 44.32 352/326 2523 | 22 42.83
C1908 416/430 3183 | 39 307/324 2379 29 43.00 340/367 26715 27 30.77
C2670 768/917 6430.5| 28 505/506 3792 41 68.80 528/580 4194 | 17 69.15
C3540 1112/1173 8614.5| 52 950/943 | 7093.5| 42| 143.16 || 1017/1040 7731 | 37| 106.14
C5315 1912/2162 15465 | 47 || 1183/1119| 8584.5| 34 [ 176.78 |[ 1151/1192 8772 | 31| 152.70
C6288 2698/2764 20532 | 159 || 2208/2408| 17460 | 133 | 276.68 || 2574/2761| 20146.5| 100 | 242.20
C7552 2706/2776 20610 | 38 || 1646/1698| 12579 | 28 | 229.75|| 1700/1867| 13501.5| 26 | 194.17
[ || 11104711763] 862455 506 || 7942/8152] 60510 | 441 | [ 854479065 ] 66379.5] 338 | |

Table 1: Comparison for PTL synthesis

As a future work we plan to incorporate don't care conditions [14] A. Parameswar, H. Hara, and T. Sakurai. A high speed,dower,

into our approach. Don't cares can be used to minimizestie

part during themc computation using methods from [7, 18, 16].

There are two types of don't care informations during com-
putation for a cluster of the circuit: satisfiability and ebgbility
don't cares which originate from the environment of theteluand
don't cares which originate from thec part of the cluster that is
already computed.
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