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Abstract

Pass Transistor Logic has attracted more and more interest dur-
ing last years, since it has proved to be an attractive alternative to
static CMOS designs with respect to area, performance and power
consumption. Existing automatic PTL synthesis tools use a direct
mapping of (decomposed)BDDs to pass transistors. Thereby, struc-
tural properties ofBDDs like the ordering restriction and the fact
that the select signals of the multiplexers (correspondingto BDD
nodes) directly depend on input variables, are imposed on PTL cir-
cuits although they are not necessary for PTL synthesis.

General Multiplexer Circuits can be used instead and should
provide a much higher potential for optimization compared to a
pure BDD approach. Nevertheless – to the best of our knowledge
– an optimization of general Multiplexer Circuits (MCs) for PTL
synthesis was not tried so far due to a lack of suitable optimization
approaches. In this paper we present such an algorithm whichis
based on efficientBDD optimization techniques. Our experiments
prove that there is indeed a high optimization potential by the use
of generalMCs – both concerning area and depth of the resulting
PTL networks.

1 Introduction

Pass Transistor Logic (PTL) has proved to be an attractive alterna-
tive to static CMOS designs with respect to area, performance and
power consumption [23, 14, 9, 12]. In earlier works using PTLthe
main disadvantage was that the PTL circuits were designed byhand
and there was a lack of automatic synthesis tools.

Recently, several approaches for anautomaticPTL synthesis
flow were proposed [22, 6, 3, 10, 8, 13]. They are all based on a
mapping ofBDDs [5] (in most cases of decomposedBDDs) to PTL.
The advantage of this method is that the PTL circuits originating
from BDDs are sneak-path-free [3, 6], i.e. there is no assignment to
the inputs which produces a conducting path from power supply to
ground. However,BDDs use an ordering restriction, which is not
necessary for PTL synthesis. Moreover even the restrictionto free
BDDs [2] or generalBDDs [1] is not necessary. It is easy to see that
we can also use general Multiplexer Circuits (MCs)1 as a basis to
synthesize PTL circuits without losing the property of sneak-path
absence. Of course, there are more degrees of freedom forMC
optimization compared toBDD optimization, sinceBDDs can be
viewed as special cases ofMCs. Thus,MCs should provide better
PTL solutions thanBDDs.

However – to the best of our knowledge – all existing auto-
matic PTL synthesis procedures are based onBDDs. One reason
for this could be the fact, that there are efficientBDD packages (see

1MCs are basically the same as if-then-else DAGs [11].

e.g. [19]), which provide efficientBDD optimization techniques by
variable reordering like sifting [15], whereas powerful optimization
techniques forMCs have been missing. In this paper we present
such a powerful optimization procedure forMCs, which makes use
of the additional degrees of freedom compared toBDDs. Our novel
technique is able to improve on both size and depth ofBDD based
circuits (see Section 5). Although the result of our algorithm are
MCs, we can make use of well matured and efficientBDD optimiza-
tion techniques to compute theMCs.

In Section 2 we give a comparison betweenBDDs andMCs.
Section 3 reviews howBDDs orMCs are mapped to Path Transistor
Logic. In Section 4 we present our algorithm forMC minimiza-
tion. After giving experimental results for PTL synthesis using this
algorithm in Section 5 we conclude the paper with Section 6.

2 BDDs versus MCs

BDDs provide a canonical representation of Boolean functions.As
defined in [5], they are ordered, i.e. on each path from their root to
a terminal node each input variable occurs only once and on each
path the input variables occur in the same order.

In contrast, Multiplexer Circuits (MCs) are more general:

Definition 1 A Multiplexer Circuit (MC) M is modeled as a di-
rected acyclic graph(V; E). The node setV is partitioned into
four setsV

const

, V
inp

, V
inv

andV
mux

:

� The nodes ofV
const

are constants, have indegree 0 and are
labeled by 0 or 1.

� The nodes ofV
inp

are inputs, have indegree 0 and are labeled
by Boolean variables.

� The nodes ofV
inv

are inverters and have indegree 1.

� The nodes ofV
mux

are multiplexers and have indegree 3.

There is a bijective mappingIN : f1; : : : ; jV

inp

jg ! V

inp

such
that IN(i) defines theith input of the function defined by theMC
M . There is a mappingOUT : f1; : : : ;mg ! V such that
OUT (i) defines theith output of the function defined by theMC
M .

Thus MCs are Boolean circuits consisting only of multiplex-
ers, inverters and constants and it is straightforward to define the
Boolean function represented by anMC.

Since aBDD node labeled by a variablex
i

can be viewed as a
multiplexer with select inputx

i

, it is clear, thatBDDs can be viewed
as a restricted class ofMCs. BecauseBDDs correspond only to are-
strictedclass ofMCs, it is also clear, that there are more degrees of
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Figure 1: Implementation of a multiplexer by path transistors
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Figure 2: Mapping of aBDD to an NMOS PTL implementation

freedom inMC optimization compared toBDD optimization. How-
ever the question arises how to exploit these additional degrees of
freedom. Our answer to this question can be found in Section 4.

Before we deal with our approach toMC optimization, we give
a brief review of Pass Transistor Logic (PTL) in the next section.

3 Path Transistor Logic

Path Transistor Logic has proved to be an attractive alternative to
static CMOS designs2 with respect to area, performance and power
consumption [23, 14, 9, 12, 22, 6, 3, 10, 8, 13].

The basic unit in PTL is a MOS transistor which is used as a
switch. It is very easy to implement a multiplexer as a wired OR
of two MOS transistors (see Figure 1). For this reason recentauto-
matic PTL synthesis tools useBDDs as a basis for PTL synthesis.
Figure 2 shows an example of aBDD mapped to an NMOS PTL
implementation. MappingBDDs to PTL is easy and has the addi-
tional advantage that the resulting circuits are sneak-path-free. But
note that the same is also true for general Multiplexer Circuits.

4 Our Algorithm for MC minimization

A mapping to PTL is not only easy forBDDs, but also for general
MCs. SinceMCs are more general, there is a higher potential for
optimization both concerning area and depth.

A BDD realizing ann–input Boolean function typically con-
tains paths ofBDD nodes/multiplexers of lengthn, such that the
delay of a corresponding PTL implementation is linear inn. More
precisely, a chain ofn transistors in series even has a quadratic de-
lay inn [21] and buffers have to be inserted after a constant number
of levels to achieve a linear delay. We will show in the following
that a path of lengthn can be avoided by usingMCs.

To present our algorithm forMC minimization we need the fol-
lowing definition which characterizes special nodes at the bottom
of a BDD:

Definition 2 A BDD node is called apositive variable nodeiff its
low son is constant0 and its high son is constant1. It is called a
negative variable nodeiff its low son is constant1 and its high son
is constant0 and it is called avariable nodeiff it is a positive or a
negative variable node.

2which are in fact restricted cases of PTL

A BDD node is called amultiplexer nodeiff both, low son and
high son, are a constant node or a variable node and at least one
of the sons is a variable node. If both sons of a multiplexer node
are variable nodes it is called atruemultiplexer node, otherwise a
pseudomultiplexer node.

Intuitively, our algorithm now successively removes multiplexer
nodes from the originalBDD thereby replacing “parts of theBDD”
by “new” variables. The “meaning” of the new variables is com-
puted in a separateMC. Finally, the wholeBDD has been trans-
formed into anMC.

Our algorithm starts with aBDD for a single-output Boolean
function. (Note that it can easily be extended to multi-rootedBDDs
and BDDs with complemented edges [4].) The algorithm uses a
mappingmc map betweenfx

1

; : : : ; x

n

g and the input nodes of
the MC, i.e.,mc map(x

i

) gives theMC input node labeled byx
i

.
In the course of the algorithmmc map is extended to newly intro-
duced variablesx, heremc map(x) gives the signal line in theMC
corresponding tox.

The algorithm now proceeds as follows (for illustration seealso
Figure 3):

Input: BDD B representing functionf : f0; 1g

n

! f0; 1g with
input variablesx

1

; : : : ; x

n

.

Output: MC for f .

1. (a) Compute all multiplexer nodes ofBDD B.

(b) If there is a true multiplexer node, choosev
mux

as the
true multiplexer node with most incoming edges3. If
there are only pseudo multiplexer nodes, choosev

mux

as the pseudo multiplexer node with most incoming
edges.

(c) Build theBDD BDD

c

for a new intermediate variable
c.

(d) Replacev
mux

and the corresponding sub-BDD in B by
BDD

c

.

(e) A new multiplexer is introduced in theMC. If v
mux

is
labeled by variablex, the select input of the multiplexer
is connected toMC nodemc map(x). If the low son
of v

mux

is constant 0 (1), the 0-data-input of the multi-
plexer is connected to constant 0 (1) node of theMC. If
the low son is the positive variabley, the 0-data-input
of the multiplexer is connected tomc map(y) and if
the low son is the negative variabley, the 0-data-input
of the multiplexer is connected to a new inverter, which
itself is connected tomc map(y). The 1-data-input is
assigned in the same way.

2. Optimize the resultingBDD B by variable reordering.

3. Repeat steps 1 and 2 until theBDD consists only of one vari-
able node.

Note that reordering can cause a change of the variable labelof
the next multiplexer node to be replaced. (Experiments using our
algorithm forMC optimization show that this happens indeed.)

In each step of the algorithm the initial Boolean functionf is
represented by two parts: aBDD part and aMC part. Of course,
we may interpret theBDD part as anMC. If we connect the select-
inputs of the multiplexers forBDD nodes labeled by variablex to
mc map(x), then we obtain anMC for f .

The MC size achieved so far can be determined by the size of
the already constructedMC part and the size of the remainingBDD.

3The intuition behind this selection is that this multiplexer node is the “most im-
portant” for the computation of theBDD in some sense.



0 1

xj

ci

ck

0

0

0

1

1

1

MUX MUX

+

0 1

c
0 1

MUXMUX

MUX

+..
.

..
.

..
.

..
.

ck ci

ck

c

ci

xj

BDDc

Figure 3: Illustration of step 1) of the algorithm:x
j

is a primary input variable,c
i

andc
k

intermediate variables for multiplexers introduced
in previous steps of the algorithm. The multiplexer node labeled byc

k

is replaced by a new variablec and a new multiplexer is introduced in
theMC which computes the assignment ofc. After reordering in step 2) the next selected multiplexer node is not necessarily labeled byc

k

.

Optimizing the size of the remainingBDD corresponds to optimiz-
ing this preliminary size.

But we can also optimize thedepthof the currentMC circuit:
Each variable of theBDD corresponds to a primary input variable
or a multiplexer of the already constructedMC. This means that
a circuit depth information can be assigned to eachBDD variable.
If we interpret theBDD part as anMC again, we can compute the
current depth of the circuit. Changing the variable order oftheBDD
does also change the depth of the circuit.

To optimize size and depth of the resultingMC (step 2. of the
algorithm) we use a variant of sifting [15], which we calldelay sift-
ing. (Ordinary) sifting is based on finding the locally optimal po-
sition of a variable assuming that all other variables remain fixed.
To determine the optimal position of a variable in the variable or-
der it is sifted to all possible positions and then, the position, where
the resulting BDD size is minimized, is selected. The cost func-
tion during sifting is only the size of the resulting BDD. To take
account of our two optimization goals (area and depth) we change
the cost function of sifting: We use some combination ofBDD size
and depth of the overall circuit.

For each position of the variable we determine the new size
size

new of the resultingBDD and the new depth of the overall cir-
cuit depthnew. Then we choose the position for the variable where
the expression

� �

size

new

size

old

+ (1� �) �

depth

new

depth

old

(1)

is minimized. (sizeold anddepthold, respectively, mean the BDD
size and depth of the overall circuit before moving the variable,�
is a number between 0 and 1 to influence the trade off betweenBDD
sizes and depth.)

If the already constructed part of theMC circuit gives depth
informationd

x

for variablex at leveli, we say thatx provides depth
contributiond

x

+ i. The depth of the overall circuit is estimated
by the maximum depth contribution over all levelsi. This gives
us only an approximation of the total depth, but the approachhas
the advantage that the depth estimation can adjusted locally during
level exchange, such that asymptotic complexity of delay sifting
remains the same as for original sifting.

Figure 4 gives an interesting example for our algorithm to opti-
mizeMCs. We consider theexor function with8 inputs. Note that
for this example in each step of the algorithm the function repre-
sented by the remainingBDD is totally symmetric, such that chang-
ing the position of a variable does not change theBDD size, i.e.
in formula 1 only the second part concerning depth plays any role.

Starting from aBDD with linear depth our algorithm constructs step
by step aMC for the same function. The resultingMC has logarith-
mic depth. The improvement on the depth is due to the fact that
intermediate variables are used as select inputs of multiplexers in
our approach.

5 Experimental Results

In this section we present our results for PTL synthesis using the
MC optimization algorithm of Section 4. For our experiments we
use the implementation of [6] which is integrated in the sis envi-
ronment [17]. Buch et al. [6] transform a Boolean circuit into a so-
called “decomposedBDD” to prevent a size explosion of a mono-
lithic BDD approach.BDDs are constructed starting from the inputs.
When a certain size or depth limit of the resultingBDD would be
reached, an intermediate variable or cut point is introduced. The re-
sult is a set of clusters of the circuit, which are represented byBDDs
depending on primary input variables or intermediate cut point vari-
ables. After that in [6] theBDDs for these clusters are mapped to
PTL. A “PTL cell” is computed for each cluster. To cope with the
quadratic delay of transistors in series buffers are inserted for the
outputs of the PTL cells.

In this paper we replace theBDD based PTL mapping of [6] by
anMC based mapping as described in Section 4. Of course ourMC
optimization approach can also be used as a post-processingstep
of otherBDD based PTL synthesis tools like [10, 8] to optimize the
PTL cells originating fromBDD representations.

Since the clusters produced by [6] are very small (the depth
of the BDDs is not larger than 3), we first enlarge the clusters to
some extent to increase the optimization potential of theMC ap-
proach. We remove cut point variables by composition as longas
the overallBDD size will not increase in this way. The orders of the
BDDs for each cluster are optimized separately. Afterwards clus-
ters with similar support set are transformed into the same variable
order again, if this transformation improves the overallBDD size4.
Moreover all operations are carried out only if a maximumBDD
size for a cluster is not exceeded (in our experiments we use alimit
of 100). Since the sizes of PTL cells are larger now, we cannot
do without buffer insertion within PTL cells to prevent too many
unbuffered transistors in series. We insert a buffer (more precisely
two inverters), when the longest chain of pass transistors exceeds a
given limit (3 in our experiments). After that we perform a greedy
inverter minimization similar to [24, 20].

4clusters with same variable order can shareBDD nodes
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8

). Here we useBDDs with complement edges. The numbers beside theBDD nodes
represent the depth informations which are assigned to the nodes and which are used by delay sifting.

We tried two different optimization strategies: optimization only
for area (weight� = 1, see Section 4) and optimization for a com-
bination of area and depth with� = 0:3. Our depth minimization
makes use of depth information assigned to the already constructed
MC part as described in Section 4. As already proposed in [6],
we can additionally use also depth informations for the inputs of
the cluster, which is presently optimized, since the clusters which
compute these input signals are optimized before.

Table 1 shows our preliminary results for ISCAS89 benchmarks
compared to the initial solution of the tool from [6]. Columns 2–4
show the results of the tool from [6], columns 5–8 the resultsof the
area minimization and columns 9–12 the results of the combined
area and depth minimization. Columns “mux/inv” give the num-
bers of multiplexers and inverters of the result, columns “area” give
the active transistor area for a realization using only NMOStran-
sistors (the size of an NMOS transistor is assumed to be1:5��1�)
and columns “md” give the maximum number of multiplexers on a
path from primary inputs to primary outputs. Both [6] and ourtool
use buffer insertion to force the maximum number of transistors in
series to be 3. The experiments were performed on a SPARC Ul-
tra 2. Columns “time” give CPU times in seconds to transform the
BDDs into MCs both for the area minimization and the combined
area and depth minimization.

The experiments prove that there is indeed a high optimization
potential ofMC minimization compared toBDD minimization:

Our area minimization is able to achieve considerable improve-
ments on the multiplexer/inverter counts and thus also for transistor
area in comparison to [6]. In all cases the transistor area isim-
proved (up to 44.49% for C5315). On the average the multiplexer
and inverter counts are improved by 28.5% and 30.7% respectively
and the transistor area is improved by 29.8%. Interestinglyalready
the area optimization is able to improve the depths of the PTLcir-
cuits in 9 out of 11 cases. The overall improvement is 12.8%.

As expected, the combined area and delay optimization needs
slightly more area than our results for pure area minimization, but
is still better than the results of [6]. (It remains an average area
improvement of 23.0%.) The experiments show that we can really
exploit an area/depth trade off by our parameter for delay sifting.
In all cases the depth results of [6] are improved (up to 39.29%
for C2670) while maintaining better area results. On the average
the depth results of the area optimization are further improved by
23.4%, such that compared to [6] the depth could be improved by
33.2%.

As already mentioned, an inspection of the resultingMC circuits
of our optimization algorithm shows, that they are substantially dif-
ferent fromBDD realizations, since we get rid both of the ordering
restriction and the restriction toMCs with only input variables as
selector inputs of the multiplexers. Thus, we really obtained a gen-
eral MC structure by using algorithms working on the (restricted)
BDD structures.

6 Conclusions and Future Work

In this paper we presented for the first time an automatic PTL
synthesis approach which is based on general Multiplexer Circuits
rather than onBDDs. Our experiments show, that we are able to
exploit the additional degrees of freedom both for area and de-
lay optimization. These degrees of freedom arise from removing
restrictions ofBDDs, which are important for verification applica-
tions, but not for PTL synthesis.

We put our experiments on top of the results of [6], but it is
obvious, that ourMC optimization approach can also be used as a
post-processing step of otherBDD based PTL synthesis tools like
[10, 8] to optimize the PTL cells originating fromBDD representa-
tions.



Berkeley Our results: area Our results: depth
circuit mux/inv area md mux/inv area md time mux/inv area md time

C17 7/12 75 4 6/6 45 3 0.32 6/6 45 3 0.33
C432 207/250 1746 47 196/231 1627.5 51 24.26 214/244 1740 32 20.15
C499 414/413 3100.5 26 302/288 2202 23 40.54 339/337 2533.5 22 39.38
C880 354/401 2866.5 32 313/311 2338.5 29 47.53 323/345 2521.5 21 35.51
C1355 510/465 3622.5 34 326/318 2409 28 44.32 352/326 2523 22 42.83
C1908 416/430 3183 39 307/324 2379 29 43.00 340/367 2671.5 27 30.77
C2670 768/917 6430.5 28 505/506 3792 41 68.80 528/580 4194 17 69.15
C3540 1112/1173 8614.5 52 950/943 7093.5 42 143.16 1017/1040 7731 37 106.14
C5315 1912/2162 15465 47 1183/1119 8584.5 34 176.78 1151/1192 8772 31 152.70
C6288 2698/2764 20532 159 2208/2408 17460 133 276.68 2574/2761 20146.5 100 242.20
C7552 2706/2776 20610 38 1646/1698 12579 28 229.75 1700/1867 13501.5 26 194.17
P

11104/11763 86245.5 506 7942/8152 60510 441 8544/9065 66379.5 338

Table 1: Comparison for PTL synthesis

As a future work we plan to incorporate don' t care conditions
into our approach. Don' t cares can be used to minimize theBDD
part during theMC computation using methods from [7, 18, 16].
There are two types of don' t care informations duringMC com-
putation for a cluster of the circuit: satisfiability and observability
don' t cares which originate from the environment of the cluster and
don' t cares which originate from theMC part of the cluster that is
already computed.
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