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Abstract

Reduced Ordered Binary Decision Diagrams (ROBDDs) gained
widespread use in logic design verification, test generation, fault
simulation, and logic synthesis [16, 7]. Since the size of anROBDD
heavily depends on the variable order used, there is a strongneed
to find variable orders that minimize the number of nodes in an
ROBDD. In certain applications we have to cope withROBDDs with
different variable orders, whereas further manipulationsof these
ROBDDs require common variable orders. In this paper we solve
the problem to transformROBDDs with different variable orders
into a good common variable order. To do so, we make use of dy-
namic variable ordering techniques.

1 Introduction

Binary Decision Diagrams (BDDs) as a data structure for represen-
tation of Boolean functions were first introduced by Lee [15]and
further popularized by Akers [1] and Moret [18]. In the restricted
form of ROBDDs they gained widespread use, becauseROBDDs are
a canonical representation and allow efficient manipulations [6].
Some fields of application are logic design verification, test gen-
eration, fault simulation, and logic synthesis [16, 7]. Most of the
algorithms usingROBDDs have run time polynomial in the size of
the ROBDDs. The sizes themselves depend on the variable order
used. Thus, there is a need to find a variable order that minimizes
the number of nodes in anROBDD.

The existing heuristic methods for finding good variable orders
can be classified into two categories: initial heuristics which derive
an order by inspection of a logic circuit [16, 12, 13, 11] and dy-
namic reordering heuristics which try to improve on a given order
[14, 20, 10, 3, 9]. Sifting introduced by Rudell [20] has emerged
so far as the most successful algorithm for dynamic reordering of
variables. This algorithm is based on finding the local optimum
position of a variable, assuming all other variables remainfixed.
The position of a variable in the order is determined by moving the
variable to all possible positions while keeping the other variables
fixed.

In this paper we deal with the fact that certain applicationshave
to cope withROBDDs represented with different variable orders.
Then we have to solve the problem to transformROBDDs with dif-
ferent variable orders into a common variable order. This problem
is calledmultiple variable orderproblem in [23].

One application of this type is reachability analysis and for-
mal verification using partitioned-ROBDDs [19]: ROBDDs are par-
titioned, i.e. decomposed into sub–ROBDDs. In this way the ap-
plication can deal with eachROBDD separately and optimize their
sizes independently. For image computation however Boolean op-
erations forROBDDs represented with different variable orders have
to be performed. Thus, at first they are transformed into the same
variable order.

Moreover, it has been suggested [8] thatROBDDs are used to
communicate between different synthesis and verification tools.
ROBDDs are dumped to files by one tool and undumped by other
tools. If theROBDDs originate from different tools, it is clear that
they can have different variable orders.

Another application for the multiple variable order problem oc-
curs in connection with functional simulation [2, 17, 21] using bi-
nary decision diagrams. In these approachesROBDDs for circuits
are computed and then used for compiler-driven simulation.To
control theROBDD sizes intermediate variables are introduced as
cut points based on size limits for theROBDD sizes. The result of

this process is a partition of the circuit into clusters. To speed up
cycle based functional simulation for the output functionsof these
clusters (primary outputs or cut points) theROBDDs of the corre-
sponding characteristic functions� are computed (�((i
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are corresponding output variables). Then the
characteristic functions of the clusters are evaluated in topological
order.

In the partitioning approach of [21] we use variable reorder-
ing to minimize the sizes of the characteristic functions separately.
However, to minimize the evaluation time the number of clusters
has to be minimized, i.e. it is checked whether pairs of clusters can
be merged into one. To do so, theROBDDs for the characteristic
functions are transformed into the same variable orders andthen
an AND operation is applied to theROBDDs. The merging is ac-
cepted, when the result is smaller than a certain size limit.(In this
special application the fact, that it is not possible to transform the
ROBDDs for the characteristic functions into a common variable or-
der within a certain node limit for theROBDDs, can be accepted,
since the algorithm still works although we might lose quality of
the result.) For reasons of run time efficiency it can make sense
to decide early, if the transformation into a common variable order
works or should be aborted.

In [23] the problem to transform twoROBDDs into a common
variable order is solved by inspection of the two variable orders,
computation of an intermediate variable order based on these two
variable orders and a transformation of the twoROBDDs into the
intermediate variable order by level exchanges. In contrast to this
approach we use dynamic reordering techniques [20] to transform
the twoROBDDs into a common variable order and thereby dynam-
ically adapt the ordering to the resulting newROBDDs. Experimen-
tal results demonstrate that in our approach time can be traded off
for quality of the result by allowing reordering for adaption of the
ordering more frequently. Compared to [23], we significantly im-
prove the size of the finalROBDDs within a reasonable amount of
runtime.

The paper is structured as follows: In Section 2 we give a brief
review ofBDDs. In Section 3 we give a theoretical background and
we present our heuristic to transform twoROBDDs into a common
variable order, in Section 4 we show some experimental results and
Section 5 concludes the paper.

2 Preliminaries

BDDs are representations of Boolean functions. In the restricted
form of ROBDDs they even provide canonical representations. As
defined in [6],ROBDDs are ordered, i.e. on each path from their
root to a terminal node each input variable occurs only once and
on each path the input variables occur in the same order. Since
we work only withROBDDs in the following we briefly call them
BDDs.

Given a variable order� for the input variables of functionf
there is a uniqueBDD using variable order�, which is denoted by
BDD

�

(f) in this paper. It is well known that the size of aBDD is
largely influenced by the choice of the variable ordering [6].

Dynamic reordering [20] allowsBDDs to adapt to the changing
functions as computation proceeds. WhenBDD sizes grow too large
during the computation of a Boolean operation, the computation is
aborted, allBDDs computed so far are minimized by a transfor-
mation to another order using a dynamic reordering heuristics like
sifting and the operation is tried again. The operation is aborted,



when the node number would exceed some reordering limit. Usu-
ally, the reordering limit is initialized to some smaller number to re-
order alsoBDDs at the beginning of a series ofBDD computations,
which are typically smaller, and is increased step by step during the
computation until it reaches an absolute node limit [22].

3 The Multiple Variable Order Problem

Suppose we have two Boolean functionsf andg, which are repre-
sented byBDDsBDD

�

f

(f) andBDD

�

g

(g), respectively. Then
the solution of theMultiple Variable Orderproblem (MVO) for
BDD

�

f

(f) andBDD

�

g

(g) means the following:
Find a variable order�

f;g

, such that the sizes ofBDD

�

f;g

(f)

andBDD

�

f;g

(g) assharedBDD [5] are minimized.

3.1 Theoretical background

From the NP completeness of the variable ordering problem for
single BDDs [24, 4] we can easily conclude that the task to solve
MVO exactly is a hard problem1.

Theorem 1 MVO is an NP complete problem.

Furthermore it can be shown that there are pairs of Boolean
functions, where a blow up of theBDD sizes compared to theBDD
sizes of the singleBDDs can not be avoided, since it is not possible
to find an efficientcommonvariable order for the twoBDDs. The
following theorem gives an example for such a case.

Theorem 2 Let f =
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There are variable orders�

f

and �
g

such thatBDD

�

f

(f) and
BDD

�

g

(g) have (optimal) sizesn2 + 2, respectively, but for all
variable orders� BDD

�

(f) or BDD

�

(g) has a size of at least
2

n

2 .

I.e. f andg in Theorem 2 can be represented efficiently, when
different orders forf andg are allowed, but there is no common
variable order, which leads to efficient representations for both f
andg2.

3.2 Solution of MVO

Here we present a heuristic to solve MVO approximately.
The same problem was already studied by Stangier et al. in

[23]. They solve the problem by computation of an intermediate
variable order�

f;g

based on�
f

and�
g

. Then a transformation
of BDD

�

f

(f) andBDD

�

g

(g) to �
f;g

by level exchanges is per-
formed. In contrast to this approach we use dynamic reordering
techniques [20] to transform the twoBDDs into a common variable
order�

f;g

which thereby is dynamically adapted to the currently
involvedBDDs.

First of all, we choose the larger one of the twoBDDs to start
with. W.l.o.g. assume thatBDD

�

f

(f) is the largerBDD. Now we
transformcofactorsof g step by step to the order of theBDD for f .

More precisely, we traverseBDD

�

g

(g) in a depth first man-
ner and transform cofactors ofg, which correspond to nodes in
BDD

�

g

(g) into the order of theBDD for f . Suppose the cur-
rent order of theBDD BDD

�

old

(f) for f is �
old

and suppose we
have reached nodev of BDD

�

g

(g) labeled by variablex
i

. Since
we traverseBDD

�

g

(g) depth first, we have already computed for
low–son low(v) and high–sonhigh(v) BDD

�

old

(g

low(v)

) and
BDD

�

old

(g

high(v)

), which have the same variable order as
BDD

�

old

(f). Now we simply compute in variable order�
old

the if–then–else operationite(x
i
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); BDD
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(

1To prove that MVO is NP hard, we simply have to add a function, which does not
depend on the variable order, e.g. the constant 1 function, to transform an instance of
the variable ordering problem for singleBDDs into a corresponding instance of MVO

2The lower bound for the size ofBDD
�

(f) or BDD
�

(g) can be proved by

introducing a cut line after the firstn
2

2

variables. Further details of the proof are
omitted due to lack of space.
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)). The result is a representation for the functiong

v

repre-
sented at nodev of BDD

�

g

(g), now in same variable order as the
BDD for f .

During the computation of the newBDD for g

v

by ite(x
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)), we usedynamic reorder-
ing. If the reordering limit is exceeded during this computation,
dynamic reordering (sifting) is applied to simultaneouslyminimize
theBDDs forf and allBDDs computed in variable order�

old

so far.
If dynamic reordering does not give up, after the call of operation
ite we haveBDDs for f , g

v

and all other functions for nodes ofg
visited so far in a (possibly new) variable order�

new

.
In this way we compute step by step variable orders, which are

good both forf and cofactors ofg and finally we have a variable
order, which is also good forg. The adaption of the variable orders
for the BDDs for f andg proceeds step by step during the compu-
tation of theBDD for g based on cofactors ofg.

There still remains one point: In many applications dynamic
reordering produces good results, but tends to slow down compu-
tation times by frequent reorderings.

For this reason we restrict dynamic reordering here. We intro-
duce an upper limit for the number of reordering steps. We count
the number of reorderings during the adaption of the variable or-
ders forf andg and if this limit would be exceeded, the operation
fails with the parameters currently used. This decision is motivated
by our clustering approach for functional simulation [21]:We do
not want to spend too much time on the computation of a common
variable order for two clusters, which is likely to fail in the end or
to produce hugeBDDs. Moreover, it is clear, that the introduction
of such a limit for the number of reorderings defines a trade-off
between run time and the quality of the result in this application.

Finally, we have to adjust the initial reordering limit, if we re-
strict the number of reorderings. If we have chosen only a small
number of reorderings, we do not want to waste the limited number
of reordering steps by too early reorderings, which are performed
for small BDDs and which are not yet absolutely necessary. There-
fore we choose the higher initial reordering limit the smaller the
allowed number of reorderings is. The initial reordering limit is
chosen based on the allowed number of reorderingsmaxreorder

and on the sizes of theBDDs for which a common variable or-
der has to be computed. For our practical experiments we use

size(BDD

�

f

(f)) +

(size(BDD

�

g

(g))

maxreorder+1

as initial reordering limit.

It it clear that the algorithm can be easily extended to the case
that we have to compute common variable orders for sets ofBDDs
BDD
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(f
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. Then we
simply perform a bottom up construction ofBDDs forg
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m

starting with variable order�
f

as described above. Of course, iden-
tical nodes/cofactors ofg

i

have to be visited only once.

4 Experimental Results

To evaluate our heuristic for the MVO problem, we integratedour
heuristic in the CUDD package [22]. In a first experiment we use
data originating from our approach for functional simulation [21]
for larger circuits. We selected the last tries for cluster merging for
different circuits (successful or not in our original algorithm), since
at the end of the algorithm clusters are getting larger and therefore
harder problems must be solved.

The experiments were performed on a SPARC 20 (256MB mem-
ory). The CPU time was limited to 2 hours and the node limit for
theBDD package was 2000000.

We tried several choices for the maximum number of reorder-
ings during the computation of common variable orders. The re-
sults are summarized in Table 1. In the second column the sizes
of the twoBDDs (number of nodes) are given for which MVO has
to be solved. (Note that theBDDs represent not the output func-
tions, but the characteristic functions for the clusters.)Columns
dyn< n > show the results for our approach withn as the max-
imum number of reorderings. dyn0, e.g., is the algorithm, when
absolutely no reordering is allowed. The results are compared to
the “greedy gradual” heuristic and the “greedy at once” heuristic



sizes dyn0 dyn1 dyn2 dyn3 dyn5 dyn7 dyn10 dyn15 dyn20 dyn100 gradual atonce
C2670.ex1 104992 space out 145586 122765 125226 125226 125226 125226 125226 125226 125226 time out space out

912 0:09:29 0:17:19 0:28:40 0:28:35 0:28:43 0:29:54 0:28:34 0:28:36 0:28:37
118451 109654 101180 101180 101180 101180 101180 101180 101180
0:15:03 0:21:54 0:32:54 0:32:52 0:32:58 0:34:17 0:32:48 0:32:49 0:32:50

C2670.ex2 4127 space out space out 119610 108120 37060 15383 15383 15383 15383 15383 time out space out
244 0:00:33 0:00:47 0:01:42 0:02:36 0:02:48 0:02:36 0:02:38 0:02:37

15198 15177 23709 10639 10639 10639 10639 10639
0:01:21 0:01:36 0:02:27 0:02:45 0:03:09 0:02:55 0:02:58 0:02:57

C3540.ex1 196 57001 57001 57001 60722 60722 60722 60722 60722 60722 60722 70090 64530
52756 0:00:32 0:00:31 0:00:31 0:00:31 0:00:31 0:00:31 0:00:35 0:00:31 0:00:31 0:00:31 0:00:31 0:00:05

55004 55004 55004 55051 55051 55051 55051 55051 55051 55051 57563 55086
0:01:03 0:01:02 0:01:02 0:01:04 0:01:03 0:01:03 0:01:09 0:01:03 0:01:04 0:01:04 0:01:03 0:00:41

C3540.ex2 84388 286704 314854 72498 71873 72680 73624 73564 78076 78076 75905 205749 110615
21688 0:01:31 0:03:25 0:05:06 0:04:52 0:05:05 0:04:39 0:04:57 0:04:39 0:04:31 0:04:33 0:31:37 0:00:39

236898 98558 58936 54264 60122 61009 61009 63175 63175 68260 49920 71662
0:06:20 0:06:17 0:05:50 0:05:33 0:05:51 0:05:23 0:05:44 0:05:27 0:05:17 0:05:35 0:32:57 0:01:51

C3540.ex3 98156 447188 239800 163033 155520 155148 155148 155432 155148 153823 155866 192355 204761
21668 0:01:57 0:03:53 0:06:39 0:07:09 0:06:55 0:06:44 0:06:58 0:06:39 0:06:41 0:06:37 0:42:13 0:00:28

145923 144122 147264 148754 143755 143755 143832 143755 146977 144036 157765 144447
0:05:24 0:06:32 0:09:01 0:09:55 0:09:33 0:09:22 0:09:43 0:09:17 0:09:22 0:09:15 0:45:17 0:03:14

C5315.ex1 188920 space out 220903 203993 201828 201735 202288 202288 230055 204426 302024 458547 space out
11751 0:11:05 0:17:43 0:18:06 0:18:30 0:18:08 0:19:00 0:11:18 0:18:12 0:43:12 1:10:29

200839 199912 199598 199760 199797 199797 202378 199444 212236 232780
0:16:55 0:23:12 0:23:34 0:24:00 0:23:37 0:24:47 0:17:20 0:23:43 0:50:33 1:18:35

C5315.ex2 188920 space out 716291 376732 376732 376732 376732 365118 361214 361214 368964 time out space out
35516 0:14:46 0:29:08 0:29:00 0:28:58 0:28:57 0:28:30 0:28:10 0:27:55 0:29:00

273153 276196 276196 276196 276196 258027 256603 256603 278832
0:27:17 0:42:12 0:42:05 0:42:10 0:42:05 0:40:04 0:39:26 0:39:04 0:41:15

C5315.ex3 18097 space out space out space out space out 286943 182825 182745 156600 168679 184384 time out 560943
35516 0:10:46 0:19:43 0:20:43 0:21:31 0:24:10 0:22:23 0:00:26

153997 151126 151332 138037 145901 149515 180645
0:15:28 0:24:21 0:25:31 0:25:17 0:28:32 0:27:02 0:08:34

C5315.ex4 8637 space out space out 370998 155056 155408 156389 161587 157407 157403 161820 time out space out
35516 0:03:32 0:06:17 0:06:18 0:06:04 0:05:43 0:06:01 0:06:00 0:07:13

131756 133691 133886 132412 133563 132418 132418 132699
0:07:09 0:09:24 0:09:26 0:09:08 0:08:49 0:09:06 0:09:04 0:10:16

C5315.ex5 2398 space out space out space out space out 443812 184731 96672 190164 102216 102216 time out space out
35516 0:15:02 0:27:20 0:31:40 0:20:38 0:25:12 0:25:16

109155 90581 84482 90468 76107 76107
0:19:08 0:29:52 0:33:51 0:23:28 0:26:55 0:26:59

C5315.ex6 18097 space out 135979 58591 32701 33151 32050 33150 33150 33150 32099 489577 space out
8637 0:00:38 0:00:53 0:01:25 0:01:24 0:01:23 0:01:24 0:01:24 0:01:23 0:01:49 1:19:15

32278 28495 29022 29022 27537 29021 29021 29021 28382 42425
0:01:32 0:01:28 0:01:50 0:01:50 0:01:48 0:01:50 0:01:49 0:01:49 0:02:15 1:21:59

C5315.ex7 2398 space out space out space out space out space out 347442 275216 364031 364031 364031 time out space out
18097 0:32:11 0:58:47 1:06:54 1:07:13 1:07:02

205731 216581 187474 187474 187474
0:40:02 1:06:00 1:13:52 1:14:14 1:14:01

C5315.ex8 11751 68902 56510 51201 51443 52836 52845 52811 52795 52771 55921 time out 224196
35516 0:00:31 0:01:06 0:02:17 0:02:15 0:01:04 0:01:12 0:01:03 0:01:01 0:01:04 0:02:36 00:00:34

49954 49145 49031 49337 49417 49415 49395 49395 49395 48749 85068
0:01:22 0:01:50 0:03:01 0:03:00 0:01:47 0:01:57 0:01:45 0:01:44 0:01:50 0:03:21 00:04:21

C5315.ex9 11751 44267 32877 33783 34041 33782 33783 33783 33807 33807 35197 time out 127274
18097 0:00:16 0:00:36 0:01:02 00:01:03 0:01:02 0:01:02 0:01:00 0:01:01 0:01:00 0:02:19 0:00:11

32221 32032 33388 33414 33387 33388 33388 33388 33388 32102 44089
0:00:44 0:01:00 0:01:27 00:01:29 0:01:27 0:01:27 0:01:25 0:01:27 0:01:26 0:02:45 0:01:30

dyn3 dyn7
dyn3-gradual dyn3-atonce dyn7-gradual dyn7-atonce

dyn3 gradual ratio dyn3 atonce ratio dyn7 gradual ratio dyn7 atonce ratio
size 522644 1416318 0.37 373599 731376 0.51 523823 1416318 0.37 558947 1292319 0.43
run time 0:32:03 3:44:05 0.14 0:15:50 0:01:57 8.12 0:31:25 3:44:05 0.14 0:33:51 0:02:23 14.20
size (a.s.) 486689 540453 0.90 340820 400352 0.85 487149 540453 0.90 493744 580997 0.85
run time (w.s.) 0:41:56 3:59:51 0.17 0:21:01 0:11:37 1.81 0:41:13 3:59:51 0.17 0:43:11 0:20:11 2.14

Table 1: Experimental results for different solution strategies for MVO (characteristic functions of circuit clusters for functional simulation).

from [23] (columns greedy and atonce). For each example there
are four lines in the table. The first line gives the size of theresult
as a sharedBDD. The second line gives the run time for the al-
gorithm (in format hours:minutes:seconds), the third linegives the
BDD sizes after a final sifting step (if the algorithm does not fail
due to “space out” or “time out”) and the fourth line gives thetotal
run time including sifting.

The “greedy at once” heuristic gives the smallest run times (if
successful), but has a tendency to exceed the node limit. If it does
finish, theBDD sizes are relatively large. In contrast, the “greedy
gradual” heuristic is slow (there are many time outs). Also,even in
the cases, when it does finish,BDD sizes are relatively large com-
pared to our dyn<n> approach even for smaller values ofn. The
dyn<n> approach is able to provide a good trade–off between run
time and quality. While for smaller values ofn the run times are
smaller, there are still cases, when the computation does not finish.
Forn equal to seven or larger all problems could be solved with a
reasonable amount of runtime.

To confirm this analysis we summarize the results at the bottom
of Table 1. We compare dyn3 and dyn7 to the “greedy gradual”

heuristic and the “greedy at once” heuristic. In lines 1–4 wegive
the sums of the finalBDD sizes, the run times,BDD sizes after sift-
ing and total run times including sifting for all examples, for which
both compared algorithms do not fail.

However, since the “greedy gradual” heuristic fails for 9 out
of 14 examples and the “greedy at once” heuristic fails for 8 out
of 14 examples, wheras dyn3 fails only for 3 examples and dyn7
does not fail for any example, we conclude that – in contrast to our
dyn< n > heuristic – both the “greedy gradual” heuristic and the
“greedy at once” heuristic seem not to be suitable for this set of
examples.

For a second experiment we have chosen pairs of benchmark
circuits, for which BDDs were constructed and optimized sepa-
rately. After that we transformed theBDDs into a common variable
order. We used all those pairs of circuits from [23] which were at
our disposal. Table 2 shows the results. As in Table 1, for each
pair of circuits the first line gives the size of the result as ashared
BDD, the second line gives the run time for the algorithm, the third
line gives theBDD sizes after a final sifting step, and the fourth line
gives the total run time including sifting.



dyn0 dyn1 dyn2 dyn3 dyn5 dyn7 dyn10 dyn15 dyn20 dyn100 gradual atonce
C1355/C3540 214548 174106 153335 158287 147200 138944 139500 154401 141189 146972 389563 809263

0:01:06 0:01:36 0:02:51 0:02:40 0:04:58 0:03:36 0:03:37 0:03:30 0:03:35 0:04:30 0:20:46 0:00:46
155391 144242 144856 145780 145260 131953 131427 150047 130955 142919 168145 159984
0:04:14 0:04:04 0:05:08 0:05:00 0:07:16 0:05:38 0:05:34 0:05:58 0:05:38 0:06:48 0:24:26 0:07:08

C499/C1355 385108 217017 203498 171798 151366 154988 157947 165170 154553 146055 232696 483845
0:01:59 0:01:38 0:02:20 0:03:00 0:03:17 0:05:30 0:05:04 0:04:54 0:05:35 0:03:05 0:18:13 0:00:46
186691 174452 153742 145406 146239 139940 133187 143963 149848 133859 161276 225308
0:06:01 0:04:59 0:05:24 0:05:27 0:05:48 0:07:47 0:07:16 0:07:14 0:08:19 0:05:31 0:21:37 0:05:54

i8/k2 3729 3781 4096 4356 3661 3646 3579 3615 4158 3667 5636 4646
0:00:02 0:00:01 0:00:01 0:00:01 0:00:02 0:00:03 0:00:02 0:00:02 0:00:01 0:00:03 0:00:44 0:00:00

3609 3592 3638 3616 3617 3578 3507 3556 3557 3529 3508 3350
0:00:03 0:00:02 0:00:03 0:00:02 0:00:04 0:00:04 0:00:04 0:00:04 0:00:02 0:00:04 0:00:45 0:00:01

too large/vda 1170 1182 1060 1060 1141 1141 1141 1141 1141 1141 7423 1509
0:00:01 0:00:01 0:00:01 0:00:01 0:00:01 0:00:01 0:00:00 0:00:01 0:00:01 0:00:01 0:00:06 0:00:00

1067 1067 1025 1025 1064 1064 1064 1064 1064 1064 1067 1097
0:00:01 0:00:01 0:00:01 0:00:01 0:00:01 0:00:01 0:00:01 0:00:01 0:00:01 0:00:01 0:00:06 0:00:00

vda/alu4 1107 1104 1125 1115 1106 1106 1150 1104 1104 1130 1418 1394
0:00:00 0:00:00 0:00:00 0:00:00 0:00:00 0:00:01 0:00:00 0:00:01 0:00:00 0:00:00 0:00:00 0:00:00

1092 1092 1092 1087 1097 1097 1104 1096 1096 1097 1235 1093
0:00:00 0:00:00 0:00:01 0:00:00 0:00:00 0:00:01 0:00:00 0:00:01 0:00:01 0:00:00 0:00:01 0:00:01

dyn3-gradual dyn3-atonce dyn7-gradual dyn7-atonce
dyn3 dyn7 gradual atonce ratio ratio ratio ratio

size 336616 299825 636736 1300657 0.53 0.26 0.47 0.23
run time 0:05:42 0:09:11 0:39:49 0:01:32 0.14 3.72 0.23 5.99
size (a.s.) 296914 277632 335231 390832 0.89 0.76 0.83 0.71
run time (w.s.) 0:10:30 0:13:31 0:46:55 0:13:04 0.22 0.80 0.29 1.03

Table 2: Experimental results for different solution strategies for MVO (pairs of circuits).

Here all algorithms could finish all examples. Again, at the bot-
tom of the table the results are summarized. The first line gives the
sum of theBDD sizes, the second the sum of run times, the third
line gives the sum ofBDD sizes after sifting and, finally, the last
line the sum of the total run times including sifting. In colums 2–5
these sums are given for dyn3, dyn7, “greedy gradual” and “greedy
at once”3. In columns 6–9 we give the ratios dyn3 to “greedy grad-
ual”, dyn3 to “greedy at once”, dyn7 to “greedy gradual” and dyn7
to “greedy at once”. dyn3 and dyn7 provide considerable improve-
ments both concerning size and run time compared to the “greedy
gradual” heuristic. The “greedy at once” heuristic gives the best
run times, but this is acheived at the cost of much largerBDDs. If
we apply a final sifting step to optimize the variable orders of the
results, the advantage of “greedy at once” with respect to run time
is lost, because largerBDDs have to be sifted.

If we have a closer look at Table 2 we can observe again that
the dyn<n> is able to provide a good trade–off between run time
and quality.

5 Conclusions

We presented a heuristic to solve the multiple variable order prob-
lem (MVO) for binary decision diagrams. In contrast to [23] we
do not precompute a common variable order and transform the two
BDDs into this variable order afterwards, rather we make use of dy-
namic reordering techniques. The adaption of the variable orders
for the twoBDDs proceeds step by step during the computation of
the secondBDD based on its cofactors. Experimental results prove
our approach to be successful in solving the MVO problem. They
also prove, that our approach defines a good trade–off between run
time and quality of the result.
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