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Abstract

Reduced Ordered Binary Decision DiagramgogDbs) gained
widespread use in logic design verification, test generatfault
simulation, and logic synthesis [16, 7]. Since the size ak@BDD
heavily depends on the variable order used, there is a straagl

this process is a partition of the circuit into clusters. Ppeed up
cycle based functional simulation for the output functiofithese
clusters (primary outputs or cut points) tResDDs of the corre-
sponding characteristic functionsare computedx( (i, . .
O1,... ,Om) = /\anl(oi = fi(il, ey

put functions and; are corresponding output variables). Then the

<5 ln,

in)), Wheref; are the out-

to find variable orders that minimize the number of nodes in an characteristic functions of the clusters are evaluatedpolbgical

ROBDD. In certain applications we have to cope witbBDDs with
different variable orders, whereas further manipulatiafsthese

order.
In the partitioning approach of [21] we use variable reorder

ROBDDS require common variable orders. In this paper we solve jng to minimize the sizes of the characteristic functiorsasately.

the problem to transfornRoBDDs with different variable orders

However, to minimize the evaluation time the number of @tst

into a good common variable order. To do so, we make use of dy- has to be minimized, i.e. it is checked whether pairs of ehsstan

namic variable ordering techniques.

1 Introduction

Binary Decision DiagramsB(pDs) as a data structure for represen-

tation of Boolean functions were first introduced by Lee [a5H
further popularized by Akers [1] and Moret [18]. In the réstd
form of ROBDDs they gained widespread use, becarseDDs are
a canonical representation and allow efficient maniputatifs].
Some fields of application are logic design verificationt tgmn-
eration, fault simulation, and logic synthesis [16, 7]. Mosthe
algorithms usingroBDDs have run time polynomial in the size of

the ROBDDs. The sizes themselves depend on the variable order

used. Thus, there is a need to find a variable order that niesni
the number of nodes in &®0BDD.

The existing heuristic methods for finding good variablecosd
can be classified into two categories: initial heuristicsohiderive
an order by inspection of a logic circuit [16, 12, 13, 11] and d
namic reordering heuristics which try to improve on a giveteo
[14, 20, 10, 3, 9]. Sifting introduced by Rudell [20] has egest
so far as the most successful algorithm for dynamic reandesf
variables. This algorithm is based on finding the local optim
position of a variable, assuming all other variables renfixed.
The position of a variable in the order is determined by mgire
}(arigble to all possible positions while keeping the othamiables
ixed.

In this paper we deal with the fact that certain applicatiosge

to cope withRoOBDDs represented with different variable orders.

Then we have to solve the problem to transfatoBDDs with dif-
ferent variable orders into a common variable order. Thidjam
is calledmultiple variable ordeiproblem in [23].

One application of this type is reachability analysis and fo
mal verification using partitionegoBDDs [19]: ROBDDS are par-
titioned, i.e. decomposed into swBBDDS. In this way the ap-
plication can deal with eacRoBDD separately and optimize their
sizes independently. For image computation however Baabga

be merged into one. To do so, thR®BDDs for the characteristic
functions are transformed into the same variable ordersttzew
an AND operation is applied to thRoBDDs. The merging is ac-
cepted, when the result is smaller than a certain size liimitthis
special application the fact, that it is not possible to $farm the
ROBDDs for the characteristic functions into a common variable or
der within a certain node limit for theoBDDs, can be accepted,
since the algorithm still works although we might lose otyadif
the result.) For reasons of run time efficiency it can makesesen
to decide early, if the transformation into a common vagatider
works or should be aborted.

In [23] the problem to transform twROBDDs into a common
variable order is solved by inspection of the two variabldeos,
computation of an intermediate variable order based orettves
variable orders and a transformation of the tRoBDDs into the
intermediate variable order by level exchanges. In contoaghis
approach we use dynamic reordering techniques [20] toftrems
the tworROBDDS into a common variable order and thereby dynam-
ically adapt the ordering to the resulting newsDDs. Experimen-
tal results demonstrate that in our approach time can bedrafi
for quality of the result by allowing reordering for adaptiof the
ordering more frequently. Compared to [23], we significamth-
prove the size of the finatoBDDs within a reasonable amount of
runtime.

The paper is structured as follows: In Section 2 we give & brie
review of BDDS. In Section 3 we give a theoretical background and
we present our heuristic to transform tR@BDDS into a common
variable order, in Section 4 we show some experimentalteant]
Section 5 concludes the paper.

2 Preliminaries

BDDS are representations of Boolean functions. In the resttict
form of ROBDDs they even provide canonical representations. As
defined in [6],ROBDDSs are ordered, i.e. on each path from their
root to a terminal node each input variable occurs only omze a

erations foRoBDDs represented with different variable orders have on each path the input variables occur in the same order.eSinc

to be performed. Thus, at first they are transformed into &nees
variable order.

Moreover, it has been suggested [8] thatBDDs are used to
communicate between different synthesis and verificatomist

we work only withroBDDs in the following we briefly call them
BDDS.

Given a variable order for the input variables of functiorf
there is a uniqueDD using variable ordefr, which is denoted by

ROBDDs are dumped to files by one tool and undumped by other DD, (#) in this paper. It is well known that the size oBaD is

tools. If theROBDDs originate from different tools, it is clear that
they can have different variable orders.

Another application for the multiple variable order prahlec-
curs in connection with functional simulation [2, 17, 21]ngsbi-
nary decision diagrams. In these approackesDDs for circuits
are computed and then used for compiler-driven simulatido.

largely influenced by the choice of the variable ordering [6]
Dynamic reordering [20] allowsDDs to adapt to the changing
functions as computation proceeds. WiB&m sizes grow too large
during the computation of a Boolean operation, the comjmurtas
aborted, allBDDs computed so far are minimized by a transfor-
mation to another order using a dynamic reordering heasisitke

control theROBDD sizes intermediate variables are introduced as sifting and the operation is tried again. The operation isrtsal,

cut points based on size limits for tiRBDD sizes. The result of



when the node number would exceed some reordering limit- Usu
ally, the reordering limit is initialized to some smallember to re-
order alsaBDDs at the beginning of a series BbD computations,
which are typically smaller, and is increased step by stejpgihe
computation until it reaches an absolute node limit [22].

3 The Multiple Variable Order Problem

Suppose we have two Boolean functighandg, which are repre-
sented byspbs BD D, (f) and BD D~ (g), respectively. Then

the solution of theMultiple Variable Orderproblem (MVO) for
BDDx,(f) andBDD- ,(g) means the following:

Find a variable order,g, such that the sizes @D D=, , (f)
andBDDx,  (g) assharedspp [5] are minimized.

3.1 Theoretical background

From the NP completeness of the variable ordering problam fo
single BDDs [24, 4] we can easily conclude that the task to solve

MVO exactly is a hard problefn
Theorem 1 MVO is an NP complete problem.

Furthermore it can be shown that there are pairs of Boolean
functions, where a blow up of th&bD sizes compared to trebD
sizes of the singlebDs can not be avoided, since it is not possible
to find an efficientommorvariable order for the tw@bbs. The
following theorem gives an example for such a case.

Theorem2 Let f = VI, /\;-L:1 z;j andg = ?:1 N, zij.
There are variable orders; and m; such thatBDD-,(f) and
BDD:-,(g) have (optimal) sizea” + 2, respectively, but for all
variable ordersm BDD,(f) or BDD, (g) has a size of at least
2%,

l.e. f andg in Theorem 2 can be represented efficiently, when

different orders forf and g are allowed, but there is no common
variable order, which leads to efficient representatiomdih f

andg®.

3.2 Solution of MVO
Here we present a heuristic to solve MVO approximately.

The same problem was already studied by Stangier et al. in that we

[23]. They solve the problem by computation of an intermtdia
variable orderr¢ , based onry andw,. Then a transformation

of BDD-,(f) andBDDr,(g) to my,4 by level exchanges is per-
formed. In contrast to this approach we use dynamic reargeri
techniques [20] to transform the tvemDs into a common variable
ordery , which thereby is dynamically adapted to the currently
involved BDDS.

First of all, we choose the larger one of the t®DDs to start
with. W.I.0.g. assume thd@ D D, (f) is the largeBDD. Now we
transformcofactorsof g step by step to the order of tls®D for f.

More precisely, we traversBD D, (g) in a depth first man-
ner and transform cofactors gf which correspond to nodes in
BDD-,(g) into the order of thesbp for f. Suppose the cur-
rent order of theabD BDD-._,,(f) for f is m,q and suppose we
have reached nodeof BDD, , (g) labeled by variable:;. Since
we traverseBD D, (g) depth first, we have already computed for
low—sonlow(v) and high—somigh(v) BDDx ,,(giow(v)) and
BDDx,,(gnigh(v)), Which have the same variable order as
BDD-,,,(f). Now we simply compute in variable ordet,4
the if-then—else operatiame(z;, BDDx ,,(Giow(v)), BDDx,, (

7o prove that MVO is NP hard, we simply have to add a functiohic does not
depend on the variable order, e.g. the constant 1 functiamainsform an instance of
the variable ordering problem for singt®Ds into a corresponding instance of MVO

2The lower bound for the size @8 DD, (f) or BDD~(g) can be proved by

introducing a cut line after the first- variables. Further details of the proof are
omitted due to lack of space.

Grigh(v)))- The result is a representation for the functigrrepre-
sented at node of BD D, (g), now in same variable order as the
BDD for f.

During the computation of the ne®wpp for g, by ite(z;,
BDD:x,,(Giow(v))s BDDx_,, (ghigh())), We usedynamic reorder-
ing. If the reordering limit is exceeded during this computatio
dynamic reordering (sifting) is applied to simultaneousiynimize
theBDDs for f and allBDDs computed in variable ordet,;; so far.

If dynamic reordering does not give up, after the call of agien
ite we haveBDDs for f, g, and all other functions for nodes of
visited so far in a (possibly new) variable ordsy.., .

In this way we compute step by step variable orders, which are
good both forf and cofactors off and finally we have a variable
order, which is also good far. The adaption of the variable orders
for theBDDs for f andg proceeds step by step during the compu-
tation of theBDD for g based on cofactors gf

There still remains one point: In many applications dynamic
reordering produces good results, but tends to slow dowrpaem
tation times by frequent reorderings.

For this reason we restrict dynamic reordering here. We-intr
duce an upper limit for the number of reordering steps. Wentou
the number of reorderings during the adaption of the vaziaipt
ders forf andg and if this limit would be exceeded, the operation
fails with the parameters currently used. This decisiondsivated
by our clustering approach for functional simulation [2¥e do
not want to spend too much time on the computation of a common
variable order for two clusters, which is likely to fail inghend or
to produce hug@DDs. Moreover, it is clear, that the introduction
of such a limit for the number of reorderings defines a traffle-o
between run time and the quality of the result in this apfiica

Finally, we have to adjust the initial reordering limit, ifewe-
strict the number of reorderings. If we have chosen only allsma
number of reorderings, we do not want to waste the limitedirem
of reordering steps by too early reorderings, which areqperéd
for smallBDDs and which are not yet absolutely necessary. There-
fore we choose the higher initial reordering limit the sreathe
allowed number of reorderings is. The initial reorderingitiis
chosen based on the allowed number of reorderingsreorder
and on the sizes of thebbs for which a common variable or-
der has to be computed. For our practical experiments we use
size(BDD-, (f)) + (si2c(BD D=4 9) o5 initial reordering limit.

maxreorder+1

It it clear that the algorithm can be easily extended to tleca
have to compute common variable orders for ses®06
BDDx,(f1)),... BDDx,(fy)) with variable ordetr; andBDDs
BDD-x,(g1)),... BDDx,(gm)) with variable ordetry. Then we
simply perform a bottom up construction®bDs forgs, g2, - . ., gm
starting with variable ordet; as described above. Of course, iden-
tical nodes/cofactors af; have to be visited only once.

4 Experimental Results

To evaluate our heuristic for the MVO problem, we integrated
heuristic in the CUDD package [22]. In a first experiment we us
data originating from our approach for functional simwati21]
for larger circuits. We selected the last tries for clusterging for
different circuits (successful or not in our original alglom), since

at the end of the algorithm clusters are getting larger aacetore
harder problems must be solved.

The experiments were performed on a SPARC 20 (256MB mem-
ory). The CPU time was limited to 2 hours and the node limit for
theBDD package was 2000000.

We tried several choices for the maximum number of reorder-
ings during the computation of common variable orders. Eie r
sults are summarized in Table 1. In the second column the size
of the twoBDDs (humber of nodes) are given for which MVO has
to be solved. (Note that thebDs represent not the output func-
tions, but the characteristic functions for the cluster€9lumns
dyn< n > show the results for our approach withas the max-
imum number of reorderings. dynO, e.g., is the algorithmemvh
absolutely no reordering is allowed. The results are coath&w
the “greedy gradual” heuristic and the “greedy at once” tstiar



[ [ sizes] dyn0 | dynl ] dyn2 ] dyn3 ] dyn5] dyn7] dynI0 [ dynlS] dyn20] dynl0O0 [ gradual] atonce |
C2670.ex1[] 104992 space out] 145586 122765 125226 125226 | 125226 | 125226 | 125226 | 125226 125226 time out | space out
912 0:09:29 0:17:19 0:28:40 0:28:35 | 0:28:43 | 0:29:54 | 0:28:34 | 0:28:36 | 0:28:37
118451 109654 101180 101180 | 101180 | 101180 | 101180 | 101180 | 101180
0:15:03 0:21:54 0:32:54 0:32:52 | 0:32:58 | 0:34:17 | 0:32:48 | 0:32:49 | 0:32:50
C2670.ex2 4127 | space out| space out| 119610 108120 37060 15383 15383 15383 15383 15383 || time out | space out
244 0:00:33 0:00:47 0:01:42 | 0:02:36 | 0:02:48 | 0:02:36 | 0:02:38 | 0:02:37
15198 15177 23709 10639 10639 10639 10639 10639
0:01:21 0:01:36 0:02:27 | 0:02:45 | 0:03:09 | 0:02:55 | 0:02:58 | 0:02:57
C3540.ex1 196 57001 57001 57001 60722 60722 60722 60722 60722 60722 60722 /0090 64530
52756 0:00:32 0:00:31 0:00:31 0:00:31 0:00:31 | 0:00:31 | 0:00:35 | 0:00:31 | 0:00:31 | 0:00:31 | 0:00:31 0:00:05
55004 55004 55004 55051 55051 55051 | 55051 55051 55051 | 55051 57563 55086
0:01:03 0:01:02 0:01:02 0:01:04 0:01:03 | 0:01:03 | 0:01:09 | 0:01:03 | 0:01:04 | 0:01:04 || 0:01:03 0:00:41
C3540.ex2|| 84388 286704 314854 72498 71873 72680 73624 73564 | 78076 78076 75905 || 205749 110615
21688 0:01:31 0:03:25 0:05:06 0:04:52 0:05:05 | 0:04:39 | 0:04:57 | 0:04:39 | 0:04:31 | 0:04:33 || 0:31:37 0:00:39
236898 98558 58936 54264 60122 61009 | 61009 63175 63175 | 68260 49920 71662
0:06:20 0:06:17 0:05:50 0:05:33 0:05:51 | 0:05:23 | 0:05:44 | 0:05:27 | 0:05:17 | 0:05:35 || 0:32:57 0:01:51
C3540.ex3|| 98156 447188 239800 163033 155520 155148 | 155148 | 155432 | 155148 153823 | 155866 || 192355 204761
21668 0:01:57 0:03:53 0:06:39 0:07:09 0:06:55 | 0:06:44 | 0:06:58 | 0:06:39 | 0:06:41 | 0:06:37 || 0:42:13 0:00:28
145923 144122 147264 148754 143755 | 143755 | 143832 | 143755 | 146977 | 144036 || 157765 144447
0:05:24 0:06:32 0:09:01 0:09:55 0:09:33 | 0:09:22 | 0:09:43 | 0:09:17 | 0:09:22 | 0:09:15 0:45:17 0:03:14
C5315.ex1|| 188920 | space out| 220903 203993 201828 201735 | 202288 202288 | 230055 | 204426 | 302024 || 458547 | space out
11751 0:11:05 0:17:43 0:18:06 0:18:30 | 0:18:08 | 0:19:00 | 0:11:18 | 0:18:12 | 0:43:12 || 1:10:29
200839 199912 199598 199760 | 199797 | 199797 | 202378 | 199444 | 212236 || 232780
0:16:55 0:23:12 0:23:34 0:24:00 | 0:23:37 | 0:24:47 | 0:17:20 | 0:23:43 | 0:50:33 1:18:35
C5315.ex2|| 188920 | space out 716291 3/6/732 3/6/732 376732 376732 365118 361214 | 361214 | 368964 || time out | space out
35516 0:14:46 0:29:08 0:29:00 0:28:58 | 0:28:57 | 0:28:30 | 0:28:10 | 0:27:55 | 0:29:00
273153 276196 276196 276196 | 276196 | 258027 | 256603 | 256603 | 278832
0:27:17 0:42:12 0:42:05 0:42:10 | 0:42:05 | 0:40:04 | 0:39:26 | 0:39:04 | 0:41:15
C5315.ex3 18097 | space out| space out| space out| space out] 286943 | 182825 182745 156600 [ 168679 | 184384 || time out 560943
35516 0:10:46 | 0:19:43 | 0:20:43 | 0:21:31 | 0:24:10 | 0:22:23 0:00:26
153997 | 151126 | 151332 | 138037 | 145901 | 149515 180645
0:15:28 | 0:24:21 | 0:25:31 | 0:25:17 | 0:28:32 | 0:27:02 0:08:34
C5315.ex4 8637 | space out| space out|] 370998 155056 155408 | 156389 | 161587 | 157407 | 157403 | 161820 || time out | space out
35516 0:03:32 0:06:17 0:06:18 | 0:06:04 | 0:05:43 | 0:06:01 | 0:06:00 | 0:07:13
131756 133691 133886 | 132412 | 133563 | 132418 | 132418 | 132699
0:07:09 0:09:24 0:09:26 | 0:09:08 | 0:08:49 | 0:09:06 | 0:09:04 | 0:10:16
C5315.ex5 2398 | space out| space out| space out| spaceout| 443812 184731 96672 | 190164 | 102216 | 102216 || time out | space out
35516 0:15:02 | 0:27:20 | 0:31:40 | 0:20:38 | 0:25:12 | 0:25:16
109155 | 90581 | 84482 90468 76107 | 76107
0:19:08 | 0:29:52 | 0:33:51 | 0:23:28 | 0:26:55 | 0:26:59
C5315.ex6 18097 | space out| 135979 58591 32701 33151 32050 [ 33150 | 33150 33150 | 32099 || 489577 | space out
8637 0:00:38 0:00:53 0:01:25 0:01:24 | 0:01:23 | 0:01:24 | 0:01:24 | 0:01:23 | 0:01:49 || 1:19:15
32278 28495 29022 29022 27537 | 29021 29021 29021 | 28382 42425
0:01:32 0:01:28 0:01:50 0:01:50 | 0:01:48 | 0:01:50 | 0:01:49 | 0:01:49 | 0:02:15 | 1:21:59
C5315.ex7 2398 | space out| space out| space outf| space out| space out| 347442 275216 | 364031 | 364031 364031 || time out | space out
18097 0:32:11 | 0:58:47 | 1:06:54 | 1:07:13 | 1:07:02
205731 | 216581 | 187474 | 187474 | 187474
0:40:02 | 1:06:00 | 1:13:52 | 1:14:14 | 1:14:01
C5315.ex8 11751 68902 56510 51201 51443 52836 52845 52811 52795 52771 55921 || time out 224196
35516 0:00:31 0:01:06 0:02:17 0:02:15 0:01:04 | 0:01:12 | 0:01:03 | 0:01:01 | 0:01:04 | 0:02:36 00:00:34
49954 49145 49031 49337 49417 | 49415 49395 | 49395 | 49395| 48749 85068
0:01:22 0:01:50 0:03:01 0:03:00 0:01:47 | 0:01:57 | 0:01:45| 0:01:44 | 0:01:50 | 0:03:21 00:04:21
C5315.ex9 11751 44267 32877 33783 34041 33782 33783 33783 33807 33807 35197 || time out 127274
18097 0:00:16 0:00:36 0:01:02 | 00:01:03 0:01:02 | 0:01:02 | 0:01:00 | 0:01:01 | 0:01:00 | 0:02:19 0:00:11
32221 32032 33388 33414 33387 33388 | 33388 | 33388 33388 | 32102 44089
0:00:44 0:01:00 0:01:27 | 00:01:29 0:01:27 | 0:01:27 | 0:01:25| 0:01:27 | 0:01:26 | 0:02:45 0:01:30
dyn3 dyn7
dyn3-gradual dyn3-atonce dyn7-gradual dyn7-atonce
dyn3 | gradual | ratio dyn3 | atonce| ratio dyn7 | gradual | ratio dyn7 atonce | ratio
size 522644 | 1416318 0.37 || 373599 731376 | 0.51 |[ 523823 | 1416318 0.37 || 558947 | 1292319 0.43
run time 0:32:03 3:44:05| 0.14 ]| 0:15:50 | 0:01:57 | 8.12 || 0:31:25 3:44:05| 0.14 || 0:33:51 0:02:23 | 14.20
size (a.s.) 486689 | 540453 | 0.90 || 340820 | 400352 | 0.85 [[ 487149 540453 | 0.90 || 493744 580997| 0.85
runtime (w.s.) || 0:41:56 | 3:59:551 | 0.17 || 0:221:01 | 0:11:37 | 1.81 || 0:41:13| 359561 | 0.17 || 0:43: 11| 0:20:11| 2.14

Table 1: Experimental results for different solution sgies for MVO (characteristic functions of circuit clustdéor functional simulation).

from [23] (columns greedy and atonce). For each examplether
are four lines in the table. The first line gives the size ofrdmult

as a share@pbD. The second line gives the run time for the al-
gorithm (in format hours:minutes:seconds), the third tjnees the
BDD sizes after a final sifting step (if the algorithm does not fai
due to “space out” or “time out”) and the fourth line gives tbtal

run time including sifting.

The “greedy at once” heuristic gives the smallest run tinifes (
successful), but has a tendency to exceed the node limttddfeis
finish, theBDD sizes are relatively large. In contrast, the “greedy
gradual” heuristic is slow (there are many time outs). A&en in
the cases, when it does finispD sizes are relatively large com-
pared to our dyr n > approach even for smaller valuesrof The
dyn< n > approach is able to provide a good trade—off between run
time and quality. While for smaller values afthe run times are
smaller, there are still cases, when the computation dasfnigh.
Forn equal to seven or larger all problems could be solved with a
reasonable amount of runtime.

To confirm this analysis we summarize the results at the tyotto
of Table 1. We compare dyn3 and dyn7 to the “greedy gradual”

heuristic and the “greedy at once” heuristic. In lines 1-4give
the sums of the fina DD sizes, the run time®DD sizes after sift-
ing and total run times including sifting for all examplest Which
both compared algorithms do not fail.

However, since the “greedy gradual”’ heuristic fails for @ ou
of 14 examples and the “greedy at once” heuristic fails fou8 o
of 14 examples, wheras dyn3 fails only for 3 examples and dyn7
does not fail for any example, we conclude that — in contastit
dyn< n > heuristic — both the “greedy gradual” heuristic and the
“greedy at once” heuristic seem not to be suitable for thtsofe
examples.

For a second experiment we have chosen pairs of benchmark
circuits, for whichBDDs were constructed and optimized sepa-
rately. After that we transformed tiB®Ds into a common variable
order. We used all those pairs of circuits from [23] which evat
our disposal. Table 2 shows the results. As in Table 1, foh eac
pair of circuits the first line gives the size of the result ashared
BDD, the second line gives the run time for the algorithm, thedthi
line gives theBDD sizes after a final sifting step, and the fourth line
gives the total run time including sifting.



[ [ dyn0O] dynI[ dyn2] dyn3] dyn5] dyn7] dynI0O] dynlIS] dyn20] dynlOO [ gradual| atonce]
C1355/C3540]] 214548 174106 | 153335 | 158287 [ 147200 | 138944 139500 | 154401 141189 146972 || 389563 | 809263
0:01:06 | 0:01:36 | 0:02:51 | 0:02:40 | 0:04:58 | 0:03:36 | 0:03:37 | 0:03:30 | 0:03:35 | 0:04:30 || 0:20:46 | 0:00:46
155391 | 144242 | 144856 | 145780 | 145260 | 131953 | 131427 | 150047 | 130955 | 142919 || 168145 | 159984
0:04:14 | 0:04:04 | 0:05:08 | 0:05:00 | 0:07:16 | 0:05:38 | 0:05:34 | 0:05:58 | 0:05:38 | 0:06:48 || 0:24:26 | 0:07:08
C499/C1355 385108 | 217017 | 203498 | 171798 151366 | 154988 157947 | 165170 | 154553 | 146055 || 232696 | 483845
0:01:59 | 0:01:38 | 0:02:20 | 0:03:00 | 0:03:17 | 0:05:30 | 0:05:04 | 0:04:54 | 0:05:35 | 0:03:05 || 0:18:13 | 0:00:46
186691 | 174452 | 153742 | 145406 | 146239 | 139940 | 133187 | 143963 | 149848 | 133859 || 161276 | 225308
0:06:01 | 0:04:59 | 0:05:24 | 0:05:27 | 0:05:48 | 0:07:47 | 0:07:16 | 0:07:14 | 0:08:19 | 0:05:31 || 0:21:37 | 0:05:54
18/k2 3729 3781 4096 4356 3661 3646 3579 3615 4158 3667 5636 1646
0:00:02 | 0:00:01 | 0:00:01 | 0:00:01 | 0:00:02 | 0:00:03 | 0:00:02 | 0:00:02 | 0:00:01 | 0:00:03 || 0:00:44 | 0:00:00
3609 3592 3638 3616 3617 3578 3507 3556 3557 3529 3508 3350
0:00:03 | 0:00:02 | 0:00:03 | 0:00:02 | 0:00:04 | 0:00:04 | 0:00:04 | 0:00:04 | 0:00:02 | 0:00:04 || 0:00:45 | 0:00:01
toolarge/vda 1170 1182 1060 1060 1141 1141 1141 1141 1141 1141 7423 1509
0:00:01 | 0:00:01 | 0:00:01 | 0:00:01 | 0:00:01 | 0:00:01 | 0:00:00 | 0:00:01 | 0:00:01 | 0:00:01 || 0:00:06 | 0:00:00
1067 1067 1025 1025 1064 1064 1064 1064 1064 1064 1067 1097
0:00:01 | 0:00:01 | 0:00:01 | 0:00:01 | 0:00:01 | 0:00:01 | 0:00:01 | 0:00:01 | 0:00:01 | 0:00:01 || 0:00:06 | 0:00:00
vda/alud 1107 1104 1125 1115 1106 1106 1150 1104 1104 1130 1418 1394
0:00:00 | 0:00:00 | 0:00:00 | 0:00:00 | 0:00:00 | 0:00:01 | 0:00:00 | 0:00:01 | 0:00:00 | 0:00:00 || 0:00:00 | 0:00:00
1092 1092 1092 1087 1097 1097 1104 1096 1096 1097 1235 1093
0:00:00 | 0:00:00 | 0:00:01 | 0:00:00 | 0:00:00| 0:00:01 ] 0:00:00 | 0:00:01 | 0:00:01 | 0:00:00 || 0:00:01 | 0:00:01

dyn3-gradual| dyn3-atonce| dyn7-gradual| dyn7-atonce

dyn3 dyn7 | gradual | atonce ratio ratio ratio ratio

size 336616 | 299825 | 636736 | 1300657 0.53 0.26 0.47 0.23

run time 0:05:42 | 0:09:11 | 0:39:49 | 0:01:32 0.14 3.72 0.23 5.99

size (a.s.) 296914 | 277632] 335231 390832 0.89 0.76 0.83 0.71

run time (w.s.) || 0:10:30 | 0:13:31 | 0:46:55 | 0:13:04 0.22 0.80 0.29 1.03

Table 2: Experimental results for different solution stgies for MVO (pairs of circuits).

Here all algorithms could finish all examples. Again, at tbe b [6]
tom of the table the results are summarized. The first linegjikie
sum of theBDD sizes, the second the sum of run times, the third 7]
line gives the sum oBDD sizes after sifting and, finally, the last
line the sum of the total run times including sifting. In cols 2-5
these sums are given for dyn3, dyn7, “greedy gradual” anecty (6]
atonce®. In columns 6-9 we give the ratios dyn3 to “greedy grad-
ual”, dyn3 to “greedy at once”, dyn7 to “greedy gradual” aryd d o
to “greedy at once”. dyn3 and dyn7 provide considerable avgr
ments both concerning size and run time compared to thedgree [10]
gradual” heuristic. The “greedy at once” heuristic gives best
run times, but this is acheived at the cost of much laggeps. If
we apply a final sifting step to optimize the variable orddrthe [11]

results, the advantage of “greedy at once” with respectndime
is lost, because larg@®DDs have to be sifted. [12]

If we have a closer look at Table 2 we can observe again that
the dyn< n > is able to provide a good trade—off between run time
and quality.

[13]
5 Conclusions

[14]
We presented a heuristic to solve the multiple variable ropdeb-
lem (MVO) for binary decision diagrams. In contrast to [233w  [15]
do not precompute a common variable order and transfornwibie t
BDDs into this variable order afterwards, rather we make usg-ofd ¢

namic reordering techniques. The adaption of the variatilers
for the twoBDDS proceeds step by step during the computation of
the secon@®DD based on its cofactors. Experimental results prove
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our approach to be successful in solving the MVO problem.yThe [
also prove, that our approach defines a good trade—off batwee
time and quality of the result. (18]
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