Technical Report 130, Albert-Ludwigs-University, Freiburg, October 1999

Solving the Multiple Variable Order Problem for Binary Decision Diagrams
by Use of Dynamic Reordering Techniques

Christoph Scholl Bernd Becker Andreas Brogle

Institute of Computer Science
Albert—Ludwigs—University
D 79110 Freiburg im Breisgau, Germany
email: <name-@informatik.uni-freiburg.de

Abstract successful algorithm for dynamic reordering of variables.
This algorithm is based on finding the local optimum posi-
Reduced Ordered Binary Decision DiagrarR®gDDS) tion of a variable, assuming all other variables remain fixed.
gained widespread use in logic design verification, test gen-The position of a variable in the order is determined by mov-
eration, fault simulation, and logic synthesis [17, 7]. Since ing the variable to all possible positions while keeping the
the size of amRoOBDD heavily depends on the variable order other variables fixed.
used, there is a strong need to find variable orders that mini- |n this paper we deal with the fact that certain applica-
mize the number of nodes in &BDD. In certain applica- tions have to cope witRoBDDs represented with different
tions we have to cope withoBDDs with different variable variable orders. Then we have to solve the problem to trans-
orders, whereas further manipulations of thee®DDs re- form rRoBDDs with different variable orders into a common

quire common variable orders. In this paper we solve the variable order. This problem is calledultiple variable or-
problem to transfornroBDDs with different variable or- derproblem in [9].

ders into a good common variable order. To do so, we make e application of this type is reachability analysis

use of dynamic variable ordering techniques. and formal verification using partitionerioBpDS [20]:
ROBDDS are partitioned, i.e. decomposed into SRbBDDS.
In this way the application can deal with eartbBDD sep-
1 Introduction arately and optimize their sizes independently. For im-
age computation however Boolean operationsRoBDDS
Binary Decision Diagramsgpps) as a data structure represented with d_ifferent variable orders ha_lve to be per-
for representation of Boolean functions were first intro- formed. Thus, at first they are transformed into the same
duced by Lee [16] and further popularized by Akers [1] and Variable order.
Moret [19]. In the restricted form okoBDDs they gained Moreover, it has been suggested [8] tiaiBDDs are
widespread use, becauseBDDs are a canonical represen- used to communicate between different synthesis and ver-
tation and allow efficient manipulations [6]. Some fields ification tools.RoBDDs are dumped to files by one tool and
of application are logic design verification, test generation, undumped by other tools. If ttoBDDs originate from dif-
fault simulation, and logic synthesis [17, 7]. Most of the ferenttools, itis clear that they can have different variable
algorithms usingRoBDDs have run time polynomial in the orders.
size of theroBDDs. The sizes themselves depend on the Another application for the multiple variable order prob-
variable order used. Thus, there is a need to find a variabldem occurs in connection with functional simulation [2,
order that minimizes the number of nodes inrRFBDD. 18, 22] using binary decision diagrams. In these ap-
The existing heuristic methods for finding good variable proachesRoBDDs for circuits are computed and then used
orders can be classified into two categories: initial heuris- for compiler-driven simulation. To control tirOBDD sizes
tics which derive an order by inspection of a logic circuit intermediate variables are introduced as cut points based on
[17, 13, 14, 12] and dynamic reordering heuristics which size limits for therRoBDD sizes. The result of this process
try to improve on a given order [15, 21, 11, 3, 10]. Sifting is a partition of the circuit into clusters. To speed up cy-
introduced by Rudell [21] has emerged so far as the mostcle based functional simulation for the output functions of

these clusters (primary outputs or cut points)rib@DDs of m:{L,...,n} = {x1,...,2,}. Since we work only with
the corresponding characteristic functionsre computed ROBDDs in the following we briefly call thersDDs.
((i1,-oyin, 015...,0m) = Ny (0 = filin, .- ,in)), Given a variable order for the input variables of func-
wheref; are the output functions ang are corresponding tion f there is a uniquebb using variable ordei, which
output variables). Then the characteristic functions of the is denoted byBD D (f) in this paper. Itis well known that
clusters are evaluated in topological order. the size of a8DD is largely influenced by the choice of the
In the partitioning approach of [22] variable reordering variable ordering [6].
is used to minimize the sizes of the characteristic functions Dynamic reordering [21] allow®DDs to adapt to the
separately. However, to minimize the evaluation time the changing functions as computation proceeds. Whken
number of clusters has to be minimized, i.e. it is checked sizes grow too large during the computation of a Boolean
whether pairs of clusters can be merged into one. To do sopperation, the computation is aborted, giilbs computed
theroBDDs for the characteristic functions are transformed so far are minimized by a transformation to another order
into the same variable orders and then an AND operationusing a dynamic reordering heuristics like sifting and the
is applied to theroBDDS. The merging is accepted, when operation is tried again. The operation is aborted, when the
the result is smaller than a certain size limit. (In this spe- node number would exceed some reordering limit. Usually,
cial application the fact, that it is not possible to transform the reordering limit is initialized to some smaller number to
therRoBDDs for the characteristic functions into a common reorder als®pbs at the beginning of a series®bp com-
variable order within a certain node limit for tfreoBDDS, putations, which are typically smaller, and is increased step
can be accepted, since the algorithm still works although theby step during the computation until it reaches an absolute
quality of the result might decrease. For reasons of run timenode limit [23].
efficiency it can make sense to decide early, if the transfor-
;nbaélr?gdl.nto a common variable order works or should be 3 TheMultiple Variable Order Problem
In [9] the problem to transform twrROBDDs into a com-
mon variable order is solved by inspection of the two vari- ~ Suppose we have two Boolean functighandg, which
able orders, computation of an intermediate variable or- are represented t§pps BD D, (f) and BD D (g), re-
der based on these two variable orders and a transformasPectively. Then the solution of tidultiple Variable Order
tion of the twoROBDDs into the intermediate variable or- Problem (MVO) forBD D, (f) andBD D, (g) means the
der by level exchanges. In contrast to this approach wefollowing:
use dynamic reordering techniques [21] to transform the Find a variable orderr;,, such that the sizes of
two ROBDDS into a common variable order and thereby dy- BD D, (f) andBD D, (g) assharedspp [5] are min-
namically adapt the ordering to the resulting ne@spps. imized.
Experimental results demonstrate that in our approach time
can be traded off for quality of the result by allowing re- 3.1 Theoretical background
ordering for adaption of the ordering more frequently. Com-

pared to [9], we significantly improve the size of the final From the NP completeness of the variable ordering prob-
ROBDDs within a reasonable amount of runtime. lem for singleBDDS [24, 4] we can easily conclude that the

The paper is structured as follows: In Section 2 we give ask to solve MVO exactly is a hard problem.
a brief review ofsDDs. In Section 3 we give a theoreti-

cal background and we present our heuristic to transformTheorem 1 MVO is an NP complete problem.
two ROBDDs into a common variable order, in Section 4 we

show some experimental results and Section 5 concludesroof: To transform an arbitrary instance of the variable

the paper. ordering problem for singlepbs into a corresponding in-
stance of MVO in polynomial time, we simply add thep
2 Prdiminaries for the constant 1 function, which does not depend on the

variable order, to the original (singlepb. A solution of
BDDS are representations of Boolean functions. In the MVO for this problem also solves the original problem.

restricted form oROBDDs they even provide canonical rep- Furthermore it can be shown that there are pairs of
resentations. As defined in [6ROBDDs are ordered, i.e. Boolean functions, where a blow up of teeb sizes com-

on each path from their root to a terminal node each in- pared to theBDD sizes of the singlesBDDs can not be
put variable occurs only once and on each path the inputavoided, since it is not possible to find an efficieammon
variables occur in the same order. If the input variables variable order for the tw@®bDs. The following theorem
arexy,...,x,, this variable order is given by a mapping gives an example for such a case.

Theorem2 Let f = Vi, Aj_,zi; and g =
V=1 Aiy zij. There are variable ordersr; and m,
suchthatBD D, (f) and BD D, (g) have (optimal) sizes
n?+2, respectively, but for all variable orders BD D, (f)

It remains to show that

coff . Fcoff s L if(er, ...) # (51,

=0.

,5m'r')-

Assume W..o.ge; ;= 1, 6iy,
. . .2 .
We give an assignment to the remainifig variables,

l.e. f andg in Theorem 2 can be represented efficiently, \ynich shows thatof! andcoff 5 are different:
when different orders fof andg are allowed, but there is Lrofme rnfme

no common variable order, which leads to efficient repre-
sentations foboth f andg.
Theorem 2 can be proved using communication com-

or BDD,(g) has a size of at leagt: .

Forall”;<k§n2

val(n(k)) = { Lif (k) = 21,5 (3)

. . 0, otherwise 4)
plexity arguments:
Proof: To prove the lower bound for the size BID D, (f) Now we have
or BDD.(g) we introduce a cut line after the firgf} vari-
ables and prove that fd8D D, (f) or BDD.(g) the num- (co i,___7€mr) (22l D tinny
s - T

ber of nodes immediately below this cut line (i.e. nodes be-

low the cut line, which are connected by an edge to the up-pacause incof!) , a

per part of thesDD) is at leas . rmemr fp 22yl r) r(n2)vat(r(n?)
To do so we define two sets of input variables: Tigprj (1< j <m)aresetto 1bylines (1) and (3) and

2 f —
L= {71'(1), ,71'(%)} (cof‘jlv""‘smv‘)77("72)”0’("(%))mﬂ.(nz)vaz(w(nZ)) ’
(the first input variables in the order) and becafuse for alt there is aj, such thatz;; is set to0 in
) (cof(517..-76mr)ﬁ(%z)vﬂl(ﬂ(%))___ﬂ.(nZ)val(‘n(nZ)).
R = {Tr(”_ +1),...,7(n?)} if i = igirp: 3j with z;,,,,; Settod;,, ., = 0 because of
2 line (1),

(the last input variables in the order). Then we define a setif @ # idifs,i € mized_rows: 3j with z;; set to0 because
of cofactors off (or g) with respect to variables from. ~ Of line (4),

Cofactors with respect to variables fromcorrespond to if @ 7 iaiss, i ¢ mizedrows: z;; setto0foralll < j <n
nodes in thesbD immediately below the cut line after the Decause of line (4).

variables inL and if we can prove that there a2& differ- This proves the fact that

entcofactors with respect to variables fral it is easy to f

see that there are (at leagtj different nodes immediately # cofs, s

below this cut line.

To define the set of cofactors mentioned above we needSUCh that we.have defined a setdf” > 2= different co-
the sets factors of f with respect ta’.

Case2: L.rows # .
Then we can conclude that the set

f
co'fflwnvfmr mr’

L_rows = {i|Vjz;; € L} and
mized_rows = {i | 34, k with z;; € L andz;;, € R}

Now we consider two cases: mized_columns = {j | 3i, k with z;; € L andz;; € R}

Casel: L_rows = .

: 3 . o has a cardinality
Since|L| = %- input variables, it is clear that

. n
n me := |mized_columns| > 3

mr := |mized_rows| > 5

and with analogous arguments as in Case 1 we can define a

We consider a set 02" > 2% cofactors off. For set of2™¢ > 2% different cofactors of, which correspond

(€15...,€mr) €{0,1}™7 cofefl,___im is defined as to different nodes iBBD D (g) below a cut line after the
variables inL. m|
cof! =71 > with ; on i
L r(1)pal(r(D) (22)ral(r () If we find such a case, where a transformation into a

common variable order will definitely lead to a blow-up of
theBDD sizes, the transformation should be aborted as early
as possible without wasting space and time.

€, if (k) = z;; with ¢ € mized_rows (1)
0, otherwise (2)

vmmw»:{

3.2 Solution of MVO

Here we present a heuristic to solve MVO approxi-
mately.

The same problem was already studied by Cabodi et al.
in [9]. They solve the problem by computation of an in-
termediate variable order; , based onry andw,. Then
a transformation oBD D, (f) andBD D, (g) tomy , by

exceeded, the operation fails with the parameters currently
used. This decision is motivated by our clustering approach
for functional simulation [22]: We do not want to spend too
much time on the computation of a common variable or-
der for two clusters, which is likely to fail in the end or to
produce hugebpbDs. Moreover, it is clear, that the introduc-
tion of such a limit for the number of reorderings defines a
trade-off between run time and the quality of the result in

level exchanges is performed. In contrast to this approachthis application.

we use dynamic reordering techniques [21] to transform the
two BDDs into a common variable ordey , which thereby
is dynamically adapted to the currently involveoDs.

First of all, we choose one of the tv8DDs to start with
(e.g. the larger one). W.l.o.g. we start withD D, (f).
Now we transforntofactorsof g step by step to the order
of thesDD for f.

More precisely, we traversBD D (g) in a depth first
manner and transform cofactors gfwhich correspond to
nodes inBD D, (g) into the order of the&pD for f. Sup-
pose the current order of te®D BD D, (f) for fism,a
and suppose we have reached nodé BD D, (g) labeled
by variablez;. Since we travers&DD,_(g) depth first,
we have already computed for low—shnv(v) and high—
son hlgh(v) B‘DDﬂ'old (glow(v)) and BDDﬂ'old(ghigh(’U))’
which have the same variable order &DD._,,(f).
Now we simply compute in variable order,;; the if—
then—else operatiofte(x;, BD Dy, (Giow(v)), BDDx,4(
Jhigh(v)))- The resultis a representation for the functign
represented at nodeof BD D (g), now in same variable
order as thespD for f.

During the computation of the nesoD for g, by ite(z;,
BD D, (9i0w(v)) BDDxr 14 (ghigh(v))), We usedynamic
reordering If the reordering limit is exceeded during this
computation, dynamic reordering (sifting) is applied to si-
multaneously minimize thebbs for f and allBDDs com-
puted in variable ordet,;; so far. If dynamic reordering
does not give up, after the call of operatiéie we have
BDDs for f, g, and all other functions for nodes giisited
so far in a (possibly new) variable ordeg.., .

In this way we compute step by step variable orders,
which are good both fof and cofactors of and finally we
have a variable order, which is also good §orThe adap-
tion of the variable orders for tteDDs for f andg proceeds
step by step during the computation of #@D for g based
on cofactors of.

There still remains one point: In many applications dy-
namic reordering produces good results, but tends to slo
down computation times by frequent reorderings.

For this reason we restrict dynamic reordering here. We
introduce an upper limit for the number of reordering steps.
We count the number of reorderings during the adaption of
the variable orders fof andg and if this limit would be

Finally, we have to adjust the initial reordering limit, if
we restrict the number of reorderings. If we have chosen
only a small number of reorderings, we do not want to waste
the limited number of reordering steps by too early reorder-
ings, which are performed for smalbbs and which are not
yet absolutely necessary. Therefore we choose the higher
initial reordering limit the smaller the allowed number of
reorderings is. The initial reordering limit is chosen based
on the allowed number of reorderingsizreorder and on
the sizes of th@abbDs for which a common variable order
has to be computed. For our practical experiments we use

size(BDDy,(f)) + % as initial reordering
limit.

4 Experimental Results

To evaluate our heuristic for the MVO problem, we in-
tegrated our heuristic in the CUDD package [23]. In a first
experiment we use data originating from our approach for
functional simulation [22] for larger circuits. We selected
the last tries for cluster merging for different circuits (suc-
cessful or not in our original algorithm), since at the end of
the algorithm clusters are getting larger and therefore harder
problems must be solved.

The experiments were performed on a SPARC Ultra 2
(256MB memory). The CPU time was limited to 2 hours
and the node limit for thebb package was 2000000.

We tried several choices for the maximum number of re-
orderings during the computation of common variable or-
ders. The algorithm of Section 3 was started with the larger
one of the twoBDDs. The results are summarized in Table
1. In the second column the sizes of the tambs (num-
ber of nodes) are given for which MVO has to be solved.
(Note that theBDDS represent not the output functions,
but the characteristic functions for the clusters.) Columns
dyn< n > show the results for our approach withas
the maximum number of reorderings. dyn0, e.g., is the

walgorithm, when absolutely no reordering is allowed and

the secondDD is simply transformed to the order of the
first BDD. dynco is the algorithm, when the number of
reorderings is not restricted at ‘all The results are com-
pared to the “greedy gradual” heuristic and the “greedy at

Ldynoo corresponds to the commaguaidd bdd Transferin [23].

Table 1. Experimental results for different solution strat
circuit clusters for functional simulation), largest

egies for MVO (characteristic functions of

BDD first.

[[sizes] dyn0 | dynl] dyn2 | dyn3 | dyn5 [dyn7 [dynl0] dyni5 [dyn20 [dynoo [[gradual [atonce |
C2670.ex1]| 104992 | space out 145586 122765 125226 125226 | 125226 | 125226 | 125226 | 125226 | 125226 || time out | space out
912 0:09:00 0:16:03 0:25:34 0:25:54 | 0:25:50 | 0:26:00 | 0:25:50 | 0:26:32 | 0:25:55
118451 109654 101180 101180 | 101180 | 101180 | 101180 | 101180 | 101180
0:14:33 0:20:35 0:29:39 0:29:58 | 0:29:54 | 0:30:07 | 0:29:53 | 0:30:35 | 0:30:00
C2670.ex2 4127 | space out| space out 119610 108120 37060 15383 15383 15383 15383 15383 || time out | space out
244 0:00:57 0:01:23 0:02:36 | 0:03:42 | 0:03:44 | 0:03:44 | 0:03:43 | 0:03:41
15198 15177 23709 10639 10639 10639 10639 10639
0:02:05 0:02:31 0:03:29 | 0:04:12 | 0:04:14 | 0:04:14 | 0:04:13 | 0:04:11
C3540.ex1 196 57001 57001 57001 60722 60722 60722 60722 60722 60722 60722 70090 64530
52756 0:00:30 0:00:30 0:00:29 0:00:29 0:00:30 | 0:00:30 | 0:00:30 | 0:00:30 | 0:00:29 | 0:00:30 0:00:36 0:00:03
55004 55004 55004 55051 55051 55051 55051 55051 55051 55051 57563 55086
0:01:01 0:01:00 0:01:00 0:01:02 0:01:03 | 0:01:03 | 0:01:04 | 0:01:03 | 0:01:02 | 0:01:03 0:01:08 0:00:36
C3540.ex2 84388 286704 314854 72498 71873 72680 73624 73564 78076 78076 | 110920 205749 110615
21688 0:01:13 0:02:50 0:04:20 0:04:09 0:04:16 | 0:04:00 | 0:03:56 | 0:03:56 | 0:03:53 | 0:04:12 0:27:55 0:00:31
236898 98558 58936 54264 60122 61009 61009 63175 63175 74605 49920 71662
0:05:01 0:05:13 0:05:01 0:04:47 0:04:57 | 0:04:42 | 0:04:38 | 0:04:39 | 0:04:37 | 0:05:14 0:29:04 0:01:38
C3540.ex3 98156 447188 239800 163033 155520 155148 | 155148 | 155432 | 155148 | 153823 | 167706 192355 204761
21668 0:01:35 0:03:16 0:05:39 0:05:57 0:05:43 | 0:05:35 | 0:05:39 | 0:05:31 | 0:05:36 | 0:04:57 0:36:23 0:00:21
145923 144122 147264 148754 143755 | 143755 | 143832 | 143755 | 146977 | 141155 157765 144447
0:04:25 0:05:29 0:07:40 0:08:10 0:07:53 | 0:07:44 | 0:07:47 | 0:07:43 | 0:07:47 | 0:06:54 0:38:53 0:02:32
C5315.ex1 || 188920 | space out 220903 203993 201828 201735 | 202288 | 202288 | 230055 | 204426 | 302024 458547 | space out
11751 0:09:28 0:15:11 0:15:31 0:15:44 | 0:15:30 | 0:15:33 | 0:09:37 | 0:15:36 | 0:35:30 1:01:19
200839 199912 199598 199760 | 199797 | 199797 | 202378 | 199444 | 212236 232780
0:14:31 0:19:57 0:20:12 0:20:23 | 0:20:13 | 0:20:16 | 0:14:46 | 0:20:25 | 0:42:24 1:08:11
C5315.ex2 || 188920 | space out 716291 376732 376732 376732 | 376732 | 365118 | 361214 | 361214 | 313966 || time out | space out
35516 0:12:24 0:24:40 0:24:30 0:24:33 | 0:24:26 | 0:23:06 | 0:23:03 | 0:23:15 | 0:28:47
273153 276196 276196 276196 | 276196 | 258027 | 256603 | 256603 | 235789
0:22:44 0:35:26 0:35:16 0:35:24 | 0:35:19 | 0:32:19 | 0:32:24 | 0:32:23 | 0:36:46
C5315.ex3 18097 | space out| spaceout| space out| space out 286943 | 182825 | 182745 | 156600 | 168679 | 192163 || time out 560943
35516 0:10:43 | 0:18:21 | 0:18:56 | 0:20:24 | 0:22:09 | 0:20:49 0:00:21
153997 | 151126 | 151332 | 138037 | 145901 | 154399 180645
0:15:05 | 0:22:33 | 0:23:13 | 0:23:54 | 0:26:08 | 0:25:11 0:07:00
C5315.ex4 8637 | space out| space out 370998 155056 155408 | 156389 | 161587 | 157407 | 157403 | 161820 || time out | space out
35516 0:03:38 0:06:12 0:06:12 | 0:06:07 | 0:05:40 | 0:06:02 | 0:06:01 | 0:07:10
131756 133691 133886 | 132412 | 133563 | 132418 | 132418 | 132699
0:07:01 0:09:02 0:09:06 | 0:09:01 | 0:08:30 | 0:08:56 | 0:08:54 | 0:09:59
C5315.ex5 2398 | spaceout| spaceout| space out| space out 443812 | 184731 96672 | 190164 | 102216 | 102216 || time out | space out
35516 0:13:54 | 0:24:01 | 0:26:55 | 0:18:26 | 0:22:43 | 0:22:38
109155 90581 84482 90468 76107 76107
0:17:36 | 0:26:21 | 0:29:00 | 0:21:08 | 0:24:22 | 0:24:17
C5315.ex6 18097 | space out 135979 58591 32701 33151 32050 33150 33150 33150 32099 489577 | space out
8637 0:00:45 0:01:09 0:01:46 0:01:48 | 0:01:47 | 0:01:45 | 0:01:44 | 0:01:45 | 0:02:17 1:02:44
32278 28495 29022 29022 27537 29021 29021 29021 28382 42425
0:01:51 0:01:51 0:02:18 0:02:21 | 0:02:19 | 0:02:18 | 0:02:17 | 0:02:18 | 0:02:51 1:05:08
C5315.ex7 2398 | space out| spaceout| spaceout| spaceout| spaceout| 347442 | 275216 | 364031 | 364031 | 364031 || time out | space out
18097 0:27:21 | 0:47:13 | 0:54:44 | 0:54:12 | 0:54:24
205731 | 216581 | 187474 | 187474 | 187474
0:34:.07 | 0:53:25 | 1:00:44 | 1:00:11 | 1:00:16
C5315.ex8 11751 68902 56510 51201 51443 52836 52845 52811 52795 52771 55921 637479 224196
35516 0:00:34 0:01:18 0:02:36 0:02:34 0:01:15 | 0:01:16 | 0:01:15 | 0:01:14 | 0:01:14 | 0:03:02 1:46:13 0:00:19
49954 49145 49031 49337 49417 49415 49395 49395 49395 48749 71209 85068
0:01:34 0:02:10 0:03:27 0:03:26 0:02:05 | 0:02:07 | 0:02:06 | 0:02:05 | 0:02:05 | 0:03:55 1:50:57 0:03:31
C5315.ex9 11751 44267 32877 33783 34041 33782 33783 33783 33807 33807 35197 || time out 127274
18097 0:00:21 0:00:46 0:01:16 0:01:18 0:01:16 | 0:01:17 | 0:01:14 | 0:01:15 | 0:01:16 | 0:02:53 0:00:07
32221 32032 33388 33414 33387 33388 33388 33388 33388 32102 44089
0:00:54 0:01:17 0:01:48 0:01:50 0:01:48 | 0:01:49 | 0:01:46 | 0:01:47 | 0:01:48 | 0:03:26 0:01:31
dyn3 dyn7
dyn3-gradual dyn3-atonce dyn7-gradual dyn7-atonce
dyn3 gradual | ratio dyn3 atonce | ratio dyn7 gradual | ratio dyn7 atonce | ratio
size 574087 | 2053797 | 0.28 || 373599 | 731376 0.51 || 576677 | 2053797 | 0.28 || 558947 | 1292319 | 0.43
run time 0:30:26 4:55:10 | 0.10 || 0:14:27 | 0:01:21 | 10.70 [| 0:28:38 4:55:10 | 0.10 || 0:30:59 0:01:42 | 18.23
size (a.s.) 536026 611662 | 0.88 || 340820 | 400352 0.85 || 536564 611662 | 0.88 || 493744 580997 0.85
run time (w.s.) [| 0:39:55 5:13:21 | 0.13 || 0:19:15 | 0:09:48 1.96 || 0:38:08 5:13:21 | 0.12 || 0:39:58 0:16:48 2.38

once” heuristic from [9] (columns gradual and atonce). For line gives the size of the result as a shaeed. The sec-
each example there are four lines in the table. The firstond line gives the run time for the algorithm (in format

[[dyn0O] dyni] dyn2] dynd3] dyn5] dyn7 | dynl0] dynl5 [dyn20 [dynco [[gradual [atonce |
C1355/C3540(214548 | 174106 | 153335 | 158287 | 147200 | 138944 | 139500 | 154401 | 141189 | 152268 || 389563 | 809263
0:01:07 | 0:01:30 | 0:02:40 | 0:02:32 | 0:04:25 | 0:03:20 | 0:03:20 | 0:03:14 | 0:03:19 | 0:03:26 0:18:40 | 0:00:46
155391 | 144242 | 144856 | 145780 | 145260 | 131953 | 131427 | 150047 | 130955 | 143502 || 168145 | 159984
0:03:48 | 0:03:36 | 0:04:40 | 0:04:35 | 0:06:22 | 0:05:05 [0:05:04 | 0:05:23 | 0:05:09 | 0:05:31 0:21:39 | 0:06:02
C499/C1355 385108 | 217017 | 203498 | 171798 | 151366 | 154988 | 157947 | 165170 | 154553 | 145010 || 232696 | 483845
0:02:05 | 0:01:45 | 0:02:26 | 0:03:02 | 0:03:16 | 0:05:09 | 0:04:48 | 0:04:42 | 0:05:10 | 0:05:44 || 0:16:44 | 0:00:45
186691 | 174452 | 153742 | 145406 | 146239 | 139940 | 133187 | 143963 | 149848 | 140344 || 161276 | 225308
0:05:26 | 0:04:36 | 0:05:04 | 0:05:06 | 0:05:27 | 0:07:07 | 0:06:42 | 0:06:45 | 0:07:32 | 0:07:53 || 0:19:40 | 0:04:54
i8/k2 3729 3781 4096 4356 3661 3646 3579 3615 4158 3690 5636 4646
0:00:03 | 0:00:02 | 0:00:02 | 0:00:02 | 0:00:05 | 0:00:05 | 0:00:05 | 0:00:05 | 0:00:02 | 0:00:04 || 0:01:22 | 0:00:00

3609 3592 3638 3616 3617 3578 3507 3556 3557 3530 3508 3350
0:00:06 | 0:00:05 | 0:00:05 | 0:00:05 | 0:00:08 | 0:00:08 | 0:00:08 | 0:00:08 | 0:00:05 | 0:00:07 0:01:25 | 0:00:03

too_large/vda 1170 1182 1060 1060 1141 1141 1141 1141 1141 1141 7423 1509
0:00:01 | 0:00:01 | 0:00:01 | 0:00:01 | 0:00:01 | 0:00:01 [0:00:01 | 0:00:01 | 0:00:01 | 0:00:01 0:00:10 | 0:00:00
1067 1067 1025 1025 1064 1064 1064 1064 1064 1064 1067 1097
0:00:02 | 0:00:02 | 0:00:02 | 0:00:02 | 0:00:02 | 0:00:02 | 0:00:02 | 0:00:02 | 0:00:02 | 0:00:02 0:00:11 | 0:00:01
vda/alu4 1107 1104 1125 1115 1106 1106 1150 1104 1104 1089 1418 1394
0:00:00 | 0:00:00 | 0:00:00 | 0:00:00 | 0:00:00 | 0:00:00 [0:00:00 | 0:00:00 | 0:00:00 [0:00:00 {| 0:00:01 | 0:00:00
1092 1092 1092 1087 1097 1097 1104 1096 1096 1087 1235 1093
0:00:00 | 0:00:00 | 0:00:00 | 0:00:00 | 0:00:00 | 0:00:00 | 0:00:00 | 0:00:00 | 0:00:00 | 0:00:00 || 0:00:01 | 0:00:00

dyn3-gradual | dyn3-atonce| dyn7-gradual| dyn7-atonce

dyn3 dyn7 gradual | atonce ratio ratio ratio ratio

size 336616 | 299825 | 636736 | 1300657 0.53 0.26 0.47 0.23

run time 0:05:37 | 0:08:35 | 0:36:57 0:01:31 0.15 3.70 0.23 5.66

size (a.s.) 296914 | 277632 | 335231 | 390832 0.89 0.76 0.83 0.71

runtime (w.s.) [| 0:09:48 | 0:12:22 | 0:42:56 0:11:00 0.23 0.89 0.29 1.12

Table 2. Experimental results for different solution strat egies for MVO (pairs of circuits), largest BDD
first.

hours:minutes:seconds), the third line gives #in® sizes fail for any example, we conclude that — in contrast to our
after a final sifting step (if the algorithm does not fail due to dyn< n > heuristic — both the “greedy gradual” heuristic
“space out” or “time out”) and the fourth line gives the total and the “greedy at once” heuristic seem not to be suitable
run time including sifting. for this set of examples.

The “greedy at once” heuristic gives the smallest run ~ For a second experiment we have chosen pairs of bench-

times (if successful), but has a tendency to exceed the nodénark circuits, for whichebps were constructed and opti-
limit. If it does finish, theBDD sizes are relatively large. Mized separately. After that we transformed Bu®s into

In contrast, the “greedy gradual” heuristic is slow (there &common variable order. We used all those pairs of circuits
are many time outs). Also, even in the cases, when it from [9] which were at our disposal. Table 2 shows the re-
does finishBDD sizes are re|ative|y |arge Compared to our sults. As in Table 1, for each pair of circuits the first line
dyn< n > approach even for smaller values of The gives the size of the result as a shasea, the second line
dyn< n > approach is able to provide a good trade—off be- gives the run time for the algorithm, the third line gives the
tween run time and quality. While for smaller values of BDD sizes after a final sifting step, and the fourth line gives
n the run times are smaller, there are still cases, when thethe total run time including sifting.

computation does not finish. Ferequal to seven or larger Here all algorithms could finish all examples. Again, at
all problems could be solved with a reasonable amount ofthe bottom of the table the results are summarized. The first
runtime. line gives the sum of theDpD sizes, the second the sum

of run times, the third line gives the sum BbD sizes af-

ter sifting and, finally, the last line the sum of the total run
times including sifting. In colums 2-5 these sums are given
for dyn3, dyn7, “greedy gradual’ and “greedy at ornce”

In columns 6-9 we give the ratios dyn3 to “greedy grad-
ual”’, dyn3 to “greedy at once”, dyn7 to “greedy gradual’
and dyn7 to “greedy at once”. dyn3 and dyn7 provide con-
siderable improvements both concerning size and run time

To confirm this analysis we summarize the results at the
bottom of Table 1. We compare dyn3 and dyn7 to the
“greedy gradual” heuristic and the “greedy at once” heuris-
tic. In lines 1-4 we give the sums of the firgbD sizes,
the run timespDD sizes after sifting and total run times in-
cluding sifting for all examples, for which both compared
algorithms do not fail.

However, since both the “greedy gradual” heuristic and

the “greedy at O_nce” heuristic fail for 8 out of 14 examples, 27ne differences of sizes compared to [9] are apparentlyaidéferent
wheras dyng3 fails only for 3 examples and dyn7 does notinitial variable orders for the circuits.

compared to the “greedy gradual” heuristic. The “greedy at [5] K.S. Brace, R.L. Rudell, and R.E. Bryant. Efficient

once” heuristic gives the best run times, but this is acheived

at the cost of much largepbps. If we apply a final sifting

step to optimize the variable orders of the results, the ad-
vantage of “greedy at once” with respect to run time is lost,

because largesDDs have to be sifted.

If we have a closer look at Table 2 we can observe again

that the dyrc n > is able to provide a good trade—off be-
tween run time and quality.
For completeness we repeated the experiments from Ta-

ble 1 and Table 2 starting the algorithm of Section 3 with the

smaller one of the tweDDs. Results are given in Tables 3
and 4. They are comparable to the results of Tables 1 and 2.

However, since the number of reordering steps, which we
have to allow if we require the transformation into a com-

(6]

[7]

(8]

mon variable order to be successful, has a slight tendency [9]
to increase in this case, we can conclude that our decision
to start with the largeBDD is confirmed.

5 Conclusions

We presented a heuristic to solve the multiple variable
order problem (MVO) for binary decision diagrams.

In

[10]

contrast to [9] we do not precompute a common variable [11]
order and transform the tweDDs into this variable order
afterwards, rather we make use of dynamic reordering tech-

nigues. The adaption of the variable orders for the two
BDDS proceeds step by step during the computation of the

secondepD based on its cofactors. Experimental results [12]

prove our approach to be successful in solving the MVO

problem. They also prove, that our approach defines a good

trade—off between run time and quality of the result. In par-

ticular our heuristic dyr n > with small values fom can
also be used for a fast check if it makes sense to transform
two BDDS into the same variable order or not.

References

(1]

S.B. Akers. Binary decision diagram$EEE Trans.
on Comp, 27:509-516, 1978.

implementation of a BDD package. Design Au-
tomation Conf.pages 40-45, 1990.

R.E. Bryant. Graph - based algorithms for Boolean
function manipulation. IEEE Trans. on Comp.
35(8):677—-691, 1986.

R.E. Bryant. Symbolic Boolean manipulation with or-
dered binary decision diagran®CM, Comp. Surveys
24:293-318, 1992.

G. Cabodi, P. Camurati, and S. Quer. Improved reach-
ability analysis of large finite state machines.Iit|
Conf. on CAD pages 354-360, 1996.

G. Cabodi, S. Quer, C. Meinel, Harald Sack, A. Slo-
bodova, and C. Stangier. Binary decision diagrams
and the multiple variable order problem.Iit' | Work-
shop on Logic Synthpages 346—352, 1998.

R. Drechsler, B. Becker, and N. Gockel. A genetic
algorithm for variable ordering of OBDDs. Imt'l|
Workshop on Logic Synttpages 5c¢:5.55-5.64, 1995.

E. Felt, G York, R. Brayton, and A. Sangiovanni-
Vincentelli. Dynamic Variable Reordering for BDD

Minimization. InEuropean Design Automation Conf.

pages 130-135, 1993.

H. Fujii, G. Ootomo, and C. Hori. Interleaving based
variable ordering methods for ordered binary decision
diagrams. Irint'| Conf. on CAD pages 38-41, 1993.

13] M. Fujita, H. Fujisawa, and N. Kawato. Evaluation

[14]

[2] P. Ashar and S. Malik. Fast functional simulation us- [15]

(3]

(4]

ing branching programs. limt'| Conf. on CAD pages
408-412, 1995.

B. Bollig, M. Lobbing, and I. Wegener. Simulated

annealing to improve variable orderings for OBDDs.
In Int'l Workshop on Logic Synthpages 5b:5.1-5.10,

1995.

B. Bollig and I. Wegener. Improving the variable or-
dering of OBDDs is NP-completelEEE Trans. on
Comp, 45(9):993-1002, 1996.

[16]

[17]

and improvements of Boolean comparison method
based on binary decision diagrams. Itt'| Conf. on
CAD, pages 2-5, 1988.

M. Fujita, Y. Matsunaga, and T. Kakuda. On variable
ordering of binary decision diagrams for the applica-
tion of multi-level synthesis. IfEuropean Conf. on
Design Automatiorpages 50-54, 1991.

N. Ishiura, H. Sawada, and S. Yajima. Minimization of
binary decision diagrams based on exchange of vari-
ables. Inint'l Conf. on CAD pages 472—-475, 1991.

C.Y. Lee. Representation of switching circuits by bi-
nary decision diagramsBell System Technical Jour.
38:985-999, 1959.

S. Malik, A.RR. Wang, R.K. Brayton, and A.L.
Sangiovanni-Vincentelli. Logic verification using bi-
nary decision diagrams in a logic synthesis environ-
ment. Inint'l Conf. on CAD pages 6-9, 1988.

[sizes] dyn0 | dynl] dyn2 | dyn3 | dyn5 | dyn7 [dyn10] dynl5] dyn20 [dynco [[gradual [atonce |
C2670.ex1|| 104992 | space out| spaceout| space out| spaceout| spaceout| spaceout| spaceout| 256169 [141935 [timeout || time out | space out
912 1:36:36 | 1:36:36
140723 | 137645
1:44:37 | 1:59:05

C2670.ex2 4127 | space out| spaceout| spaceout| spaceout| spaceout| spaceout| space out| space out 9951 9951 || time out | space out
244 0:12:51 | 0:12:59
7683 7683
0:13:20 | 0:13:20
C3540.ex1 196 | spaceout| spaceout| 858941 467518 715498 212740 54997 54997 54997 54997 705331 64955
52756 0:00:25 0:00:16 0:00:23 0:00:22 0:00:27 0:00:27 | 0:00:27 | 0:00:28 1:07:26 0:00:03

56285 60089 54703 54997 54997 54997 54997 54997 70299 55088
0:02:45 0:01:33 0:01:48 0:01:05 0:00:56 0:00:56 | 0:00:56 | 0:00:57 1:11:45 0:00:38
C3540.ex2 84388 99537 130690 139410 152185 246643 246643 246643 266193 | 266193 | 266193 153306 110631
21688 0:01:06 0:01:35 0:02:33 0:03:43 0:06:20 0:06:12 0:05:52 0:11:04 | 0:10:53 | 0:11:16 0:24:23 0:00:24

64604 70571 78215 80545 226711 226711 226711 226701 | 226701 | 226701 55907 71646
0:02:20 0:02:55 0:03:56 0:05:14 0:10:03 0:09:55 0:09:39 0:14:53 | 0:14:33 | 0:15:01 0:25:31 0:01:40
C3540.ex3 98156 230478 206857 190923 234782 255037 278104 272835 300226 | 300226 | 255039 392160 204761
21668 0:01:03 0:01:20 0:02:15 0:04:11 0:07:42 0:07:49 0:06:15 0:11:46 | 0:11:39 | 0:08:12 1:03:23 0:00:18
148774 149884 148240 145882 153611 156117 155700 147612 | 147612 | 153611 178990 144447
0:03:31 0:03:46 0:04:29 0:06:41 0:10:14 0:10:25 0:08:49 0:14:12 | 0:14:07 | 0:10:48 1:06:22 0:02:35
C5315.ex1 || 188920 205198 203269 200666 200566 200610 200594 200510 200550 | 200550 | 201170 || time out | space out
11751 0:03:52 0:04:48 0:06:06 0:05:16 0:09:31 0:07:41 0:05:32 0:05:10 | 0:04:30 | 0:08:28
201481 201233 199906 199906 199865 199906 199850 199807 | 199804 | 200018
0:08:37 0:09:19 0:10:36 0:09:43 0:14:04 0:12:10 0:10:08 0:09:41 | 0:09:00 | 0:12:52
C5315.ex2 || 188920 | space out| space out| space out| spaceout| space out 282012 301696 312605 | 282012 | 308648 || time out | space out
35516 0:31:53 0:37:36 0:34:54 | 0:31:40 | 0:31:56
259193 261561 267371 | 259193 | 262120
0:39:43 0:45:55 0:43:19 | 0:39:40 | 0:39:55
C5315.ex3 18097 | space out| space out| space out 299003 230756 199370 208427 186666 | 186666 | 175303 || time out 895146

35516 0:03:12 0:10:50 0:20:18 0:19:30 0:16:17 | 0:16:05 [0:13:49 0:00:22
139364 150853 162570 158453 157645 | 157645 | 130850 210517
0:07:03 0:14:54 0:24:41 0:23:52 0:20:36 | 0:20:26 0:17:07 0:08:32
C5315.ex4 8637 | space out 622577 | 1339997 924844 194710 127487 141717 127487 | 119600 | 311533 || time out | space out
35516 0:00:48 0:00:58 0:01:05 0:01:51 0:05:29 0:06:50 0:05:33 | 0:05:50 [0:30:01

153724 132089 137672 125111 118695 128750 118695 | 116894 77117
0:05:42 0:05:34 0:05:35 0:04:42 0:07:49 0:09:34 0:07:54 | 0:08:04 | 0:33:30
C5315.ex5 2398 | spaceout| spaceout| space out| space out 398179 336139 240391 209973 | 217170 | 261045 || time out | space out
35516 0:01:40 0:05:18 0:11:29 0:12:23 | 0:12:35 | 0:17:23

93036 93846 117381 170065 99498 | 207576
0:04:27 0:08:11 0:14:42 0:17:00 | 0:15:13 0:23:03
C5315.ex6 18097 | spaceout| spaceout| space out 191273 38952 40042 39598 38952 31490 34831 || time out | space out
8637 0:00:43 0:01:42 0:02:00 0:01:53 0:01:42 | 0:02:25 | 0:02:58

32694 36314 28238 28761 36314 29911 31316
0:01:59 0:02:21 0:02:31 0:02:23 0:02:21 | 0:02:56 | 0:03:32
C5315.ex7 2398 | spaceout| spaceout| spaceout| spaceout| spaceout| spaceout| space out 256399 | 272591 | 256399 || time out | space out
18097 0:20:58 | 0:18:11 | 0:21:16
239639 | 250814 | 239639
0:26:47 | 0:24:41 0:27:15

C5315.ex8 11751 87724 68467 49665 49407 49565 49410 49474 49494 49588 47706 224196
35516 0:00:28 0:00:50 0:01:31 0:01:36 0:01:32 0:01:24 0:01:43 0:01:42 | 0:01:43 | 0:07:51 0:00:20

60027 51053 49189 49036 49268 49036 49185 49190 49190 39864 85068

0:01:39 0:01:45 0:02:18 0:02:23 0:02:19 0:02:10 0:02:29 0:02:29 | 0:02:29 | 0:08:40 0:03:41

C5315.ex9 11751 151525 47904 32809 32952 32901 35325 49476 49476 46876 41893 || time out 127274
18097 0:00:17 0:00:40 0:01:20 0:01:18 0:01:27 0:01:24 0:00:50 0:00:50 | 0:00:57 | 0:09:47 0:00:08

31950 31835 32175 32175 32183 32174 32202 32202 32182 31808 43919

0:01:27 0:01:18 0:01:52 0:01:50 0:01:59 0:01:56 0:01:26 0:01:26 | 0:01:29 0:10:27 0:01:36

Table 3. Experimental results for different solution strat egies for MVO (characteristic functions of
circuit clusters for functional simulation), smallest BDD first.

[18] P.C. McGeer, K.L. McMillan, A. Saldanha, A.L. [20] A. Narayan, A. Isles, J. Jain, R.K. Brayton, and A.L.

Sangiovanni-Vincentelli, and P. Scaglia. Fast discrete Sangiovanni-Vincentelli. Reachability analysis using
function evaluation using decision diagrams. Ithti | partitioned-robdds. Iint'l Conf. on CADQ pages 388—
Conf. on CAD pages 402—-407, 1995. 393, 1997.
[21] R. Rudell. Dynamic variable ordering for ordered bi-
[19] B.M.E. Moret. Decision trees and diagrams.Gom- nary decision diagrams. Imt'l Conf. on CAD pages
puting Surveysvolume 14, pages 593-623, 1982. 42-47,1993.

[I dyn0 [dyn1 [dyn2] dyn3] dyn5] dyn7 [dynl0] dyni5] dyn20 [dynco [gradual [atonce]
C1355/C3540 (| 1096549 | 648853 | 426667 | 159448 | 165237 | 167000 | 167000 | 167000 | 165210 [165210 389108 | 809259
0:01:03 | 0:01:18 | 0:01:55 | 0:03:36 | 0:02:43 | 0:02:34 | 0:02:34 | 0:02:33 | 0:02:38 | 0:02:36 || 0:18:33 | 0:00:48
161861 | 133778 | 133883 | 133611 | 149180 | 129979 | 129979 | 129979 | 149153 | 149153 || 166920 | 160026
0:04:37 | 0:04:09 | 0:03:59 | 0:05:30 | 0:04:38 | 0:04:25 | 0:04:22 | 0:04:22 | 0:04:34 | 0:04:32 || 0:21:36 | 0:06:06
C499/C1355 189143 | 186760 | 179401 | 138381 | 129509 | 123122 | 136300 | 146800 | 154968 | 162561 || 244800 | 385217
0:01:10 | 0:01:42 | 0:02:45 | 0:05:11 | 0:04:38 | 0:04:31 | 0:04:26 | 0:04:21 | 0:04:26 | 0:04:14 0:17:18 | 0:00:40
128147 | 129968 | 126237 | 130220 | 117247 | 116831 | 119155 | 130616 | 146487 | 144631 141643 | 201764
0:03:21 | 0:03:46 | 0:04:51 | 0:07:03 | 0:06:19 | 0:06:10 | 0:06:12 | 0:06:15 | 0:06:35 | 0:06:28 0:20:04 | 0:04:55

i8/k2 3510 2984 3339 3077 3174 3441 3854 3213 3531 3596 5592 4694
0:00:03 | 0:00:05 | 0:00:04 | 0:00:04 | 0:00:04 | 0:00:04 | 0:00:03 | 0:00:03 | 0:00:05 | 0:00:05 0:01:24 | 0:00:00

2791 2728 2793 2676 2677 2760 2755 2673 2746 3170 3512 2773

0:00:06 | 0:00:08 | 0:00:07 | 0:00:07 | 0:00:07 | 0:00:07 | 0:00:06 | 0:00:06 | 0:00:08 | 0:00:08 0:01:27 | 0:00:03

too_large/vda 1880 5392 1547 1219 1231 1321 1262 1435 1223 1252 3156 1527
0:00:00 | 0:00:01 | 0:00:01 | 0:00:02 | 0:00:02 | 0:00:02 | 0:00:02 | 0:00:02 | 0:00:02 | 0:00:02 || 0:00:07 | 0:00:00

1143 1119 1065 1082 1082 1083 1083 1061 1083 1077 1183 1098

0:00:01 | 0:00:02 | 0:00:02 | 0:00:03 | 0:00:03 | 0:00:03 | 0:00:03 | 0:00:03 | 0:00:03 | 0:00:03 || 0:00:08 | 0:00:01

vda/alu4 1353 1342 1142 1205 1204 1276 1223 1190 1190 1190 1428 1580
0:00:00 | 0:00:00 | 0:00:00 | 0:00:00 | 0:00:00 | 0:00:00 | 0:00:00 | 0:00:00 | 0:00:00 | 0:00:00 || 0:00:01 | 0:00:00

1226 1078 1085 1076 1076 1089 1087 1076 1076 1076 1152 1320

Table 4. Experimental results for different solution strat egies for MVO (pairs of circuits), smallest BDD
first.

[22] C. Scholl, R. Drechsler, and B. Becker. Functional
simulation using binary decision diagrams. Iht'l
Conf. on CADpages 8-12, 1997.

[23] F. Somenzi. CUDD: CU Decision Diagram Pack-
age Release 2.3.@niversity of Colorado at Boulder,
1998.

[24] S. Tani, K. Hamaguchi, and S. YajimaThe Com-
plexity of the Optimal Variable Ordering Problem of
Shared Binary Decision Diagrams/olume 762 of
LNCS Proc. ISAAC'93, 1993.

