
Technical Report 130, Albert-Ludwigs-University, Freiburg, October 1999

Solving the Multiple Variable Order Problem for Binary Decision Diagrams
by Use of Dynamic Reordering Techniques

Christoph Scholl Bernd Becker Andreas Brogle

Institute of Computer Science
Albert–Ludwigs–University

D 79110 Freiburg im Breisgau, Germany
email:<name>@informatik.uni-freiburg.de

Abstract

Reduced Ordered Binary Decision Diagrams (ROBDDs)
gained widespread use in logic design verification, test gen-
eration, fault simulation, and logic synthesis [17, 7]. Since
the size of anROBDD heavily depends on the variable order
used, there is a strong need to find variable orders that mini-
mize the number of nodes in anROBDD. In certain applica-
tions we have to cope withROBDDs with different variable
orders, whereas further manipulations of theseROBDDs re-
quire common variable orders. In this paper we solve the
problem to transformROBDDs with different variable or-
ders into a good common variable order. To do so, we make
use of dynamic variable ordering techniques.

1 Introduction

Binary Decision Diagrams (BDDs) as a data structure
for representation of Boolean functions were first intro-
duced by Lee [16] and further popularized by Akers [1] and
Moret [19]. In the restricted form ofROBDDs they gained
widespread use, becauseROBDDs are a canonical represen-
tation and allow efficient manipulations [6]. Some fields
of application are logic design verification, test generation,
fault simulation, and logic synthesis [17, 7]. Most of the
algorithms usingROBDDs have run time polynomial in the
size of theROBDDs. The sizes themselves depend on the
variable order used. Thus, there is a need to find a variable
order that minimizes the number of nodes in anROBDD.

The existing heuristic methods for finding good variable
orders can be classified into two categories: initial heuris-
tics which derive an order by inspection of a logic circuit
[17, 13, 14, 12] and dynamic reordering heuristics which
try to improve on a given order [15, 21, 11, 3, 10]. Sifting
introduced by Rudell [21] has emerged so far as the most

successful algorithm for dynamic reordering of variables.
This algorithm is based on finding the local optimum posi-
tion of a variable, assuming all other variables remain fixed.
The position of a variable in the order is determined by mov-
ing the variable to all possible positions while keeping the
other variables fixed.

In this paper we deal with the fact that certain applica-
tions have to cope withROBDDs represented with different
variable orders. Then we have to solve the problem to trans-
form ROBDDs with different variable orders into a common
variable order. This problem is calledmultiple variable or-
derproblem in [9].

One application of this type is reachability analysis
and formal verification using partitioned-ROBDDs [20]:
ROBDDs are partitioned, i.e. decomposed into sub–ROBDDs.
In this way the application can deal with eachROBDD sep-
arately and optimize their sizes independently. For im-
age computation however Boolean operations forROBDDs
represented with different variable orders have to be per-
formed. Thus, at first they are transformed into the same
variable order.

Moreover, it has been suggested [8] thatROBDDs are
used to communicate between different synthesis and ver-
ification tools.ROBDDs are dumped to files by one tool and
undumped by other tools. If theROBDDs originate from dif-
ferent tools, it is clear that they can have different variable
orders.

Another application for the multiple variable order prob-
lem occurs in connection with functional simulation [2,
18, 22] using binary decision diagrams. In these ap-
proachesROBDDs for circuits are computed and then used
for compiler-driven simulation. To control theROBDD sizes
intermediate variables are introduced as cut points based on
size limits for theROBDD sizes. The result of this process
is a partition of the circuit into clusters. To speed up cy-
cle based functional simulation for the output functions of



these clusters (primary outputs or cut points) theROBDDs of
the corresponding characteristic functions� are computed
(�((i

1

; : : : ; i

n

; o

1

; : : : ; o

m

) =

V

m

i=1

(o

i

� f

i

(i

1

; : : : ; i

n

)),
wheref

i

are the output functions ando
i

are corresponding
output variables). Then the characteristic functions of the
clusters are evaluated in topological order.

In the partitioning approach of [22] variable reordering
is used to minimize the sizes of the characteristic functions
separately. However, to minimize the evaluation time the
number of clusters has to be minimized, i.e. it is checked
whether pairs of clusters can be merged into one. To do so,
theROBDDs for the characteristic functions are transformed
into the same variable orders and then an AND operation
is applied to theROBDDs. The merging is accepted, when
the result is smaller than a certain size limit. (In this spe-
cial application the fact, that it is not possible to transform
theROBDDs for the characteristic functions into a common
variable order within a certain node limit for theROBDDs,
can be accepted, since the algorithm still works although the
quality of the result might decrease. For reasons of run time
efficiency it can make sense to decide early, if the transfor-
mation into a common variable order works or should be
aborted.

In [9] the problem to transform twoROBDDs into a com-
mon variable order is solved by inspection of the two vari-
able orders, computation of an intermediate variable or-
der based on these two variable orders and a transforma-
tion of the twoROBDDs into the intermediate variable or-
der by level exchanges. In contrast to this approach we
use dynamic reordering techniques [21] to transform the
two ROBDDs into a common variable order and thereby dy-
namically adapt the ordering to the resulting newROBDDs.
Experimental results demonstrate that in our approach time
can be traded off for quality of the result by allowing re-
ordering for adaption of the ordering more frequently. Com-
pared to [9], we significantly improve the size of the final
ROBDDs within a reasonable amount of runtime.

The paper is structured as follows: In Section 2 we give
a brief review ofBDDs. In Section 3 we give a theoreti-
cal background and we present our heuristic to transform
two ROBDDs into a common variable order, in Section 4 we
show some experimental results and Section 5 concludes
the paper.

2 Preliminaries

BDDs are representations of Boolean functions. In the
restricted form ofROBDDs they even provide canonical rep-
resentations. As defined in [6],ROBDDs are ordered, i.e.
on each path from their root to a terminal node each in-
put variable occurs only once and on each path the input
variables occur in the same order. If the input variables
arex

1

; : : : ; x

n

, this variable order is given by a mapping

� : f1; : : : ; ng ! fx

1

; : : : ; x

n

g. Since we work only with
ROBDDs in the following we briefly call themBDDs.

Given a variable order� for the input variables of func-
tion f there is a uniqueBDD using variable order�, which
is denoted byBDD

�

(f) in this paper. It is well known that
the size of aBDD is largely influenced by the choice of the
variable ordering [6].

Dynamic reordering [21] allowsBDDs to adapt to the
changing functions as computation proceeds. WhenBDD

sizes grow too large during the computation of a Boolean
operation, the computation is aborted, allBDDs computed
so far are minimized by a transformation to another order
using a dynamic reordering heuristics like sifting and the
operation is tried again. The operation is aborted, when the
node number would exceed some reordering limit. Usually,
the reordering limit is initialized to some smaller number to
reorder alsoBDDs at the beginning of a series ofBDD com-
putations, which are typically smaller, and is increased step
by step during the computation until it reaches an absolute
node limit [23].

3 The Multiple Variable Order Problem

Suppose we have two Boolean functionsf andg, which
are represented byBDDs BDD

�

f

(f) andBDD

�

g

(g), re-
spectively. Then the solution of theMultiple Variable Order
problem (MVO) forBDD

�

f

(f) andBDD

�

g

(g) means the
following:

Find a variable order�
f;g

, such that the sizes of
BDD

�

f;g

(f) andBDD

�

f;g

(g) assharedBDD [5] are min-
imized.

3.1 Theoretical background

From the NP completeness of the variable ordering prob-
lem forsingleBDDs [24, 4] we can easily conclude that the
task to solve MVO exactly is a hard problem.

Theorem 1 MVO is an NP complete problem.

Proof: To transform an arbitrary instance of the variable
ordering problem for singleBDDs into a corresponding in-
stance of MVO in polynomial time, we simply add theBDD

for the constant 1 function, which does not depend on the
variable order, to the original (single)BDD. A solution of
MVO for this problem also solves the original problem.2

Furthermore it can be shown that there are pairs of
Boolean functions, where a blow up of theBDD sizes com-
pared to theBDD sizes of the singleBDDs can not be
avoided, since it is not possible to find an efficientcommon
variable order for the twoBDDs. The following theorem
gives an example for such a case.

2



Theorem 2 Let f =

W

n

i=1

V

n

j=1

x

ij

and g =

W

n

j=1

V

n

i=1

x

ij

. There are variable orders�
f

and �

g

such thatBDD

�

f

(f) andBDD

�

g

(g) have (optimal) sizes
n

2

+2, respectively, but for all variable orders� BDD

�

(f)

orBDD

�

(g) has a size of at least2
n

2 .

I.e.f andg in Theorem 2 can be represented efficiently,
when different orders forf andg are allowed, but there is
no common variable order, which leads to efficient repre-
sentations forbothf andg.

Theorem 2 can be proved using communication com-
plexity arguments:
Proof: To prove the lower bound for the size ofBDD

�

(f)

orBDD

�

(g) we introduce a cut line after the firstn
2

2

vari-
ables and prove that forBDD

�

(f) or BDD

�

(g) the num-
ber of nodes immediately below this cut line (i.e. nodes be-
low the cut line, which are connected by an edge to the up-
per part of theBDD) is at least2

n

2 .
To do so we define two sets of input variables:

L = f�(1); : : : ; �(

n

2

2

)g

(the first input variables in the order) and

R = f�(

n

2

2

+ 1); : : : ; �(n

2

)g

(the last input variables in the order). Then we define a set
of cofactors off (or g) with respect to variables fromL.
Cofactors with respect to variables fromL correspond to
nodes in theBDD immediately below the cut line after the
variables inL and if we can prove that there are2

n

2 differ-
entcofactors with respect to variables fromL, it is easy to
see that there are (at least)2

n

2 different nodes immediately
below this cut line.

To define the set of cofactors mentioned above we need
the sets

L rows = fi j 8j x

ij

2 Lg and

mixed rows = fi j 9j; k with x

ij

2 L andx
ik

2 Rg

Now we consider two cases:

Case 1: L rows = ;.
SincejLj = n

2

2

input variables, it is clear that

mr := jmixed rowsj >

n

2

:

We consider a set of2mr

> 2

n

2 cofactors off . For
(�

1

; : : : ; �

mr

) 2 f0; 1g

mr

cof

f

�

1

;:::;�

mr

is defined as

cof

f

�

1

;:::;�

mr

:= f

�(1)

val(�(1))

:::�(

n

2

2

)

val(�(

n

2

2

))

with

val(�(k)) =

�

�

i

; if �(k) = x

ij

with i 2 mixed rows (1)

0; otherwise (2)

It remains to show that

cof

f

�

1

;:::;�

mr

6= cof

f

�

1

;:::;�

mr

; if (�
1

; : : : ; �

mr

) 6= (�

1

; : : : ; �

mr

):

Assume w.l.o.g.�
i

diff

= 1, �
i

diff

= 0.

We give an assignment to the remainingn
2

2

variables,

which shows thatcoff
�

1

;:::;�

mr

andcoff
�

1

;:::;�

mr

are different:

For all n
2

2

< k � n

2

val(�(k)) =

�

1; if �(k) = x

i

diff

j

(3)

0; otherwise (4)

Now we have

(cof

f

�

1

;:::;�

mr

)

�(

n

2

2

)

val(�(

n

2

2

))

:::�(n

2

)

val(�(n

2

))

= 1;

because in(coff
�

1

;:::;�

mr

)

�(

n

2

2

)

val(�(

n

2

2

))

:::�(n

2

)

val(�(n

2

))

all

x

i

diff

j

(1 � j � n) are set to 1 by lines (1) and (3) and

(cof

f

�

1

;:::;�

mr

)

�(

n

2

2

)

val(�(

n

2

2

))

:::�(n

2

)

val(�(n

2

))

= 0;

because for alli there is aj, such thatx
ij

is set to0 in
(cof

f

�

1

;:::;�

mr

)

�(

n

2

2

)

val(�(

n

2

2

))

:::�(n

2

)

val(�(n

2

))

:

if i = i

diff

: 9j with x

i

diff

j

set to�
i

diff

= 0 because of
line (1),
if i 6= i

diff

; i 2 mixed rows: 9j with x

ij

set to0 because
of line (4),
if i 6= i

diff

; i =2 mixed rows: x
ij

set to0 for all 1 � j � n

because of line (4).
This proves the fact that

cof

f

�

1

;:::;�

mr

6= cof

f

�

1

;:::;�

mr

;

such that we have defined a set of2

mr

> 2

n

2 different co-
factors off with respect toL.

Case 2: L rows 6= ;.
Then we can conclude that the set

mixed columns = fj j 9i; k with x

ij

2 L andx
kj

2 Rg

has a cardinality

mc := jmixed columnsj >

n

2

:

and with analogous arguments as in Case 1 we can define a
set of2mc

> 2

n

2 different cofactors ofg, which correspond
to different nodes inBDD

�

(g) below a cut line after the
variables inL. 2

If we find such a case, where a transformation into a
common variable order will definitely lead to a blow-up of
theBDD sizes, the transformation should be aborted as early
as possible without wasting space and time.

3



3.2 Solution of MVO

Here we present a heuristic to solve MVO approxi-
mately.

The same problem was already studied by Cabodi et al.
in [9]. They solve the problem by computation of an in-
termediate variable order�

f;g

based on�
f

and�
g

. Then
a transformation ofBDD

�

f

(f) andBDD

�

g

(g) to �

f;g

by
level exchanges is performed. In contrast to this approach
we use dynamic reordering techniques [21] to transform the
two BDDs into a common variable order�

f;g

which thereby
is dynamically adapted to the currently involvedBDDs.

First of all, we choose one of the twoBDDs to start with
(e.g. the larger one). W.l.o.g. we start withBDD

�

f

(f).
Now we transformcofactorsof g step by step to the order
of theBDD for f .

More precisely, we traverseBDD

�

g

(g) in a depth first
manner and transform cofactors ofg, which correspond to
nodes inBDD

�

g

(g) into the order of theBDD for f . Sup-
pose the current order of theBDD BDD

�

old

(f) for f is�
old

and suppose we have reached nodev of BDD

�

g

(g) labeled
by variablex

i

. Since we traverseBDD

�

g

(g) depth first,
we have already computed for low–sonlow(v) and high–
son high(v) BDD

�

old

(g

low(v)

) andBDD

�

old

(g

high(v)

),
which have the same variable order asBDD

�

old

(f).
Now we simply compute in variable order�

old

the if–
then–else operationite(x

i

; BDD

�

old

(g

low(v)

); BDD

�

old

(

g

high(v)

)). The result is a representation for the functiong

v

represented at nodev of BDD

�

g

(g), now in same variable
order as theBDD for f .

During the computation of the newBDD for g
v

by ite(x
i

;

BDD

�

old

(g

low(v)

); BDD

�

old

(g

high(v)

)), we usedynamic
reordering. If the reordering limit is exceeded during this
computation, dynamic reordering (sifting) is applied to si-
multaneously minimize theBDDs for f and allBDDs com-
puted in variable order�

old

so far. If dynamic reordering
does not give up, after the call of operationite we have
BDDs forf , g

v

and all other functions for nodes ofg visited
so far in a (possibly new) variable order�

new

.
In this way we compute step by step variable orders,

which are good both forf and cofactors ofg and finally we
have a variable order, which is also good forg. The adap-
tion of the variable orders for theBDDs forf andg proceeds
step by step during the computation of theBDD for g based
on cofactors ofg.

There still remains one point: In many applications dy-
namic reordering produces good results, but tends to slow
down computation times by frequent reorderings.

For this reason we restrict dynamic reordering here. We
introduce an upper limit for the number of reordering steps.
We count the number of reorderings during the adaption of
the variable orders forf andg and if this limit would be

exceeded, the operation fails with the parameters currently
used. This decision is motivated by our clustering approach
for functional simulation [22]: We do not want to spend too
much time on the computation of a common variable or-
der for two clusters, which is likely to fail in the end or to
produce hugeBDDs. Moreover, it is clear, that the introduc-
tion of such a limit for the number of reorderings defines a
trade-off between run time and the quality of the result in
this application.

Finally, we have to adjust the initial reordering limit, if
we restrict the number of reorderings. If we have chosen
only a small number of reorderings, we do not want to waste
the limited number of reordering steps by too early reorder-
ings, which are performed for smallBDDs and which are not
yet absolutely necessary. Therefore we choose the higher
initial reordering limit the smaller the allowed number of
reorderings is. The initial reordering limit is chosen based
on the allowed number of reorderingsmaxreorder and on
the sizes of theBDDs for which a common variable order
has to be computed. For our practical experiments we use

size(BDD

�

f

(f)) +

(size(BDD

�

g

(g))

maxreorder+1

as initial reordering
limit.

4 Experimental Results

To evaluate our heuristic for the MVO problem, we in-
tegrated our heuristic in the CUDD package [23]. In a first
experiment we use data originating from our approach for
functional simulation [22] for larger circuits. We selected
the last tries for cluster merging for different circuits (suc-
cessful or not in our original algorithm), since at the end of
the algorithm clusters are getting larger and therefore harder
problems must be solved.

The experiments were performed on a SPARC Ultra 2
(256MB memory). The CPU time was limited to 2 hours
and the node limit for theBDD package was 2000000.

We tried several choices for the maximum number of re-
orderings during the computation of common variable or-
ders. The algorithm of Section 3 was started with the larger
one of the twoBDDs. The results are summarized in Table
1. In the second column the sizes of the twoBDDs (num-
ber of nodes) are given for which MVO has to be solved.
(Note that theBDDs represent not the output functions,
but the characteristic functions for the clusters.) Columns
dyn< n > show the results for our approach withn as
the maximum number of reorderings. dyn0, e.g., is the
algorithm, when absolutely no reordering is allowed and
the secondBDD is simply transformed to the order of the
first BDD. dyn1 is the algorithm, when the number of
reorderings is not restricted at all1. The results are com-
pared to the “greedy gradual” heuristic and the “greedy at

1dyn1 corresponds to the commandCudd bddTransferin [23].

4



sizes dyn0 dyn1 dyn2 dyn3 dyn5 dyn7 dyn10 dyn15 dyn20 dyn1 gradual atonce

C2670.ex1 104992 space out 145586 122765 125226 125226 125226 125226 125226 125226 125226 time out space out
912 0:09:00 0:16:03 0:25:34 0:25:54 0:25:50 0:26:00 0:25:50 0:26:32 0:25:55

118451 109654 101180 101180 101180 101180 101180 101180 101180
0:14:33 0:20:35 0:29:39 0:29:58 0:29:54 0:30:07 0:29:53 0:30:35 0:30:00

C2670.ex2 4127 space out space out 119610 108120 37060 15383 15383 15383 15383 15383 time out space out
244 0:00:57 0:01:23 0:02:36 0:03:42 0:03:44 0:03:44 0:03:43 0:03:41

15198 15177 23709 10639 10639 10639 10639 10639
0:02:05 0:02:31 0:03:29 0:04:12 0:04:14 0:04:14 0:04:13 0:04:11

C3540.ex1 196 57001 57001 57001 60722 60722 60722 60722 60722 60722 60722 70090 64530
52756 0:00:30 0:00:30 0:00:29 0:00:29 0:00:30 0:00:30 0:00:30 0:00:30 0:00:29 0:00:30 0:00:36 0:00:03

55004 55004 55004 55051 55051 55051 55051 55051 55051 55051 57563 55086
0:01:01 0:01:00 0:01:00 0:01:02 0:01:03 0:01:03 0:01:04 0:01:03 0:01:02 0:01:03 0:01:08 0:00:36

C3540.ex2 84388 286704 314854 72498 71873 72680 73624 73564 78076 78076 110920 205749 110615
21688 0:01:13 0:02:50 0:04:20 0:04:09 0:04:16 0:04:00 0:03:56 0:03:56 0:03:53 0:04:12 0:27:55 0:00:31

236898 98558 58936 54264 60122 61009 61009 63175 63175 74605 49920 71662
0:05:01 0:05:13 0:05:01 0:04:47 0:04:57 0:04:42 0:04:38 0:04:39 0:04:37 0:05:14 0:29:04 0:01:38

C3540.ex3 98156 447188 239800 163033 155520 155148 155148 155432 155148 153823 167706 192355 204761
21668 0:01:35 0:03:16 0:05:39 0:05:57 0:05:43 0:05:35 0:05:39 0:05:31 0:05:36 0:04:57 0:36:23 0:00:21

145923 144122 147264 148754 143755 143755 143832 143755 146977 141155 157765 144447
0:04:25 0:05:29 0:07:40 0:08:10 0:07:53 0:07:44 0:07:47 0:07:43 0:07:47 0:06:54 0:38:53 0:02:32

C5315.ex1 188920 space out 220903 203993 201828 201735 202288 202288 230055 204426 302024 458547 space out
11751 0:09:28 0:15:11 0:15:31 0:15:44 0:15:30 0:15:33 0:09:37 0:15:36 0:35:30 1:01:19

200839 199912 199598 199760 199797 199797 202378 199444 212236 232780
0:14:31 0:19:57 0:20:12 0:20:23 0:20:13 0:20:16 0:14:46 0:20:25 0:42:24 1:08:11

C5315.ex2 188920 space out 716291 376732 376732 376732 376732 365118 361214 361214 313966 time out space out
35516 0:12:24 0:24:40 0:24:30 0:24:33 0:24:26 0:23:06 0:23:03 0:23:15 0:28:47

273153 276196 276196 276196 276196 258027 256603 256603 235789
0:22:44 0:35:26 0:35:16 0:35:24 0:35:19 0:32:19 0:32:24 0:32:23 0:36:46

C5315.ex3 18097 space out space out space out space out 286943 182825 182745 156600 168679 192163 time out 560943
35516 0:10:43 0:18:21 0:18:56 0:20:24 0:22:09 0:20:49 0:00:21

153997 151126 151332 138037 145901 154399 180645
0:15:05 0:22:33 0:23:13 0:23:54 0:26:08 0:25:11 0:07:00

C5315.ex4 8637 space out space out 370998 155056 155408 156389 161587 157407 157403 161820 time out space out
35516 0:03:38 0:06:12 0:06:12 0:06:07 0:05:40 0:06:02 0:06:01 0:07:10

131756 133691 133886 132412 133563 132418 132418 132699
0:07:01 0:09:02 0:09:06 0:09:01 0:08:30 0:08:56 0:08:54 0:09:59

C5315.ex5 2398 space out space out space out space out 443812 184731 96672 190164 102216 102216 time out space out
35516 0:13:54 0:24:01 0:26:55 0:18:26 0:22:43 0:22:38

109155 90581 84482 90468 76107 76107
0:17:36 0:26:21 0:29:00 0:21:08 0:24:22 0:24:17

C5315.ex6 18097 space out 135979 58591 32701 33151 32050 33150 33150 33150 32099 489577 space out
8637 0:00:45 0:01:09 0:01:46 0:01:48 0:01:47 0:01:45 0:01:44 0:01:45 0:02:17 1:02:44

32278 28495 29022 29022 27537 29021 29021 29021 28382 42425
0:01:51 0:01:51 0:02:18 0:02:21 0:02:19 0:02:18 0:02:17 0:02:18 0:02:51 1:05:08

C5315.ex7 2398 space out space out space out space out space out 347442 275216 364031 364031 364031 time out space out
18097 0:27:21 0:47:13 0:54:44 0:54:12 0:54:24

205731 216581 187474 187474 187474
0:34:07 0:53:25 1:00:44 1:00:11 1:00:16

C5315.ex8 11751 68902 56510 51201 51443 52836 52845 52811 52795 52771 55921 637479 224196
35516 0:00:34 0:01:18 0:02:36 0:02:34 0:01:15 0:01:16 0:01:15 0:01:14 0:01:14 0:03:02 1:46:13 0:00:19

49954 49145 49031 49337 49417 49415 49395 49395 49395 48749 71209 85068
0:01:34 0:02:10 0:03:27 0:03:26 0:02:05 0:02:07 0:02:06 0:02:05 0:02:05 0:03:55 1:50:57 0:03:31

C5315.ex9 11751 44267 32877 33783 34041 33782 33783 33783 33807 33807 35197 time out 127274
18097 0:00:21 0:00:46 0:01:16 0:01:18 0:01:16 0:01:17 0:01:14 0:01:15 0:01:16 0:02:53 0:00:07

32221 32032 33388 33414 33387 33388 33388 33388 33388 32102 44089
0:00:54 0:01:17 0:01:48 0:01:50 0:01:48 0:01:49 0:01:46 0:01:47 0:01:48 0:03:26 0:01:31

dyn3 dyn7
dyn3-gradual dyn3-atonce dyn7-gradual dyn7-atonce

dyn3 gradual ratio dyn3 atonce ratio dyn7 gradual ratio dyn7 atonce ratio
size 574087 2053797 0.28 373599 731376 0.51 576677 2053797 0.28 558947 1292319 0.43
run time 0:30:26 4:55:10 0.10 0:14:27 0:01:21 10.70 0:28:38 4:55:10 0.10 0:30:59 0:01:42 18.23
size (a.s.) 536026 611662 0.88 340820 400352 0.85 536564 611662 0.88 493744 580997 0.85
run time (w.s.) 0:39:55 5:13:21 0.13 0:19:15 0:09:48 1.96 0:38:08 5:13:21 0.12 0:39:58 0:16:48 2.38

Table 1. Experimental results for different solution strat egies for MVO (characteristic functions of
circuit clusters for functional simulation), largest BDD first.

once” heuristic from [9] (columns gradual and atonce). For
each example there are four lines in the table. The first

line gives the size of the result as a sharedBDD. The sec-
ond line gives the run time for the algorithm (in format

5



dyn0 dyn1 dyn2 dyn3 dyn5 dyn7 dyn10 dyn15 dyn20 dyn1 gradual atonce

C1355/C3540 214548 174106 153335 158287 147200 138944 139500 154401 141189 152268 389563 809263
0:01:07 0:01:30 0:02:40 0:02:32 0:04:25 0:03:20 0:03:20 0:03:14 0:03:19 0:03:26 0:18:40 0:00:46
155391 144242 144856 145780 145260 131953 131427 150047 130955 143502 168145 159984
0:03:48 0:03:36 0:04:40 0:04:35 0:06:22 0:05:05 0:05:04 0:05:23 0:05:09 0:05:31 0:21:39 0:06:02

C499/C1355 385108 217017 203498 171798 151366 154988 157947 165170 154553 145010 232696 483845
0:02:05 0:01:45 0:02:26 0:03:02 0:03:16 0:05:09 0:04:48 0:04:42 0:05:10 0:05:44 0:16:44 0:00:45
186691 174452 153742 145406 146239 139940 133187 143963 149848 140344 161276 225308
0:05:26 0:04:36 0:05:04 0:05:06 0:05:27 0:07:07 0:06:42 0:06:45 0:07:32 0:07:53 0:19:40 0:04:54

i8/k2 3729 3781 4096 4356 3661 3646 3579 3615 4158 3690 5636 4646
0:00:03 0:00:02 0:00:02 0:00:02 0:00:05 0:00:05 0:00:05 0:00:05 0:00:02 0:00:04 0:01:22 0:00:00

3609 3592 3638 3616 3617 3578 3507 3556 3557 3530 3508 3350
0:00:06 0:00:05 0:00:05 0:00:05 0:00:08 0:00:08 0:00:08 0:00:08 0:00:05 0:00:07 0:01:25 0:00:03

too large/vda 1170 1182 1060 1060 1141 1141 1141 1141 1141 1141 7423 1509
0:00:01 0:00:01 0:00:01 0:00:01 0:00:01 0:00:01 0:00:01 0:00:01 0:00:01 0:00:01 0:00:10 0:00:00

1067 1067 1025 1025 1064 1064 1064 1064 1064 1064 1067 1097
0:00:02 0:00:02 0:00:02 0:00:02 0:00:02 0:00:02 0:00:02 0:00:02 0:00:02 0:00:02 0:00:11 0:00:01

vda/alu4 1107 1104 1125 1115 1106 1106 1150 1104 1104 1089 1418 1394
0:00:00 0:00:00 0:00:00 0:00:00 0:00:00 0:00:00 0:00:00 0:00:00 0:00:00 0:00:00 0:00:01 0:00:00

1092 1092 1092 1087 1097 1097 1104 1096 1096 1087 1235 1093
0:00:00 0:00:00 0:00:00 0:00:00 0:00:00 0:00:00 0:00:00 0:00:00 0:00:00 0:00:00 0:00:01 0:00:00

dyn3-gradual dyn3-atonce dyn7-gradual dyn7-atonce
dyn3 dyn7 gradual atonce ratio ratio ratio ratio

size 336616 299825 636736 1300657 0.53 0.26 0.47 0.23
run time 0:05:37 0:08:35 0:36:57 0:01:31 0.15 3.70 0.23 5.66
size (a.s.) 296914 277632 335231 390832 0.89 0.76 0.83 0.71
run time (w.s.) 0:09:48 0:12:22 0:42:56 0:11:00 0.23 0.89 0.29 1.12

Table 2. Experimental results for different solution strat egies for MVO (pairs of circuits), largest BDD

first.

hours:minutes:seconds), the third line gives theBDD sizes
after a final sifting step (if the algorithm does not fail due to
“space out” or “time out”) and the fourth line gives the total
run time including sifting.

The “greedy at once” heuristic gives the smallest run
times (if successful), but has a tendency to exceed the node
limit. If it does finish, theBDD sizes are relatively large.
In contrast, the “greedy gradual” heuristic is slow (there
are many time outs). Also, even in the cases, when it
does finish,BDD sizes are relatively large compared to our
dyn< n > approach even for smaller values ofn. The
dyn<n> approach is able to provide a good trade–off be-
tween run time and quality. While for smaller values of
n the run times are smaller, there are still cases, when the
computation does not finish. Forn equal to seven or larger
all problems could be solved with a reasonable amount of
runtime.

To confirm this analysis we summarize the results at the
bottom of Table 1. We compare dyn3 and dyn7 to the
“greedy gradual” heuristic and the “greedy at once” heuris-
tic. In lines 1–4 we give the sums of the finalBDD sizes,
the run times,BDD sizes after sifting and total run times in-
cluding sifting for all examples, for which both compared
algorithms do not fail.

However, since both the “greedy gradual” heuristic and
the “greedy at once” heuristic fail for 8 out of 14 examples,
wheras dyn3 fails only for 3 examples and dyn7 does not

fail for any example, we conclude that – in contrast to our
dyn< n > heuristic – both the “greedy gradual” heuristic
and the “greedy at once” heuristic seem not to be suitable
for this set of examples.

For a second experiment we have chosen pairs of bench-
mark circuits, for whichBDDs were constructed and opti-
mized separately. After that we transformed theBDDs into
a common variable order. We used all those pairs of circuits
from [9] which were at our disposal. Table 2 shows the re-
sults. As in Table 1, for each pair of circuits the first line
gives the size of the result as a sharedBDD, the second line
gives the run time for the algorithm, the third line gives the
BDD sizes after a final sifting step, and the fourth line gives
the total run time including sifting.

Here all algorithms could finish all examples. Again, at
the bottom of the table the results are summarized. The first
line gives the sum of theBDD sizes, the second the sum
of run times, the third line gives the sum ofBDD sizes af-
ter sifting and, finally, the last line the sum of the total run
times including sifting. In colums 2–5 these sums are given
for dyn3, dyn7, “greedy gradual” and “greedy at once”2.
In columns 6–9 we give the ratios dyn3 to “greedy grad-
ual”, dyn3 to “greedy at once”, dyn7 to “greedy gradual”
and dyn7 to “greedy at once”. dyn3 and dyn7 provide con-
siderable improvements both concerning size and run time

2The differences of sizes compared to [9] are apparently due to different
initial variable orders for the circuits.

6



compared to the “greedy gradual” heuristic. The “greedy at
once” heuristic gives the best run times, but this is acheived
at the cost of much largerBDDs. If we apply a final sifting
step to optimize the variable orders of the results, the ad-
vantage of “greedy at once” with respect to run time is lost,
because largerBDDs have to be sifted.

If we have a closer look at Table 2 we can observe again
that the dyn< n > is able to provide a good trade–off be-
tween run time and quality.

For completeness we repeated the experiments from Ta-
ble 1 and Table 2 starting the algorithm of Section 3 with the
smaller one of the twoBDDs. Results are given in Tables 3
and 4. They are comparable to the results of Tables 1 and 2.
However, since the number of reordering steps, which we
have to allow if we require the transformation into a com-
mon variable order to be successful, has a slight tendency
to increase in this case, we can conclude that our decision
to start with the largerBDD is confirmed.

5 Conclusions

We presented a heuristic to solve the multiple variable
order problem (MVO) for binary decision diagrams. In
contrast to [9] we do not precompute a common variable
order and transform the twoBDDs into this variable order
afterwards, rather we make use of dynamic reordering tech-
niques. The adaption of the variable orders for the two
BDDs proceeds step by step during the computation of the
secondBDD based on its cofactors. Experimental results
prove our approach to be successful in solving the MVO
problem. They also prove, that our approach defines a good
trade–off between run time and quality of the result. In par-
ticular our heuristic dyn<n> with small values forn can
also be used for a fast check if it makes sense to transform
two BDDs into the same variable order or not.

References

[1] S.B. Akers. Binary decision diagrams.IEEE Trans.
on Comp., 27:509–516, 1978.

[2] P. Ashar and S. Malik. Fast functional simulation us-
ing branching programs. InInt' l Conf. on CAD, pages
408–412, 1995.

[3] B. Bollig, M. Löbbing, and I. Wegener. Simulated
annealing to improve variable orderings for OBDDs.
In Int' l Workshop on Logic Synth., pages 5b:5.1–5.10,
1995.

[4] B. Bollig and I. Wegener. Improving the variable or-
dering of OBDDs is NP-complete.IEEE Trans. on
Comp., 45(9):993–1002, 1996.

[5] K.S. Brace, R.L. Rudell, and R.E. Bryant. Efficient
implementation of a BDD package. InDesign Au-
tomation Conf., pages 40–45, 1990.

[6] R.E. Bryant. Graph - based algorithms for Boolean
function manipulation. IEEE Trans. on Comp.,
35(8):677–691, 1986.

[7] R.E. Bryant. Symbolic Boolean manipulation with or-
dered binary decision diagrams.ACM, Comp. Surveys,
24:293–318, 1992.

[8] G. Cabodi, P. Camurati, and S. Quer. Improved reach-
ability analysis of large finite state machines. InInt' l
Conf. on CAD, pages 354–360, 1996.

[9] G. Cabodi, S. Quer, C. Meinel, Harald Sack, A. Slo-
bodová, and C. Stangier. Binary decision diagrams
and the multiple variable order problem. InInt' l Work-
shop on Logic Synth., pages 346–352, 1998.

[10] R. Drechsler, B. Becker, and N. Göckel. A genetic
algorithm for variable ordering of OBDDs. InInt' l
Workshop on Logic Synth., pages 5c:5.55–5.64, 1995.

[11] E. Felt, G York, R. Brayton, and A. Sangiovanni-
Vincentelli. Dynamic Variable Reordering for BDD
Minimization. InEuropean Design Automation Conf.,
pages 130–135, 1993.

[12] H. Fujii, G. Ootomo, and C. Hori. Interleaving based
variable ordering methods for ordered binary decision
diagrams. InInt' l Conf. on CAD, pages 38–41, 1993.

[13] M. Fujita, H. Fujisawa, and N. Kawato. Evaluation
and improvements of Boolean comparison method
based on binary decision diagrams. InInt' l Conf. on
CAD, pages 2–5, 1988.

[14] M. Fujita, Y. Matsunaga, and T. Kakuda. On variable
ordering of binary decision diagrams for the applica-
tion of multi-level synthesis. InEuropean Conf. on
Design Automation, pages 50–54, 1991.

[15] N. Ishiura, H. Sawada, and S. Yajima. Minimization of
binary decision diagrams based on exchange of vari-
ables. InInt' l Conf. on CAD, pages 472–475, 1991.

[16] C.Y. Lee. Representation of switching circuits by bi-
nary decision diagrams.Bell System Technical Jour.,
38:985–999, 1959.

[17] S. Malik, A.R. Wang, R.K. Brayton, and A.L.
Sangiovanni-Vincentelli. Logic verification using bi-
nary decision diagrams in a logic synthesis environ-
ment. InInt' l Conf. on CAD, pages 6–9, 1988.

7



sizes dyn0 dyn1 dyn2 dyn3 dyn5 dyn7 dyn10 dyn15 dyn20 dyn1 gradual atonce

C2670.ex1 104992 space out space out space out space out space out space out space out 256169 141935 time out time out space out
912 1:36:36 1:36:36

140723 137645
1:44:37 1:59:05

C2670.ex2 4127 space out space out space out space out space out space out space out space out 9951 9951 time out space out
244 0:12:51 0:12:59

7683 7683
0:13:20 0:13:20

C3540.ex1 196 space out space out 858941 467518 715498 212740 54997 54997 54997 54997 705331 64955
52756 0:00:25 0:00:16 0:00:23 0:00:22 0:00:27 0:00:27 0:00:27 0:00:28 1:07:26 0:00:03

56285 60089 54703 54997 54997 54997 54997 54997 70299 55088
0:02:45 0:01:33 0:01:48 0:01:05 0:00:56 0:00:56 0:00:56 0:00:57 1:11:45 0:00:38

C3540.ex2 84388 99537 130690 139410 152185 246643 246643 246643 266193 266193 266193 153306 110631
21688 0:01:06 0:01:35 0:02:33 0:03:43 0:06:20 0:06:12 0:05:52 0:11:04 0:10:53 0:11:16 0:24:23 0:00:24

64604 70571 78215 80545 226711 226711 226711 226701 226701 226701 55907 71646
0:02:20 0:02:55 0:03:56 0:05:14 0:10:03 0:09:55 0:09:39 0:14:53 0:14:33 0:15:01 0:25:31 0:01:40

C3540.ex3 98156 230478 206857 190923 234782 255037 278104 272835 300226 300226 255039 392160 204761
21668 0:01:03 0:01:20 0:02:15 0:04:11 0:07:42 0:07:49 0:06:15 0:11:46 0:11:39 0:08:12 1:03:23 0:00:18

148774 149884 148240 145882 153611 156117 155700 147612 147612 153611 178990 144447
0:03:31 0:03:46 0:04:29 0:06:41 0:10:14 0:10:25 0:08:49 0:14:12 0:14:07 0:10:48 1:06:22 0:02:35

C5315.ex1 188920 205198 203269 200666 200566 200610 200594 200510 200550 200550 201170 time out space out
11751 0:03:52 0:04:48 0:06:06 0:05:16 0:09:31 0:07:41 0:05:32 0:05:10 0:04:30 0:08:28

201481 201233 199906 199906 199865 199906 199850 199807 199804 200018
0:08:37 0:09:19 0:10:36 0:09:43 0:14:04 0:12:10 0:10:08 0:09:41 0:09:00 0:12:52

C5315.ex2 188920 space out space out space out space out space out 282012 301696 312605 282012 308648 time out space out
35516 0:31:53 0:37:36 0:34:54 0:31:40 0:31:56

259193 261561 267371 259193 262120
0:39:43 0:45:55 0:43:19 0:39:40 0:39:55

C5315.ex3 18097 space out space out space out 299003 230756 199370 208427 186666 186666 175303 time out 895146
35516 0:03:12 0:10:50 0:20:18 0:19:30 0:16:17 0:16:05 0:13:49 0:00:22

139364 150853 162570 158453 157645 157645 130850 210517
0:07:03 0:14:54 0:24:41 0:23:52 0:20:36 0:20:26 0:17:07 0:08:32

C5315.ex4 8637 space out 622577 1339997 924844 194710 127487 141717 127487 119600 311533 time out space out
35516 0:00:48 0:00:58 0:01:05 0:01:51 0:05:29 0:06:50 0:05:33 0:05:50 0:30:01

153724 132089 137672 125111 118695 128750 118695 116894 77117
0:05:42 0:05:34 0:05:35 0:04:42 0:07:49 0:09:34 0:07:54 0:08:04 0:33:30

C5315.ex5 2398 space out space out space out space out 398179 336139 240391 209973 217170 261045 time out space out
35516 0:01:40 0:05:18 0:11:29 0:12:23 0:12:35 0:17:23

93036 93846 117381 170065 99498 207576
0:04:27 0:08:11 0:14:42 0:17:00 0:15:13 0:23:03

C5315.ex6 18097 space out space out space out 191273 38952 40042 39598 38952 31490 34831 time out space out
8637 0:00:43 0:01:42 0:02:00 0:01:53 0:01:42 0:02:25 0:02:58

32694 36314 28238 28761 36314 29911 31316
0:01:59 0:02:21 0:02:31 0:02:23 0:02:21 0:02:56 0:03:32

C5315.ex7 2398 space out space out space out space out space out space out space out 256399 272591 256399 time out space out
18097 0:20:58 0:18:11 0:21:16

239639 250814 239639
0:26:47 0:24:41 0:27:15

C5315.ex8 11751 87724 68467 49665 49407 49565 49410 49474 49494 49588 47706 224196
35516 0:00:28 0:00:50 0:01:31 0:01:36 0:01:32 0:01:24 0:01:43 0:01:42 0:01:43 0:07:51 0:00:20

60027 51053 49189 49036 49268 49036 49185 49190 49190 39864 85068
0:01:39 0:01:45 0:02:18 0:02:23 0:02:19 0:02:10 0:02:29 0:02:29 0:02:29 0:08:40 0:03:41

C5315.ex9 11751 151525 47904 32809 32952 32901 35325 49476 49476 46876 41893 time out 127274
18097 0:00:17 0:00:40 0:01:20 0:01:18 0:01:27 0:01:24 0:00:50 0:00:50 0:00:57 0:09:47 0:00:08

31950 31835 32175 32175 32183 32174 32202 32202 32182 31808 43919
0:01:27 0:01:18 0:01:52 0:01:50 0:01:59 0:01:56 0:01:26 0:01:26 0:01:29 0:10:27 0:01:36

Table 3. Experimental results for different solution strat egies for MVO (characteristic functions of
circuit clusters for functional simulation), smallest BDD first.

[18] P.C. McGeer, K.L. McMillan, A. Saldanha, A.L.
Sangiovanni-Vincentelli, and P. Scaglia. Fast discrete
function evaluation using decision diagrams. InInt' l
Conf. on CAD, pages 402–407, 1995.

[19] B.M.E. Moret. Decision trees and diagrams. InCom-
puting Surveys, volume 14, pages 593–623, 1982.

[20] A. Narayan, A. Isles, J. Jain, R.K. Brayton, and A.L.
Sangiovanni-Vincentelli. Reachability analysis using
partitioned-robdds. InInt' l Conf. on CAD, pages 388–
393, 1997.

[21] R. Rudell. Dynamic variable ordering for ordered bi-
nary decision diagrams. InInt' l Conf. on CAD, pages
42–47, 1993.

8



dyn0 dyn1 dyn2 dyn3 dyn5 dyn7 dyn10 dyn15 dyn20 dyn1 gradual atonce

C1355/C3540 1096549 648853 426667 159448 165237 167000 167000 167000 165210 165210 389108 809259
0:01:03 0:01:18 0:01:55 0:03:36 0:02:43 0:02:34 0:02:34 0:02:33 0:02:38 0:02:36 0:18:33 0:00:48
161861 133778 133883 133611 149180 129979 129979 129979 149153 149153 166920 160026
0:04:37 0:04:09 0:03:59 0:05:30 0:04:38 0:04:25 0:04:22 0:04:22 0:04:34 0:04:32 0:21:36 0:06:06

C499/C1355 189143 186760 179401 138381 129509 123122 136300 146800 154968 162561 244800 385217
0:01:10 0:01:42 0:02:45 0:05:11 0:04:38 0:04:31 0:04:26 0:04:21 0:04:26 0:04:14 0:17:18 0:00:40
128147 129968 126237 130220 117247 116831 119155 130616 146487 144631 141643 201764
0:03:21 0:03:46 0:04:51 0:07:03 0:06:19 0:06:10 0:06:12 0:06:15 0:06:35 0:06:28 0:20:04 0:04:55

i8/k2 3510 2984 3339 3077 3174 3441 3854 3213 3531 3596 5592 4694
0:00:03 0:00:05 0:00:04 0:00:04 0:00:04 0:00:04 0:00:03 0:00:03 0:00:05 0:00:05 0:01:24 0:00:00

2791 2728 2793 2676 2677 2760 2755 2673 2746 3170 3512 2773
0:00:06 0:00:08 0:00:07 0:00:07 0:00:07 0:00:07 0:00:06 0:00:06 0:00:08 0:00:08 0:01:27 0:00:03

too large/vda 1880 5392 1547 1219 1231 1321 1262 1435 1223 1252 3156 1527
0:00:00 0:00:01 0:00:01 0:00:02 0:00:02 0:00:02 0:00:02 0:00:02 0:00:02 0:00:02 0:00:07 0:00:00

1143 1119 1065 1082 1082 1083 1083 1061 1083 1077 1183 1098
0:00:01 0:00:02 0:00:02 0:00:03 0:00:03 0:00:03 0:00:03 0:00:03 0:00:03 0:00:03 0:00:08 0:00:01

vda/alu4 1353 1342 1142 1205 1204 1276 1223 1190 1190 1190 1428 1580
0:00:00 0:00:00 0:00:00 0:00:00 0:00:00 0:00:00 0:00:00 0:00:00 0:00:00 0:00:00 0:00:01 0:00:00

1226 1078 1085 1076 1076 1089 1087 1076 1076 1076 1152 1320
0:00:00 0:00:00 0:00:00 0:00:00 0:00:00 0:00:00 0:00:00 0:00:00 0:00:00 0:00:00 0:00:01 0:00:00

Table 4. Experimental results for different solution strat egies for MVO (pairs of circuits), smallest BDD

first.

[22] C. Scholl, R. Drechsler, and B. Becker. Functional
simulation using binary decision diagrams. InInt' l
Conf. on CAD, pages 8–12, 1997.

[23] F. Somenzi. CUDD: CU Decision Diagram Pack-
age Release 2.3.0. University of Colorado at Boulder,
1998.

[24] S. Tani, K. Hamaguchi, and S. Yajima.The Com-
plexity of the Optimal Variable Ordering Problem of
Shared Binary Decision Diagrams, volume 762 of
LNCS. Proc. ISAAC' 93, 1993.

9


