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Abstract

Several types of Decision Diagrams (DDs) have been proposedfor
the verification of Integrated Circuits. Recently, word-level DDs
like BMDs,* BMDs,HDDs,K* BMDs and* PHDDs have been attract-
ing more and more interest, e.g., by using* BMDs and* PHDDs it
was for the first time possible to formally verify integer multipliers
and floating point multipliers of “significant” bitlengths,respec-
tively.

On the other hand, it has been unknown, whetherdivision, the op-
eration inverse to multiplication, can be efficiently represented by
some type of word-level DDs. In this paper we show that the rep-
resentational power of any word-level DD is too weak to efficiently
represent integer division. Thus, neither a clever choice of the vari-
able ordering, the decomposition type or the edge weights, can lead
to a polynomial DD size for division.

For the proof we introduceWord-Level Linear Combination Dia-
grams (WLCDs), a DD, which may be viewed as a “generic” word-
level DD. We derive an exponential lower bound on theWLCD rep-
resentation size for integer dividers and show how this bound trans-
fers to all other word-level DDs.

1 Introduction

One of the most important tasks during the design ofIntegrated
Circuits is the verification of an implemented circuit, i.e., the check
whether the implementation fulfills its specification.

In the last few years several methods based onDecision Diagrams
(DDs) have been proposed [14, 5] to perform verification. Theidea
is to transform both, implementation and specification of a combi-
national circuit, into a DD. Then, due to the canonicity of the DD
representation, the equivalence check for specification and imple-
mentation translates to the check whether the corresponding DDs
are identical.

The most popular data structure in this context areOrdered Binary
Decision Diagrams(OBDDs) [3]. They were applied successfully
e.g. to the verification of control logic and integer adders.But there
are functions of high practical relevance, which cannot be repre-
sented efficiently byOBDDs. Already in [3] and [4] Bryant proved
thatOBDD representations for integer multipliers are of exponential
size.

Several other types of DDs were defined to overcome the limita-
tions of OBDDs, such asOrdered Functional Decision Diagrams

(OFDDs) [12], Ordered Kronecker Functional Decision Diagrams
(OKFDDs) [11], Multi–Terminal Binary Decision Diagrams
(MTBDDs) [9, 1] and Edge–valued Binary Decision Diagrams
(EVBDDs) [13]. But the first DDs to represent integer multipli-
cation efficiently wereBinary Moment Diagrams(BMDs) andMul-
tiplicative BMDs (* BMDs) introduced in [6]. LikeMTBDDs and
EVBDDs, alsoBMDs and *BMDs are word-level DDs, i.e. they rep-
resent integer-valued functionsf : f0; 1g

n

! Z.

To further improve on the representational power ofBMDs, several
other word-level DD types have been introduced, e.g.Hybrid Deci-
sion Diagrams(HDDs) [8] andKronecker* BMDs (K* BMDs) [10].
Recently Chen and Bryant defined a new data structure calledMul-
tiplicative Power Hybrid Decision Diagrams(* PHDDs) [7], which
is able to represent not only integer multiplication but also floating
point multiplication efficiently.

Until now it was not known, whether the word-level DDs men-
tioned above are also able to represent division efficiently. Recently
Nakanishi [15] made a first step by showing that *BMDs cannot
represent integer division efficiently. The proof is technically com-
plicated, it is based on fooling set arguments similar to theorginal
proof for multiplication by Bryant and has to take into account the
edge values in the *BMD representation. Consequently, as already
mentioned, in this form it only works for *BMDs.

In this paper we prove that integer division cannot be represented in
polynomial sizeby any of the ordered word-level DDs mentioned
in the literature until now. Even more interestingly, we prove that
the concept of word-level DDs in general is too weak to result in
polynomial size representations of division.

For the proof we introduce a new data structure, theWord-Level
Linear Combination Diagrams(WLCDs). WLCDs are a generaliza-
tion of Waack's Parity Ordered Binary Decision Diagrams
(POBDDs) [17] to the word level. It turns out thatWLCDs can
be viewed as a “generic” ordered word-level DD in the follow-
ing sense: Each ordered word-level DD can be “embedded into”
WLCDs such that a DD withk nodes is transformed into aWLCD
representing the same function with the same numberk of nodes.
Thus, a lower bound on the size of aWLCD is also a lower bound
on the size of all other ordered word-level DDs.

We apply this idea to integer division by deriving an exponential
lower bound on the size ofWLCDs representing integer divison (re-
gardless of the chosen variable order). ForWLCDs lower bounds
can be obtained by consideration of the rank of a communication
matrix which is constructed from the function tables of several co-
factors. It follows that bothering details concerning e.g.edge values
have not to be taken into account to derive the lower bound in our
proof. On the other hand, due to the properties ofWLCDs we obtain
an exponential lower bound result, valid for all ordered word-level
DD types.

The paper is structured as follows. In Section 2 we provide basics
on word-level DDs which will be necessary for the understanding
of the paper.WLCDs and their relationship to existing word-level



DDs are introduced in Section 3. Furthermore, an algebraic char-
acterization of theWLCD complexity is given which leads to the
rank considerations of certain cofactor matrices. In Section 4 the
lower bound for division is derived1. We finish with conclusions
and perspectives of further work in Section 5.

2 Preliminaries: Word-Level Decision Diagrams

In this section we give a short review of ordered word-level DDs,
data structures used for the representation of so-calledPseudo Boo-
leanfunctions, i.e. functions from a Boolean domain to the integers
or rational numbers. In general, DDs are graph–based representa-
tions, where at each (non–terminal) node (labeled with a variable
x) a decomposition of the function (represented by this node)into
two subfunctions (thelow–function and thehigh–function) is per-
formed:

Definition 1 A word-level DD is a rooted directed acyclic graph
G = (V; E) with non empty vertex set V containing two types of
vertices,non-terminalandterminalvertices. A non-terminal vertex
v has as label a variableindex(v) 2 fx

1

; : : : ; x

n

g and two chil-
dren low(v); high(v) 2 V . A terminal vertexv is labeled with a
valuevalue(v) 2 Z.

For the purpose of this paper, we are only interested inordered
DDs, i.e. DDs, where the variables occur in the same order on all
paths of the DD. More precisely, this means:

Definition 2 A DD is ordered iff there is a fixed order� : f1; : : : ;

ng ! fx

1

; : : : ; x

n

g such that for any non-terminal vertexv the
following holds:index(low(v)) = �(k)withk > �

�1

(index(v))

(index(high(v)) = �(q) with q > �

�1

(index(v))) as long as
low(v) (high(v)) is also a non-terminal vertex.

Based on these general definitions we now consider differentde-
composition types and shortly discuss resulting word-level DDs
and corresponding evaluation rules. (For a survey on word-level
DDs and more details see also [2].)

2.1 Decomposition types and evaluation rules

In word-level DDs the functionf
v

: f0; 1g

n

! Q represented
by a non–terminal nodev, which is labeled by variablex

i

, is de-
composed into two subfunctions, both independent of variable x

i

.
Depending on the decomposition type these subfunctions arecom-
bined from the cofactors

(f

v

)

x

i

= f

v

(x

1

; : : : ; x

i�1

; 0; x

i+1

; : : : ; x

n

)

and
(f

v

)

x

i

= f

v

(x

1

; : : : ; x

i�1

; 1; x

i+1

; : : : ; x

n

)

in different ways. DDs as defined in literature differ in the way they
use decomposition types. Decomposition types can be definedby
the setZ

2;2

of non–singular2 � 2 matrices overZ [8]. The most
important decomposition types areShannon decomposition, posi-
tive Davio decompositionandnegative Davio decomposition. The
Shannon decomposition is used inMTBDDs [9] andEVBDDs [13],
the positive Davio decomposition is used inBMDs and *BMDs [6].
In K* BMDs [10] and *PHDDs [7] Shannon decomposition, positive
Davio and negative Davio decomposition are used. InHDDs [8]
six different decomposition types (including Shannon, positive and
negative Davio decomposition) are used.
Following [8] the matrices corresponding to Shannon, positive Da-
vio and negative Davio decomposition, respectively, are

�

1 0

0 1

� �

1 0

�1 1

�

and

�

0 1

1 �1

�

:

1Due to lack of space some details of the proof are omitted. They can be found in
[16].

These matrices define how the functionsf

low(v)

andf
high(v)

rep-
resented bylow(v) andhigh(v) are computed from(f

v

)

x

i

and
(f

v

)

x

i

. For the positive Davio decomposition, e.g., we have
�

f

low(v)

f

high(v)

�

=

�

1 0

�1 1

��

(f

v

)

x

i

(f

v

)

x

i

�

;

i.e.,f
low(v)

= (f

v

)

x

i

andf
high(v)

= (f

v

)

x

i

� (f

v

)

x

i

.

A terminal nodev with value(v) = z represents the constant func-
tion with function valuez. To evaluate the functionf

v

represented
by a non–terminal nodev for x

i

= 0 or x
i

= 1, we have to re-
construct(f

v

)

x

i

or (f
v

)

x

i

from f

low(v)

andf
high(v)

. To do so, we
make use of the fact, that the decomposition type matrices are non–
singular: Since a decomposition type matrixA is non–singular, the
inverse matrixA�1 exists and

�

(f

v

)

x

i

(f

v

)

x

i

�

= A

�1

�

�

f

low(v)

f

high(v)

�

: (1)

The inverse decomposition type matrices for Shannon, positive Da-
vio and negative Davio decomposition, respectively, are

�

1 0

0 1

� �

1 0

1 1

�

and

�

1 1

1 0

�

:

For positive Davio decomposition, e.g., this means that(f

v

)

x

i

=

f

low(v)

and(f
v

)

x

i

= f

low(v)

+ f

high(v)

.

2.2 Additive edge values, multiplicative edge values, ne-

gation edges

Edge values are introduced to increase the amount of subgraph
sharing when using integer–valued terminal nodes. It has tobe
differentiated betweenadditiveandmultiplicativeedge values.
An edge with additive weighta and multiplicative weightm lead-
ing to nodev represents the function

< (a;m); f

v

>:= a+m � f

v

: (2)

MTBDDs, BMDs andHDDs use no edge values,EVBDDs use only
additive weights, i.e., the multiplicative weightm is 1, * BMDs use
only multiplicative weights, i.e.a = 0. K* BMDs use both addi-
tive and multiplicative weights. *PHDDs use only multiplicative
weights of form(�1)

ne

� 2

w with ne 2 f0; 1g andw 2 Z. (For
reasons of memory efficiency(�1)ne � 2w is stored as an integerw
and a bitne representing a “negation edge” whenne = 1.)
Now consider any ordered word-level DD with edge values. Then
for each non–terminal nodev there is a0–edge labeled with edge
weights(a

low

;m

low

) leading to nodelow(v) and a1–edge labeled
with edge weights(a

high

; m

high

) leading to nodehigh(v). If in
nodev the decomposition typeA =

�

a

11

a

12

a

21

a

22

�

with inverse matrix

A

�1

=

�

a

0

11

a

0

12

a

0

21

a

0

22

�

is used, then using Equations 1 and 2 the evalua-

tion rule for this node is the following:

f

v

= (1� x

i

)�(f

v

)

x

i

+ x

i
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)

x

i

= (1� x
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0
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f
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)
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0

12

(a
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f
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0
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f
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)
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0
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a
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)
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f
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)

+(a

0

21
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22

m
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f
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)):

(3)
In Section 3 we will use the “most general evaluation rule” of
Equation 3 to analyze the relationship between the existingordered
word-level DDs and our new data structure called Word-LevelLin-
ear Combination Diagrams (WLCDs).
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Figure 1: Non-terminal vertexv of aWLCD. v is labeled by variable
x

i

. The0–edges ofv are given by edges to nodesu
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k
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the1–edges are given by edges tot
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.

3 Word-Level Linear Combination Diagrams

In this section we define Word-Level Linear Combination Diagrams
(WLCDs). WLCDs are a generalization ofPOBDDs defined by Waack
[17] to the word-level. WhereasPOBDDs can represent only Boo-
lean functions,WLCDs represent functionsf : f0; 1g

n

! Q.

WLCDs are given by the following definition:

Definition 3 A Word-Level Linear Combination Diagram (WLCD)
is a rooted directed acyclic graphG = (V;E). If the WLCD is
not empty, it contains exactly one sink labeled with 1 and with
no outgoing edges. The remaining nodes are called non–terminal
nodes. A non-terminal vertexv is labeled by a variableindex(v) 2
fx

1

; : : : ; x

n

g. The outgoing edges of a non–terminal nodev are
partitioned into two sets: 0–edges(v) and 1–edges(v). At least one
of these sets is not empty. All edgese are labeled by an edge weight
w(e) 2 Q. A WLCD is ordered, i.e., as with DDs the variables
occur in the same order on all paths ofWLCD. The size of aWLCD
is its number of nodes.

The definition of aWLCD is illustrated by Figure 1.

An emptyWLCD represents the constant0–function, the sink of a
non–emptyWLCD represents the constant1–function. The func-
tion f

v

represented by a non–terminal nodev labeled by variable
x

i

with 0–edges(v)= f(v; u

1

); : : : ; (v; u

k

)g and 1–edges(v)=
f(v; t

1

); : : : ; (v; t

m

)g is defined by the following evaluation rule:

f

v

:= (1� x

i

) � (w(v; u

1

) � f

u

1

+ : : :+ w(v; u

k

) � f

u

k

)

+x

i

� (w(v; t

1

) � f

t

1

+ : : :+ w(v; t

m

) � f

t

m

):

(4)

Similar to POBDDs, also forWLCDs efficient synthesis operations
and an equivalence check can be derived. We omit any further de-
tails, rather we concentrate on the property ofWLCDs which is most
important in this paper: Ordered word-level DDs can be “embed-
ded intoWLCDs”, i.e., if there is some word-level DD withk nodes,
we can easily construct aWLCD with the same numberk of nodes.
This fact is used to conclude lower bounds on the size of arbitrary
word-level DDs from lower bounds on the size ofWLCDs.

The computation of lower bounds on the size ofWLCDs can be
done in an elegant way using arguments from linear algebra. Before
coming to lower bounds we show how to embed word-level DDs in
WLCDs.

3.1 Relationship between WLCDs and existing word-level

DDs

Here we prove that all ordered word-level DDs mentioned in the
previous sections can be “embedded intoWLCDs”. To do so we
proceed as follows:

A given word-level DD is transformed step by step into aWLCD.

If the given DD contains terminalsv with valuesvalue(v) differ-
ent from0 and1, these terminals are replaced by a terminal1 and
the multiplictive edge weights of all incoming edges ofv are multi-
plied by value(v). If now there is more than one terminal with
value 1, these terminals are replaced by a unique terminal with
value1. Edges to terminal0 with additive weighta 6= 0 are re-
placed by edges to terminal1 with additive weighta and multi-
plicative weight0. The0–terminal is removed. All these steps do
not change the function represented by the DD.

Now in a bottom–up procedure for each non–terminal nodev la-
beled with variablex

i

= index(v) representing a functionf
v

the outgoing edges are replaced resulting in aWLCD–node rep-
resenting the same functionf

v

. Suppose that the decomposition
type used for nodev is given byA =

�

a

11

a

12

a

21

a

22

�

(with inverse

matrix A

�1

=

�

a

0

11

a

0

12

a

0

21

a

0

22

�

) and the0–edge is labeled with edge

weights (a
low

; m

low

), the 1–edge is labeled with edge weights
(a

high

;m

high

). Then the evaluation rule of Equation 3 gives a
relation betweenf

low(v)

andf
high(v)

andf
v

. A comparison with
the evaluation rule forWLCDs (see Equation 4) leads to the defini-
tion of the equivalentWLCD–node and its corresponding edges (let
v

one

be the terminal with value1):

� 0–edges(v)= f(v; v

one

); (v; low(v)); (v; high(v))g,
w(v; v

one

) = a

0

11

a

low
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12
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high

,
w(v; low(v)) = a
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.

� 1–edges(v)= f(v; v
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); (v; low(v)); (v; high(v))g,
w(v; v

one
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high

,
w(v; low(v)) = a

0

21

m

low

,
w(v; high(v)) = a

0

22

m

high

.

The replacement is illustrated by Figure 2.

After this bottom–up procedure, if there is a root edge with weight
(a;m), the weights of the outgoing edges of the root are multiplied
by m and an edge(root; v

one

) with weighta is included into0–
edges(root)and1–edges(root).

Finally we obtain aWLCD representing the same function as the
original DD. We summarize:

Theorem 1 If the MTBDD, EVBDD, BMD, * BMD, HDD, K* BMD or
* PHDD for a functionf : f0; 1g

n

! Z (or f : f0; 1g

n

! Q for
the case of* PHDDs) with variable order� hask nodes, then there
also exists aWLCD with variable order� representingf with (at
most)k nodes.

Example 1 In Figure 3 the node replacement described to prove
Theorem 1 is illustrated for positive Davio decomposition without
edge weights (i.e. the additive edge weights are0 and multiplica-
tive edge weights are1). For positive Davio decomposition the
decomposition type matrix ist given byA =

�

a

11

a

12

a

21

a

22

�

=

�

1 0

�1 1

�

,

A
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=
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a
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�

=

�

1 0

1 1

�

. Thus, the evaluation rule can be simpli-

fied to
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+ f

high(v)

):

3.2 An Algebraic Characterization of the WLCD Complex-

ity

In this subsection we give an algebraic characterization ofthe
WLCD complexity, which we will use to prove lower bounds on
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Figure 3: Transformation of a positive Davio node into aWLCD node

the size ofWLCDs. We show, that the number of nodes in aWLCD
cannot be smaller than the dimension of a certain vector space.

Consider the set of all functions fromf0; 1gn to the rational num-
bersMap(f0; 1g

n

;Q) = ff : f0; 1g

n

! Qg. Define addition
onMap(f0; 1g

n

;Q) by (f + g)(x

1

; : : : ; x

n

) = f(x
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; : : : ; x

n

) +

g(x
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; : : : ; x
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) and multiplication with a scalarw 2 Q by (w �

f)(x

1

; : : : ; x

n

) = w � f(x

1

; : : : ; x

n

). It is easy to see, that
Map(f0; 1g

n

;Q) together with addition and multiplication with
scalars fromQ forms a vector space.

Based onWLCDs with fixed variable order� we will define sub-
spaces of the vector spaceMap(f0; 1g

n

;Q). W.l.o.g. we assume
the natural variable order, i.e.,� : f1; : : : ; ng ! fx

1

; : : : ; x

n

g

with �(i) = x

i

8i 2 f1; : : : ; ng.

Given aWLCD B, consider for somek 2 f1; : : : ; ng the set of all
WLCD–nodes, which are labeled with variablex

k

or which are la-
beled with a variablex

i

with i > k and which have an incoming
edge from a node labeled by a variablex

j

with j < k. These
nodes represent functions ofMap(f0; 1g

n

;Q). We denote this
set of functions byV B

k

. Of course, the vector space< V

B

k

>

which is generated by the functions inV B

k

forms a subspace of
Map(f0; 1g

n

;Q).

Let f be the function represented by theWLCD B. We consider the
following set of cofactors off :
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Again,< V
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>, which is generated by the functions inV f

k

, is a
subspace ofMap(f0; 1g
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;Q).

Now we investigate the relationship between the vector spaces
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>. We claim that
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To prove this it is sufficient to show, that each cofactor
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paths starting from the root ofB, which fulfill the assignmentx
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product of all weights of edges on pathp(r)
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. Then according to the
definition ofWLCDs and by induction onk the following holds:
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2 f0; 1g.

Because of< V

f

k

>�< V

B

k

> we have

dim(< V

f

k

>) � dim(< V

B

k

>)

and sinceV B

k

generates< V

B

k

> it holds

dim(< V

f

k

>) � jV

B

k

j:

Thus we obtain the following lemma

Lemma 1 Letf be any function inMap(f0; 1g

n

;Q). Then

dim(< V

f

k

>)

is a lower bound on the size of aWLCD for f with respect to the
natural variable ordering.

In fact, we can prove even a stronger result with similar arguments
as in the proof of Waack [17] forPOBDDs:

Theorem 2 A WLCD B with natural variable order representing
function f with a minimal number of nodes, has exactly
dim(<

S

n+1

k=1

V

f

k

>) nodes.

However, for the purposes of this paper we need only Lemma 1.



a

1

0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
a

0

0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
b

1

0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
b

0

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
a

3

a

2

b

3

b

2

0 0 0 0 * 0 0 0 * 1 0 0 * 2 1 0 * 3 1 1
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 * 4 2 1 * 5 2 1 * 6 3 2 * 7 3 2
0 1 0 1 1 0 0 0 1 1 0 0 1 1 1 0 1 1 1 1
0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 * 8 4 2 * 9 4 3 * 10 5 3 * 11 5 3
1 0 0 1 2 1 1 1 2 1 1 1 2 2 1 1 2 2 1 1
1 0 1 0 1 0 0 0 1 1 0 0 1 1 1 0 1 1 1 1
1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 * 12 6 4 * 13 6 4 * 14 7 4 * 15 7 5
1 1 0 1 3 2 2 1 3 2 2 1 3 2 2 2 3 3 2 2
1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 0 0 0 1 1 0 0 1 1 1 0 1 1 1 1

Figure 4: Communication matrix of division forn = 4.

4 An Exponential Lower Bound for Division

In this section we apply Lemma 1 to derive an exponential lower
bound on the size ofWLCDs (and thus of word-level DDs) repre-
senting integer divison.

For our proof we use the following notations and definitions con-
cerning division: Two sets of variables, thea-variablesA =

fa

n�1

; : : : ; a

0

g and theb-variablesB =fb

n�1

; : : : ;b

0

g, are con-
sidered. As usual, the binary representation ofA andB is given
by

jjAjj := 2

n�1

a

n�1

+ : : :+ 2

0

a

0 and
jjBjj := 2

n�1

b

n�1

+ : : :+ 2

0

b

0

;

respectively. Then the integer divisionDIV is the Pseudo Boolean
function defined by

DIV : f0; 1g

n

� f0; 1g

n

! IN:

(a

n�1

; : : : ; a

0

; b

n�1

; : : : ; b

0

) 7!

�

jjAjj

jjBjj

�

:

Before we consider the general case for the proof of an exponential
lower bound forWLCDs with arbitrary variable orders we have a
look at a restricted case which nicely demonstrates the ideaof the
proof and the proof technique. The proof of the general case is
slightly more complicated but works along similar lines. Due to
lack of space we only give the idea of the proof for the general
case. More details can be found in [16].

4.1 WLCDs with Interleaved Variable Ordering

For the restricted case we fix the variable order in advance: it is
given by theinterleaved ordering(a

n�1

; b

n�1

; : : : ; a

0

; b

0

):

Furthermore, we may assume thatn is even. (Forn odd, we embed
an (n � 1)–bit divider into then–bit divider by settinga

n�1

=

b

n�1

= 0 and note that for an exponential lower bound
(cn) it
holds
(cn) = 
(c

n�1

).

Following Lemma 1 we now consider the setV

f

n+1

of cofactors
V

f

n+1

= ff j

a

n�1

=c

1

;b

n�1

=c

2

;:::;a
n

2

=c

n�1

;b
n

2

=c

n

j c

1

; : : : ; c

n

2

f0; 1gg and show an exponential lower bound fordim(< V

f

n+1

>).

To estimatedim(< V

f

n+1

>) we prove that a certain number of

elements ofV f

n+1

is linearly independent. For that we consider a
communication matrixwhose rows are function tables of the co-
factors ofV f

n+1

. The rows of the matrix are “numbered” by in-
put combinations of the “upper half” of thea- and b-variables.

Analogously, the “lower half” of thea- andb-variables defines the
columns. For illustration see Figure 4, where we give the commu-
nication matrix forn = 4. (A star in the matrix means that the
corresponding result ofDIV is not defined (division by zero). Our
proof is valid for all possible replacements of the stars.)

The rank of this communication matrix is equal todim(< V

f

n+1

>).

Since we need only a lower bound ondim(< V

f

n+1

>), we may
remove columns and rows in the matrix (thereby possibly reducing
the rank of the resulting matrix).

The idea now is to restrict to entries with constant values for the
b-variables and to observe the result of the division for increasing
values ofa-variables . More precisely, we only keep rows where
from theb-variables exactly the least significant upperb-variable
b

n

2

is set, i.e.b
n�1

= 0; : : : ; b

n

2

+1

= 0; b

n

2

= 1.

Analogously, only columns withbn
2

�1

= 0; : : : ; b

1

= 0; b

0

= 1

are considered. Furthermore, the rows and columns with 0 forall
a-inputs are removed. For our example withn = 4 the following
matrix remains:

a

1

0 1 1

a

0

1 0 1

b

1

0 0 0

b

0

1 1 1

a

3

a

2

b

3

b

2

0 1 0 1 1 1 1

1 0 0 1 1 2 2

1 1 0 1 2 2 3

In general, we obtain a matrixM of size(2
n

2

�1)� (2

n

2

�1). For
the computation of the entries ofM consider the setA

HIGH

:=

fa

n�1

; : : : ; a

n

2

g andA
LOW

:= fa

n

2

�1

; : : : ; a

0

g, i.e. A
HIGH

(A
LOW

) consists of the upper (lower)a-variables. Define

jjA

HIGH

jj :=

P

n�1

i=

n

2

a

i

2

i�

n

2 andjjA
LOW

jj :=

P

n

2

�1

i=0

a

i

2

i.

Now letm
ij

denote an entry ofM . Then rowi corresponds to an
assignmentjjA

HIGH

jj and columnj corresponds to an assignment
jjA

LOW

jj. The entrym
ij

is then given by

m

ij

=

�

jjA

HIGH

jj � 2

n

2

+ jjA

LOW

jj

2

n

2

+ 1

�

:

(Remember that(b
n�1

; : : : ; b

n

2

) = (0; : : : ; 0; 1) and(bn
2

�1

; : : : ;

b

0

) = (0; : : : ; 0; 1).)

It follows that the result ofDIV cannot be determined by looking
at the assignment forA

HIGH

, rather the “relation” between “corre-
sponding” bits ofA

HIGH

andA
LOW

is essential: ForjjA
HIGH

jj

= jjA

LOW

jj the result is obviouslyjjA
HIGH

jj. For jjA
LOW

jj <

jjA

HIGH

jj we havem
ij

= jjA

HIGH

jj � 1.



(m
ij

< jjA

HIGH

jj � 1 would imply jjA
HIGH

jj � 2

n

2

+ 1 +

jjA

LOW

jj which cannot be true.) ForjjA
LOW

jj > jjA

HIGH

jj we
obtainm

ij

= jjA

HIGH

jj.

Thus, the resulting matrix has the following form:

M =

0

B

B

B

B

B

B

@

1 1 1 1 � � � 1

1 2 2 2 � � � 2

2 2 3 3 � � � 3

3 3 3 4 � � � 4

...
...

...
. ..

...
...

2

n

2

� 2 2

n

2

� 2 � � � � � � 2

n

2

� 2 2

n

2

� 1

1

C

C

C

C

C

C

A

:

To prove that this matrixM has full rank we apply column transfor-
mations starting with a subtraction of the first column from all other
columns. For the resulting matrix the submatrix consistingof the
last2

n

2

�2 columns and the last2
n

2

�2 rows is an upper triangular
matrix with 1's on the diagonal. By additional column tranforma-
tions it follows directly that the matrix has maximum rank2

n

2

� 1.
Consequently, the rank of the original communication matrix and
dim(< V

f

n+1

>) is in
(2

n

2

). We summarize:

Lemma 2 A WLCD with interleaved variable ordering represent-
ing functionDIV has at least size(2

n

2

� 1).

4.2 The General Case

In the rest of this section we give an idea how the above proof can
be extended toWLCDs with arbitrary variable order. Crucial for
the proof in the case of the interleaved variable ordering was the
fact that the outcome ofDIV was depending on the assignments
for corresponding variables in the upper and lower half of the a-
variables. More precisely: For the interleaved variable ordering
there aren=2 pairs of variables(a

i

; a

j

) with

� a

i

(a
j

) is an upper (a lower)a-variable

� a

i

anda
j

are split between the first and the second half of
the variable order and

� the difference of the indicesi andj is a constant offsetn
2

.

For arbitrary variable orders this is not always the case forthe off-
set n

2

, but if one modifies the offset to a numbern
2

� p

0

, one can
always find “enough” such pairs being separated by the considered
variable ordering. A precise formulation of this (purely combi-
natorial) property, its proof (and the application to lowerbounds
for multiplication) has already been given by Bryant in [4].Us-
ing this property the proof for the interleaved variable ordering can
be modified by specification of a “similar” communication subma-
trix. Consideration of the rank of this submatrix then leadsto the
following result (for details of the proof see [16]):

Theorem 3 A WLCD for functionDIV has at least size2
n

16

� 1

(regardless of the variable order).

Using Theorems 3 and 1 we finally obtain:

Corollary 1 MTBDDs, EVBDDs, BMDs, * BMDs, HDDs, K* BMDs
and * PHDDs require representations of size
(2

n

16

) for division
(regardless of the variable order).

5 Conclusions

We proved an exponential lower bound on the size of word-level
representations for integer dividers. The proof could be done “si-
multaneously” for all word-level DDs by the introduction ofWord-
Level Linear Combination Diagrams (WLCDs) as a generic word-
level DD. They turned out to be a powerful tool to characterize the
limits of the word-level DD-concept.
Concerning division our result gives the following hints for future
work: Since word-level DDs are not suitable as a data structure at
least as long as they are used for the representation of the input-
output behaviour, new methods have to be developed. If existing
DDs are still to be used, e.g. the structure of the circuit might be
considered to check whether a hierachical substitution based ap-
proach is feasible. On the other hand, it is an interesting open ques-
tion, which type of (DD-similar) data structure is powerfulenough
to allow polynomial representation of division and efficient manip-
ulation for verification at the same time.
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