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Abstract

Several types of Decision Diagrams (DDs) have been propiased
the verification of Integrated Circuits. Recently, worddeDDs
like BMDS,*BMDS,HDDS,K*BMDS and* PHDDs have been attract-
ing more and more interest, e.g., by usingMbs and* PHDDS it
was for the first time possible to formally verify integer tipliers
and floating point multipliers of “significant” bitlengthgespec-
tively.

On the other hand, it has been unknown, whetlieision, the op-
eration inverse to multiplication, can be efficiently repeated by
some type of word-level DDs. In this paper we show that the rep
resentational power of any word-level DD is too weak to effity
represent integer division. Thus, neither a clever chofdhevari-
able ordering, the decomposition type or the edge weights|ead

to a polynomial DD size for division.

For the proof we introduc&Vord-Level Linear Combination Dia-
grams (vLcDs), a DD, which may be viewed as a “generic” word-
level DD. We derive an exponential lower bound onwthecD rep-
resentation size for integer dividers and show how this kddtems-
fers to all other word-level DDs.

1 Introduction

One of the most important tasks during the desigrnntégrated
Circuitsis the verification of an implemented circuit, i.e., the dhec
whether the implementation fulfills its specification.

In the last few years several methods basefeaision Diagrams
(DDs) have been proposed [14, 5] to perform verification. itlea
is to transform both, implementation and specification obmloi-

national circuit, into a DD. Then, due to the canonicity of bD

representation, the equivalence check for specificatichiraple-

mentation translates to the check whether the correspgridlids

are identical.

The most popular data structure in this context@rdered Binary
Decision DiagramqoBDDS) [3]. They were applied successfully
e.g. to the verification of control logic and integer add@&nst there
are functions of high practical relevance, which cannot dpre-
sented efficiently bypBDDs. Already in [3] and [4] Bryant proved
thatoBDD representations for integer multipliers are of exponéntia
size.

Several other types of DDs were defined to overcome the limita
tions of oBDDS, such a$rdered Functional Decision Diagrams

(oFDDs) [12], Ordered Kronecker Functional Decision Diagrams
(okFDDs) [11], Multi-Terminal Binary Decision Diagrams
(mTBDDS) [9, 1] and Edge—valued Binary Decision Diagrams
(EvBDDS) [13]. But the first DDs to represent integer multipli-
cation efficiently wer@inary Moment Diagram§smMbDs) andMul-
tiplicative BMDs (*BMDS) introduced in [6]. LikemTBDDS and
EVBDDS, alsoBMDs and BMDs are word-level DDs, i.e. they rep-
resent integer-valued functiorfs: {0,1}" — Z.

To further improve on the representational poweBmbDS, several
other word-level DD types have been introduced, Eydrid Deci-

sion Diagrams(HDDS) [8] andKronecker* BMDs (K*BMDS) [10].

Recently Chen and Bryant defined a new data structure déilgd
tiplicative Power Hybrid Decision Diagram@ PHDDS) [7], which

is able to represent not only integer multiplication bubdlsating

point multiplication efficiently.

Until now it was not known, whether the word-level DDs men-
tioned above are also able to represent division efficieRcently
Nakanishi [15] made a first step by showing th&ambs cannot
represent integer division efficiently. The proof is tecatly com-
plicated, it is based on fooling set arguments similar todtfygnal
proof for multiplication by Bryant and has to take into acabthe
edge values in theBMD representation. Consequently, as already
mentioned, in this form it only works forgmbps.

In this paper we prove that integer division cannot be reges] in
polynomial sizeby any of the ordered word-level DDs mentioned
in the literature until now Even more interestingly, we prove that
the concept of word-level DDs in general is too weak to result in
polynomial size representations of division.

For the proof we introduce a new data structure, Werd-Level
Linear Combination DiagraméwLCDS). WLCDS are a generaliza-
tion of Waack's Parity Ordered Binary Decision Diagrams
(poBDDsS) [17] to the word level. It turns out thavLcbDs can

be viewed as a “generic” ordered word-level DD in the follow-
ing sense: Each ordered word-level DD can be “embedded into”
wLcDs such that a DD witlk nodes is transformed into\eiLcD
representing the same function with the same nunmbefrnodes.
Thus, a lower bound on the size ofrAa.cD is also a lower bound

on the size of all other ordered word-level DDs.

We apply this idea to integer division by deriving an expdign
lower bound on the size afiLCcDs representing integer divison (re-
gardless of the chosen variable order). Rarcbs lower bounds
can be obtained by consideration of the rank of a commupicati
matrix which is constructed from the function tables of sal/eo-
factors. It follows that bothering details concerning edge values
have not to be taken into account to derive the lower boundiin o
proof. On the other hand, due to the propertieg/o€Ds we obtain
an exponential lower bound result, valid for all ordered aviavel
DD types.

The paper is structured as follows. In Section 2 we providecdsa
on word-level DDs which will be necessary for the undersitagnd
of the paper.wLcDs and their relationship to existing word-level



DDs are introduced in Section 3. Furthermore, an algebtzée-c
acterization of thewLcb complexity is given which leads to the
rank considerations of certain cofactor matrices. In $acddi the
lower bound for division is derived. We finish with conclusions
and perspectives of further work in Section 5.

2  Preliminaries: Word-Level Decision Diagrams

In this section we give a short review of ordered word-levBIsD
data structures used for the representation of so-cBbeddo Boo-
leanfunctions, i.e. functions from a Boolean domain to the ietsg
or rational numbers. In general, DDs are graph—based emees
tions, where at each (non—terminal) node (labeled with albr
z) a decomposition of the function (represented by this nate)
two subfunctions (théow—function and thénigh-function) is per-
formed:

Definition 1 A word-level DD is a rooted directed acyclic graph
G = (V, E) with non empty vertex set V containing two types of
vertices nhon-terminalandterminalvertices. A non-terminal vertex

v has as label a variabléndez (v) € {z1,...,z,} and two chil-
drenlow(v), high(v) € V. A terminal vertex is labeled with a
valuevalue(v) € Z.

For the purpose of this paper, we are only interestedriered
DDs, i.e. DDs, where the variables occur in the same ordeillon a
paths of the DD. More precisely, this means:

Definition 2 A DD is ordered iff there is a fixed order: {1,...,

n} — {z1,...,x,} such that for any non-terminal vertexthe
following holds:indez (low(v)) = w(k) withk > 7~ " (index(v))
(index(high(v)) = =(q) with ¢ > 7~ !(indez(v))) as long as
low(v) (high(v)) is also a non-terminal vertex.

Based on these general definitions we now consider diffefent
composition types and shortly discuss resulting wordH&@s
and corresponding evaluation rules. (For a survey on wevetl
DDs and more details see also [2].)

2.1 Decomposition types and evaluation rules

In word-level DDs the functiory, : {0,1}" — Q represented

by a non—terminal node, which is labeled by variable;, is de-

composed into two subfunctions, both independent of viriap

Depending on the decomposition type these subfunctionsceme

bined from the cofactors
(fo)ar = fo(z1, ...

,1'i—1,0,$i+17- .. 71'n)

and

(fo)z; = folzr, .. S Tn)
in different ways. DDs as defined in literature differ in thaywhey
use decomposition types. Decomposition types can be ddfined
the setZ» » of non—singular2 x 2 matrices oveftZ [8]. The most
important decomposition types aBhannon decompositipposi-
tive Davio decompositioandnegative Davio decompositioffhe
Shannon decomposition is usedMmBDDS [9] andEVBDDS [13],
the positive Davio decomposition is usedBMDs and *BMDS [6].
In k*BMDS [10] and *PHDDs [7] Shannon decomposition, positive
Davio and negative Davio decomposition are usedHbDS [8]
six different decomposition types (including Shannonjtppasand
negative Davio decomposition) are used.

Following [8] the matrices corresponding to Shannon, pasDa-
vio and negative Davio decomposition, respectively, are

(09) (1) = (7 20)

1 Due to lack of space some details of the proof are omittedy Tha be found in

[16]

. ,l‘ifl,].,ri+1,.

These matrices define how the functiofis,,.y and fr;gs ) rep-
resented byow(v) and high(v) are computed fron{f, )=y and
(fv)=, . For the positive Davio decomposition, e.g., we have

(e )= (4 1) (8

(fo)e:

i-e-lflow(v) = (fv)ﬂ andfhigh(v) = (fv)a:l - (fv)ﬂ

A terminal nodey with value(v) = z represents the constant func-
tion with function valuez. To evaluate the functioffi, represented
by a non—terminal node for z; = 0 or z; = 1, we have to re-
construct( fo, )z7 or (fv)z; rom fio.,») and frign(vy- To do so, we
make use of the fact, that the decomposition type matricesa@n—
singular: Since a decomposition type mat#ixs non-singular, the

inverse matrix4~! exists and
flow(v)
fhigh(v) ’

(fv)ﬂ ) — A" L. < 1
( (Foder ) = @)
The inverse decomposition type matrices for Shannon,ipes$ia-
vio and negative Davio decomposition, respectively, are
10

(1) (i1) = (is)

For positive Davio decomposition, e.g., this means fifa)z; =
flow(v) and(fv)a:i = flow(v) + fhigh(v)-

2.2 Additive edge values, multiplicative edge values, ne-
gation edges

Edge values are introduced to increase the amount of subgrap
sharing when using integer—valued terminal nodes. It haseto
differentiated betweeadditiveandmultiplicativeedge values.

An edge with additive weight and multiplicative weighin lead-

ing to nodew represents the function

<(a7m)7fv >::a+m'fv' (2)
MTBDDS, BMDS andHDDS use no edge valuesyBDDS use only
additive weights, i.e., the multiplicative weight is 1, *BMDS use
only multiplicative weights, i.ea = 0. K*BMDS use both addi-
tive and multiplicative weights. PHDDs use only multiplicative
weights of form(—1)"¢ - 2* with ne € {0,1} andw € Z. (For
reasons of memory efficiengy-1)"° - 2 is stored as an integar
and a bitne representing a “negation edge” whea = 1.)

Now consider any ordered word-level DD with edge values.nThe
for each non—terminal nodethere is a)—edge labeled with edge
weights(a;ow, Miow ) leading to nodéow (v) and al—edge labeled
with edge weightanign, mnign) leading to nodévigh(v). If in
nodewv the decomposition typd = (“11 “12) with inverse matrix

a2] a2
A~! = (¢)1 %12} is used, then using Equations 1 and 2 the evalua-
21 722
tion rule for this node is the following:

fo (1 —zi)-(fo)zr +mi - (fo)z,

(1 - Ii)'(alll(alow + mlowflow(v))

+a'a(anigh + Muigh frigh(s)))

(aél(alow + mlowflow(v))

+ads (anigh + Mhigh frigh(v)))

(1 - ri)'((aflllaflow + a,12ahigh)

+(a11Miow fiow(w)) + (@1aMhuigh frigh(v)))
((aélalow + a’22ahigh)

+(a% Miow frow(w)) + (@22Mhuigh frigh(v)))-

+ zi

+ zi-

In Section 3 we will use the “most general evaluation rule” of
Equation 3 to analyze the relationship between the existidgred
word-level DDs and our new data structure called Word-L&ue

ear Combination Diagramsv{ CDS).



Figure 1: Non-terminal vertexof awLcD. v is labeled by variable
x;. TheO—edges ob are given by edges to nodes, . .., ux and
the1—edges are given by edgesitg. . . , t,.

3 Word-Level Linear Combination Diagrams

In this section we define Word-Level Linear Combination Déags
(wLCDs). wLCDs are a generalization eHBDDs defined by Waack
[17] to the word-level. WhereasoBDDs can represent only Boo-
lean functionswLcDs represent functiong : {0,1}" — Q.

WLCDSs are given by the following definition:

Definition 3 A Word-Level Linear Combination Diagranv( cD)

is a rooted directed acyclic grapty = (V, E). If the wLCD is
not empty, it contains exactly one sink labeled with 1 andh wit
no outgoing edges. The remaining nodes are called non-tatmi
nodes. A non-terminal vertexs labeled by a variabléndez(v) €
{z1,...,z,}. The outgoing edges of a non-terminal nadare
partitioned into two sets: O—edges(v) and 1—edges(v). #stlene
of these sets is not empty. All edgeme labeled by an edge weight
w(e) € Q. AwLCD is ordered, i.e., as with DDs the variables
occur in the same order on all pathswi.cb. The size of avL.cD

is its number of nodes.

The definition of awLcD is illustrated by Figure 1.

An emptywLCD represents the constaifunction, the sink of a
non—emptywLCD represents the constanhtfunction. The func-
tion f, represented by a non—terminal nodéabeled by variable
z; with O—edges(v}= {(v,u1),..., (v,ur)} and 1-edges(v}=

{(v,t1),..., (v,tm)} is defined by the following evaluation rule:
fo = (=) (wv,u1) - fuy + ... +w(v,uk) - fuy)
4z - (w(v,t1) - fe, +... Fw(v,tm) - feon)-
4)

Similar to POBDDs, also forwLcDs efficient synthesis operations
and an equivalence check can be derived. We omit any further d
tails, rather we concentrate on the propertywfcDs which is most
important in this paper: Ordered word-level DDs can be “etlhbe
ded intowLcDs”, i.e., if there is some word-level DD withnodes,
we can easily constructwLcD with the same numbek of nodes.
This fact is used to conclude lower bounds on the size ofrarit
word-level DDs from lower bounds on the sizewf cDs.

The computation of lower bounds on the sizevafcbs can be
done in an elegant way using arguments from linear algebeford
coming to lower bounds we show how to embed word-level DDs in
WLCDS.

3.1 Relationship between wLCDs and existing word-level

DDs

Here we prove that all ordered word-level DDs mentioned & th
previous sections can be “embedded imtocDs”. To do so we
proceed as follows:

A given word-level DD is transformed step by step intavecp.

If the given DD contains terminals with valuesvalue(v) differ-

ent from0 and1, these terminals are replaced by a termihahd

the multiplictive edge weights of all incoming edgesaire multi-
plied by value(v). If now there is more than one terminal with
value 1, these terminals are replaced by a unique terminal with
valuel. Edges to terminad with additive weighta # 0 are re-
placed by edges to terminalwith additive weighta and multi-
plicative weight0. TheO-terminal is removed. All these steps do
not change the function represented by the DD.

Now in a bottom-up procedure for each non—terminal noda-
beled with variabler; = index(v) representing a functiorf,
the outgoing edges are replaced resulting iwiacb—node rep-
resenting the same functiofy. Suppose that the decomposition

type used for node is given by A = (211212} (with inverse

a2] a2

matrix A~ = (Z:“Z:w)) and the0—edge is labeled with edge
21 %22

weights (a0, Miow ), the 1—edge is labeled with edge weights
(anigh, mnign). Then the evaluation rule of Equation 3 gives a
relation betweery;,., () and fy;ign vy andf,. A comparison with
the evaluation rule fowLcDs (see Equation 4) leads to the defini-
tion of the equivalentvLcb—node and its corresponding edges (let
Vone DE the terminal with valug):

o 0-edges(v= {(v, vone), (v, low(v)), (v, high(v))},
W(V, Vone) = 1110w + A12Ghigh,
w(v,low(v)) = al1Miow,
w(”a high(v)) = a,Ithigh-

o 1-edges(vy= {(v,vone), (v, low(v)), (v, high(v))},
W(V, Vone) = 1010w + A22Ghigh,
w(v,low(v)) = ab Miow,
w(”a high(v)) = a{Zthigh-

The replacement is illustrated by Figure 2.

After this bottom—up procedure, if there is a root edge widight

(a, m), the weights of the outgoing edges of the root are multiplied
by m and an edgéroot, vone) With weighta is included into0—
edges(rootand1-edges(root)

Finally we obtain awLcD representing the same function as the
original DD. We summarize:

Theorem 1 If theMTBDD, EVBDD, BMD, *BMD, HDD, K* BMD Or
*pPHDD for a functionf : {0,1}" — Z (or f : {0,1}" — Q for
the case of PHDDs) with variable orderr hask nodes, then there
also exists avLcD with variable orderw representingf with (at
most)k nodes.

Example 1 In Figure 3 the node replacement described to prove
Theorem 1 is illustrated for positive Davio decompositidthaut
edge weights (i.e. the additive edge weightsGend multiplica-
tive edge weights aré). For positive Davio decomposition the

decomposition type matrix ist given by = (“11¢12) = (1 9),

a21 a22

A7 = (“111 “’12) = (1?). Thus, the evaluation rule can be simpli-

. ahy Gy
fied to
f” = (1 - 1'1')'((@,1,1@101” + a,12ahigh) ,
+(?11mlowflo,w(v)) + (a12mhighfhigh(v)))
+ zi- ((azllalow + azza;”-gh) ,
+(a21mlowflow(v)) + (a22mhighfhigh(v)))
= (1 - 1'i)'flow('u) + ;- (flow(v) + fhigh('u))'
3.2 An Algebraic Characterization of the wLCD Complex-

ity

In this subsection we give an algebraic characterizatiorthef
wLcD complexity, which we will use to prove lower bounds on



(@gopys M, (D righs Migh)

Figure 3: Transformation of a positive Davio node inteveCD node

the size ofwLcDs. We show, that the number of nodes iwacp
cannot be smaller than the dimension of a certain vectorespac
Consider the set of all functions frofi), 1}™ to the rational num-
bersMap({0,1}",Q) = {f : {0,1}" — Q}. Define addition
OnMap({()! 1}n7Q) by (f+g)($17 s 71'n) = f(xla s 71'n) +
g(z1,...,z,) and multiplication with a scalaw € Q by (w -
x1,...,xn) = w - f(w1,...,m,). It is easy to see, that
Map({0,1}",Q) together with addition and multiplication with
scalars fromQ forms a vector space.

Based onwLcDs with fixed variable ordefr we will define sub-
spaces of the vector spadéap({0,1}",Q). W.l.o.g. we assume
the natural variable order, i.e.r : {1,...,n} — {z1,...,2n}
with 7 (i) = z; Vi € {1,...,n}.

Given awLcD B, consider for somé € {1,...,n} the set of all
wLcD-nodes, which are labeled with variahlg or which are la-
beled with a variable:; with i > k and which have an incoming
edge from a node labeled by a variablg with j < k. These
nodes represent functions afap({0,1}",Q). We denote this
set of functions byV;?. Of course, the vector space V% >
which is generated by the functions ¥{® forms a subspace of
Map({0,1}",Q).

Let f be the function represented by tvecb B. We consider the
following set of cofactors of:

ka = {f|$1161,---,$k71:%71 |01, <5 Ck—1 € {Oa 1}}

Again, < ka >, which is generated by the functionsw, is a
subspace oM ap({0,1}", Q).

Now we investigate the relationship between the vector epac
< VE > and< V/ >. We claim that

<V/>c<vPf>.

To prove this it is sufficient to show, that each cofactor
Florzerin 1=en_, € Vil isin < VP >. We consider all
paths starting from the root &, which fulfill the assignment; =

Cly...yTp—1 = Cg—1. Letwvi,...,v, be the nodes, which are
reached by these paths and suppose that eachvpatiec {1, ...,

m} is reached by, different pathq;i”, e ,p§:>. Let wJ(T) be the

product of all weights of edges on pqtﬁ). Then according to the
definition of wLcDs and by induction o the following holds:

f|m1161,---,$k71:%71 =
i1 im
= () s (S 1
j=1 ji=1

Sincev1 < i < m f,, € V;Z, we conclude that
Flermcrzn_1=cn_, €< V& > for each choice of1, ..., cr 1

Because ok V,/ >C< V}# > we have
dim(< V,{ >) < dim(< VF >)
and since;? generatesc V;® > it holds
dim(< Vi >) < |V
Thus we obtain the following lemma
Lemma 1 Let f be any function il/ap({0,1}", Q). Then
dim(< V| >)

is a lower bound on the size ofwaLcD for f with respect to the
natural variable ordering.

In fact, we can prove even a stronger result with similar argts
as in the proof of Waack [17] farOBDDs:

Theorem 2 A wLcD B with natural variable order representing
function f with a minimal number of nodeshas exactly

dim(< UL v >) nodes.

However, for the purposes of this paper we need only Lemma 1.



ar | O 0 0O 0 O 0 0o 0 1 1 1 1 1 1 1 1
a [0 O O O 1 1 11 0 0 O o0 1 1 1 1
b {O 0 1 1 0 O 1 1 0 O 1 1 0 O 1 1
bp O 12 0 12 0 1 o0 1 O 1 O 1 O 1 o0 1
ngagbgbg
0000 * 0 0 0 7 I 0 0 ~ 2z I 0 F7 3 I 1
0001 0 0 0o 0 O 0 0o 0 O 0 0O 0 O 0 0 d
0010 0 0 0o 0 O 0 0o 0 O 0 0O 0 O 0 0 d
0011 0 0 0O 0 O 0 0O 0 O 0 0O 0 O 0 0 d
0100 * 4 2 1 5 2 1 = 6 3 2 = 7 3 2
0101 1 0 0o 0 1 1 o 0 1 1 1 0 1 1 1 1
0110 o o o0 o o o o o o o o o o o o0 ¢
0111 o o o0 o o o o o o o o o o o o0 ¢
1000 *»8 4 2 * 9 4 3 * 10 5 3 * 11 5 3
1001 2 1 1 1 2 1 1 1 2 2 1 1 2 2 1 1
1010 1 0 0o 0 1 1 0o 0 1 1 1 0 1 1 1 1
1011 0 0 0o 0 O 0 0O 0 O 0 0O 0 O 0 0 @
1100 * 12 6 4 * 13 6 4 * 14 7 4 * 15 7 5
1101 3 2 2 1 3 2 2 1 3 2 2 2 3 3 2 3
1110 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1111 1 0 0O 0 1 1 0 0 1 1 1 0 1 1 1 ]

Figure 4: Communication matrix of division for = 4.

4 An Exponential Lower Bound for Division

In this section we apply Lemma 1 to derive an exponential towe

bound on the size ofvLcDs (and thus of word-level DDs) repre-
senting integer divison.

For our proof we use the following notations and definitionga-c
cerning division: Two sets of variables, thevariablesA =
{an—1,...,a0} and theb-variablesB ={b,,_1, ...,bo}, are con-
gidered. As usual, the binary representatiordadind B is given
y
Al :=2"""an_1+...+2%" and
[|1B|| := 2" b1 + ... +2°0°,

respectively. Then the integer divisi@'V is the Pseudo Boolean
function defined by

DIV : {0,1}" x {0,1}"
Before we consider the general case for the proof of an expiathe
lower bound forwLcDs with arbitrary variable orders we have a
look at a restricted case which nicely demonstrates theatléze
proof and the proof technique. The proof of the general case
slightly more complicated but works along similar lines. eDio

- IN.
1Al

(an_l,...,ao,bn_l,...,bo) — {
|IBl|

lack of space we only give the idea of the proof for the general

case. More details can be found in [16].

4.1 wLCDs with Interleaved Variable Ordering

For the restricted case we fix the variable order in advartckes. i
given by theinterleaved orderinda,—1,bn—1, ..., a0, bo).
Furthermore, we may assume thas even. (Fomn odd, we embed
an (n — 1)—bit divider into then—bit divider by settingz,,—1 =
bn—1 = 0 and note that for an exponential lower bou¢:") it
holdsQ(c™) = Q(c™™1).

Following Lemma 1 we now consider the sié,{ﬂ of cofactors
an+1 = {f|an—1:Clabn—1:92a---aa%:Cn—lab%:Cn | Cly...sCn €
{0,1}} and show an exponential lower bound @ (< V,/ | >).

To estimatedim(< V,{:Ll >) we prove that a certain number of

elements o/,
communication matrixvhose rows are function tables of the co-
factors 0fV«f+1- The rows of the matrix are “numbered” by in-

put combinations of the “upper half” of the- and b-variables.

is linearly independent. For that we consider a

Analogously, the “lower half” of thea- andb-variables defines the
columns. For illustration see Figure 4, where we give theroom
nication matrix forn = 4. (A star in the matrix means that the
corresponding result d> IV is not defined (division by zero). Our
proof is valid for all possible replacements of the stars.)

The rank of this communication matrix is equatfion(< V,/, , >).

Since we need only a lower bound dim (< an+1 >), we may
remove columns and rows in the matrix (thereby possibly ciedu
the rank of the resulting matrix).

The idea now is to restrict to entries with constant valuegtie
b-variables and to observe the result of the division foreéasing
values ofa-variables . More precisely, we only keep rows where
from the b-variables exactly the least significant uppevariable
bn is set, i.ebp—1 =0,... ybry1 =0,b2 =1

Analogously, only columns withz _; = 0,...,b1 = 0,bo =1
are considered. Furthermore, the rows and columns with @lfor
a-inputs are removed. For our example with= 4 the following
matrix remains:
a1
ap
b1
bo

—OoO~O
oo~
O

1
1
2

»—u—*OE
~oHg
oo oF
el N
[SESE

1
2
3

In general, we obtain a matriX of size(2% —1) x (2% —1). For
the computation of the entries aff consider the setl yrau
{an_l, N ,a%} and ALOW : {a%_l, N ,ao}, i.e. AHIGH
(Arow) consists of the upper (loweti}variables. Define

lAnranll = XiZy a:2™ % and||ALow]| = a2l

Now letm;; denote an entry oM. Then row; corresponds to an
assignmenf| Ax ¢ m|| and columnj corresponds to an assignment
[|[ALow||. The entrym;; is then given by

mi; = {

(Remember thatb,,—1, . . . ,0,1)and(bz 1, ...,
bo) = (0,...,0,1).)

It follows that the result ofDTV cannot be determined by looking
at the assignment fot ;77 i, rather the “relation” between “corre-
sponding” bits ofAyrer and Arow is essential: FolAn ||

= ||Arow]|| the result is obviously| A rar||- For||Arow]|| <
||AHIGH|| we havemi]- = ||AHIGH|| — 1.

[Anran|l- 2% + ||[Acowl|
2% +1

,b%):(o,...



(mij < ||Amren|| — 1 would imply [[Axrcn|| > 2% +1 +
||Arow || which cannot be true.) FdtArow || > ||[Amraw|| we
obtainm,; = ||Arram]|.

Thus, the resulting matrix has the following form:

W N ==
W NN =
W W N
=N =
W N

2% —2 2% _2

To prove that this matrid/ has full rank we apply column transfor-
mations starting with a subtraction of the first column frdhother
columns. For the resulting matrix the submatrix consisthghe

last2 2 — 2 columns and the lagtz — 2 rows is an upper triangular
matrix with 1's on the diagonal. By additional column tramfie-
tions it follows directly that the matrix has maximum rahk — 1.
Consequently, the rank of the original communication rmadrid

dim(< V{,, >)isinQ(2%). We summarize:

Lemma 2 A wLcD with interleaved variable ordering represent-
ing functionDIV has at least siz€22 — 1).

4.2 The General Case

In the rest of this section we give an idea how the above praof ¢
be extended tevLcDs with arbitrary variable order. Crucial for
the proof in the case of the interleaved variable ordering tha
fact that the outcome aDIV was depending on the assignments
for corresponding variables in the upper and lower half efdh
variables. More precisely: For the interleaved variabléedng
there aren/2 pairs of variablega;, a;) with

e a; (a;) is an upper (a lower)-variable

e a; anda; are split between the first and the second half of
the variable order and

o the difference of the indiceisandj is a constant offse}.

For arbitrary variable orders this is not always the casétferoff-
set %, but if one modifies the offset to a numbgr— po, one can
always find “enough” such pairs being separated by the ceresid
variable ordering. A precise formulation of this (purelynda-
natorial) property, its proof (and the application to lovieunds
for multiplication) has already been given by Bryant in [4)s-
ing this property the proof for the interleaved variableesidg can
be modified by specification of a “similar” communication su>
trix. Consideration of the rank of this submatrix then letmishe
following result (for details of the proof see [16]):

Theorem 3 A wLcD for function DIV has at least siz&@ 16 — 1
(regardless of the variable order).

Using Theorems 3 and 1 we finally obtain:

Corollary 1 MTBDDS, EVBDDS, BMDS, *BMDS, HDDS, K*BMDS

and * PHDDs require representations of sif&(215) for division
(regardless of the variable order).

5 Conclusions

We proved an exponential lower bound on the size of wordHeve
representations for integer dividers. The proof could beedi-
multaneously” for all word-level DDs by the introduction\&ord-
Level Linear Combination Diagramsv{CDs) as a generic word-
level DD. They turned out to be a powerful tool to charactette
limits of the word-level DD-concept.

Concerning division our result gives the following hints fature
work: Since word-level DDs are not suitable as a data stract
least as long as they are used for the representation of pog-in
output behaviour, new methods have to be developed. Ifiegist
DDs are still to be used, e.g. the structure of the circuithinlge
considered to check whether a hierachical substitutioedap-
proach is feasible. On the other hand, it is an interestimgaues-
tion, which type of (DD-similar) data structure is power&rough
to allow polynomial representation of division and effidiemanip-
ulation for verification at the same time.
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