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Abstract

Functional decomposition is an important technique in

logic synthesis, especially for the design of lookup table

based fpga architectures.

We present a method for functional decomposition

with a novel concept for the exploitation of don't cares

thereby combining two essential goals: the minimiza-

tion of the numbers of decomposition functions in the

current decomposition step and the extraction of com-

mon subfunctions for multi-output Boolean functions.

The exploitation of symmetries of Boolean func-

tions plays an important role in our algorithm as a

means to minimize the number of decomposition func-

tions not only for the current decomposition step but

also for the (recursive) decomposition algorithm as a

whole.

Experimental results prove the e�ectiveness of our

approach.

1 Introduction

Functional decomposition was introduced by Ashen-

hurst [1], Curtis [4], Roth and Karp [16, 7]. Dur-

ing last years functional decomposition attracted a

lot of interest especially in connection with the de-

sign of lookup table based fpga architectures (see e.g.

[14, 8, 9, 10, 18, 24, 21]). E�cient functional decom-

position methods based on Binary Decision Diagrams

(BDDs) were proposed; there were improvements on

the basic decomposition techniques with respect to the

extraction of common sublogic in the decomposition of

multi-output Boolean functions [11, 24, 21]. In [3, 2] a

BDD based method was presented which computes ex-

tensions of incompletely speci�ed single-output func-

tions with a minimal number of decomposition func-

tions in the current decomposition step.

The exploitation of don't cares is an important step

in functional decomposition even for completely spec-

i�ed functions, since decomposition is applied recur-

sively and at least at higher levels of the recursion we

usually obtain incompletely speci�ed functions.

In our decomposition procedure we use an improved

method to exploit don't cares which does not only

minimize communication complexity in the current de-

composition step but has also an e�ect on the (recur-

sive) decomposition of the decomposition functions in

our procedure. We assign don't cares to maximize the

number of symmetries to achieve this `global' e�ect

(see also [20]).

In addition we developed a new method for don't

care assignment with respect to the computation

of common decomposition functions of multi-output

functions. This method is intended to increase the

potential to share decomposition functions for several

single-output functions.

Finally we apply the method of Chang and Marek-

Sadowska [3, 2] to minimize the number of decom-

position functions for single-output functions in the

current decomposition step.

The crucial point in our don't care assignment con-

cept is the fact that all steps in this procedure are

compatible in the sense that one step does not destroy

the results of the previous one.

The paper is organized as follows: In Section 2 we

de�ne basic notations. In Section 3 we brie
y review

our method to compute common decomposition func-

tions for multi-output functions [21]. The role of sym-

metries in logic synthesis is investigated in Section 4

and our concept for don't care assignment is given in

Section 5. In Section 6 experimental results are given

and Section 7 concludes the paper.

2 Preliminaries

We restate some well{known de�nitions for decompo-

sition of Boolean functions.

A single-output Boolean function f : f0; 1g

n

!

f0; 1g with input variables x

1

; : : : ; x

n

is decomposed

with respect to a subset fx

1

; : : : ; x

p

g (1 < p < n) of

the input variables according to Figure 1. The func-

tions �

i

: f0; 1g

p

! f0; 1g (1 � i � r) are called de-

composition functions and the function g : f0; 1g

r+q

!

f0; 1g is called composition function. fx

1

; : : : ; x

p

g

is called bound set and fx

p+1

; : : : ; x

n

g is called free

set. f is said to be decomposable with respect to

fx

1

; : : : ; x

p

g, if there is a decomposition with r < p

decomposition functions.

If the Boolean function is to be realized by an fpga

with n

LUT

-input lookup tables and if p � n

LUT

,

� = (�

1

; : : : ; �

r

) can be realized by r lookup tables

(similarly for g). If the number of inputs of � or g is

still too large, decomposition has to be applied recur-

sively to � and g.
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Figure 1: Decomposition of f : f0; 1g

n

! f0; 1g with

respect to fx

1

; : : : ; x

p

g.

Given the subset fx

1

; : : : ; x

p

g of the input variables,

the minimum number r of decomposition functions is

to be computed. To do so the notion of compatible

bound set vertices was introduced [16]. Two bound set

vertices �

(1)

and �

(2)

2 f0; 1g

p

are called compatible

(�

(1)

� �

(2)

), i� 8� 2 f0; 1g

n�p

: f(�

(1)

; �) = f(�

(2)

; �).

For completely speci�ed functions compatibility forms

an equivalence relation, which partitions f0; 1g

p

into

equivalence classes, the so-called compatible classes.

The number of di�erent compatible classes is denoted

by ncc(f; fx

1

; : : : ; x

p

g). It is easy to see that a decom-

position with decomposition function � = (�

1

; : : : ; �

r

)

exists, i� 8�

(1)

; �

(2)

2 f0; 1g

p

: �

(1)

6� �

(2)

=) �(�

(1)

) 6=

�(�

(2)

). Thus, the minimum number of decomposi-

tion functions in the decomposition of f with respect

to fx

1

; : : : ; x

p

g is dlog

2

(ncc(f; fx

1

; : : : ; x

p

g))e.

It is well-known that the number of compatible

classes ncc(f; fx

1

; : : : ; x

p

g) can be easily determined

based on BDD representations, if the variables of the

bound set fx

1

; : : : ; x

p

g are located before the variables

of the free set in the BDD variable order [9].

3 Multi-output Decomposition

In this section we will brie
y review our method to

decompose multi-output functions [21].

Given an m-output function f = (f

1

; : : : ; f

m

) :

f0; 1g

n

! f0; 1g

m

we have to compute m decompo-

sitions with respect to bound set fx

1

; : : : ; x

p

g

f

i

(x

1

; : : : ; x

n

) = g

i

(�

(i)

1

(x

1

; : : : ; x

p

); : : : ;

�

(i)

r

i

(x

1

; : : : ; x

p

); x

p+1

; : : : ; x

n

).

Unlike [10] we choose decompositions with min-

imal numbers of decomposition functions r

i

=

dlog

2

(ncc(f

i

; fx

1

; : : : ; x

p

g))e for each f

i

(1 � i � m),

since our goal is to minimize the number of inputs of

decomposition functions and composition functions,

such that they can be realized by one LUT as soon

as possible. (In [10] the total number of decompo-

sition functions for f

1

; : : : ; f

m

is minimized, but the

number of inputs of g

i

can be (much) larger than

n� p+ dlog

2

(ncc(f

i

; fx

1

; : : : ; x

p

g))e.)

Thus,

under the condition r

i

= dlog

2

(ncc(f

i

; fx

1

; : : : ; x

p

g))e

we minimize the number of decomposition functions

j

S

m

i=1

f�

(i)

1

; : : : ; �

(i)

r

i

gj.

This is done by a BDD based computation of com-

mon decomposition functions for subsets ff

i

1

; : : : ; f

i

k

g

[21]. The computation is signi�cantly sped up by a re-

striction of the search space to the so-called strict de-

composition functions. A decomposition function �

(i)

j

is called strict, i� 8�

(1)

; �

(2)

2 f0; 1g

p

: �

(1)

�

i

�

(2)

=)

�

(i)

j

(�

(1)

) = �

(i)

j

(�

(2)

). (�

i

is the compatibility relation

for f

i

.)

However, the restriction to strict decomposition

functions has not only this `technical' reason. It can

be shown, that strict decomposition functions preserve

structural properties of the functions f

i

, which is cru-

cial for our decomposition algorithm (see Section 4).

4 Symmetries

Logic synthesis can take advantage of symmetries of

Boolean functions. In the decomposition approach,

e.g., symmetries in the set of bound variables lead

to smaller numbers of decomposition functions. For

the extreme case of f being symmetric in the bound

set fx

1

; : : : ; x

p

g (i.e. f does not change, if any pair of

variables from fx

1

; : : : ; x

p

g is exchanged), it is easy

to see that the number of decomposition functions

needed in a decomposition with respect to fx

1

; : : : ; x

p

g

is not larger than dlog(p+1)e. Analogous results hold

when f is symmetric in not all pairs of variables from

fx

1

; : : : ; x

p

g.

Strict decomposition functions have the property

that they preserve symmetry properties: If f is sym-

metric in a pair x

i

; x

j

of variables from fx

1

; : : : ; x

p

g,

then all strict decomposition functions of f are sym-

metric in x

i

and x

j

. This fact is also true for more

general types of symmetry like G{symmetries in the

bound set

�

[6].

5 Incompletely Speci�ed Func-

tions

If in a decomposition f(x

1

; : : : ; x

n

) =

g(�

1

(x

1

; : : : ; x

p

); : : : ; �

r

(x

1

; : : : ; x

p

); x

p+1

; : : : ; x

n

)

some codes (a

1

; : : : ; a

r

) do not occur in the image of

�, then (a

1

; : : : ; a

r

; �

1

; : : : ; �

n�p

) is a don't care of g

for all (�

1

; : : : ; �

n�p

) 2 f0; 1g

n�p

. Because of that we

�

G{symmetries in the bound set fx

1

; : : : ; x

p

g consist of all

possible combinations of exchanges and negations of variables

from fx

1

; : : : ; x

p

g. Various types of symmetries can be ex-

pressed as G{symmetries: Equivalence symmetry [5] in x

i

and

x

j

, e.g., means that f does not change under application of

the following sequence: negation of x

i

, exchange of x

i

and x

j

,

negation of x

i

.



have to deal with incompletely speci�ed functions dur-

ing the recursive decomposition procedure, even if we

start with completely speci�ed functions.

Our concept to assign values to don't cares consists

of three steps:

1. First of all, we assign don't cares in order to ob-

tain as many symmetries as possible for the re-

sulting function. As mentioned in the previous

section this will lead to an reduction of the num-

ber of decomposition functions. There is not only

an e�ect on the current decomposition step, but

also on later (recursive) decompositions.

Don't care assignment to obtain symmetries can

be done before the selection of a bound set for the

decomposition. We then use symmetric sifting

[12, 15] to determine a starting point of our search

for good candidates for bound sets. During the

search for a good bound set we exchange groups

of symmetric variables.

The di�culty in the don't care assignment con-

sists of the fact, that an assignment to obtain

symmetry in a pair (x

i

; x

j

) can destroy symme-

try in another pair (x

j

; x

k

). Theory and an algo-

rithm to solve this don't care assignment problem

heuristically are given more detailed in [20]. We

treat as well nonequivalence symmetry as equiv-

alence symmetry [5].

2. In general, the functions to be decomposed have

still don't cares after step 1. These remaining

don't cares are assigned with respect to logic

sharing. The don't care assignment takes into

account that for a multi-output function f =

(f

1

; : : : ; f

m

) the functions f

1

; : : : ; f

m

are decom-

posed with computation of common decomposi-

tion functions. We minimize not only the number

of decomposition functions for the single-output

functions f

i

, but also the total number of decom-

position functions to obtain as much logic sharing

as possible.

To achieve this goal we propose to minimize a

lower bound on the total number of decomposi-

tion functions of f

1

; : : : ; f

m

.

If f

1

; : : : ; f

m

are completely speci�ed, a lower

bound on the total number of decomposition func-

tions is computed as follows:

Now we call two bound set vertices �

(1)

and

�

(2)

2 f0; 1g

p

compatible (�

(1)

� �

(2)

), i�

for all 1 � i � m and 8� 2 f0; 1g

n�p

:

f

i

(�

(1)

; �) = f

i

(�

(2)

; �). If ncc(f; fx

1

; : : : ; x

p

g)

is the number of di�erent compatible classes

according to this de�nition of compatibility, a

lower bound on the total number of decom-

position functions of f

1

; : : : ; f

m

is given by

dlog

2

(ncc(f; fx

1

; : : : ; x

p

g))e. Let f�

(i)

1

; : : : ; �

(i)

r

i

g

be the set of decomposition functions for f

i

(r

i

= log

2

(ncc(f

i

; fx

1

; : : : ; x

p

g))e as de�ned in

Section 2) and let r = j

S

m

i=1

f�

(i)

1

; : : : ; �

(i)

r

i

gj

be the total number of decomposition func-

tions in the decomposition of f = (f

1

; : : : ; f

m

).

Then we have dlog

2

(ncc(f; fx

1

; : : : ; x

p

g))e �

r �

P

m

i=1

dlog

2

(ncc(f

i

; fx

1

; : : : ; x

p

g))e =

P

m

i=1

r

i

.

Thus, dlog

2

(ncc(f; fx

1

; : : : ; x

p

g))e is not only

a lower bound on

P

m

i=1

r

i

, but it also pro-

vides an estimation to what extent we can

expect to �nd common decomposition func-

tions in the decomposition of f

1

; : : : ; f

m

. If

dlog

2

(ncc(f; fx

1

; : : : ; x

p

g))e is small whereas

P

m

i=1

r

i

is large, then we can hope that there is a

large potential to share decomposition functions

in the decomposition of the single-output func-

tions f

i

.

The minimization of this lower bound can be

reduced to the computation of a graph (based

on BDD representations of incompletely speci-

�ed functions f

i

) and a solution of the minimum

clique cover problem. All further details are omit-

ted due to page limitation.

3. Finally we exploit remaining don't cares after step

2 to further minimize the number of decomposi-

tion functions for single-output functions f

i

using

the method of Chang and Marek-Sadowska [3].

We can prove that the don't care assignment of step

3 can not increase the lower bound from step 2. More-

over we can prove that the procedure does not destroy

symmetries, if each group of symmetric variables is

completely contained in the bound set or in the free

set [19].

6 Experimental Results

6.1 Arithmetic Functions

First of all we demonstrate that our automatic logic

synthesis tool is able to produce competitive designs

even for arithmetic functions which were already stud-

ied intensively using human intelligence.

Applied to adders of various operand lengths our

tool automatically produces realizations which are

very similar to the well-known conditional-sum adder

[22]. Figure 2 shows the example of a two-input gate

realization of an 8-bit adder generated by our tool.

Di�erences in details even lead to a smaller number

of gates for our realization (in the example of Figure

2 49 two-input gates compared to 90 two-input gates

for the conditional-sum adder.)

We also applied our synthesis tool to partial multi-

pliers, i.e. functions pm

n

: f0; 1g

n

2

! f0; 1g

2n

where

the inputs are given by the bits of the n partial

products

y

and the outputs are given by the 2n product

bits.

Figure 3 shows the result for pm

4

. The result can be

interpreted as a new multiplier scheme with a `column-

wise' addition of the bits of the multiplication matrix.

Note that the don't care assignment concept from Sec-

tion 5 is essential for these results. A realization with-

y

i.e. conjunctions p

i;j

= a

i

b

j

of bits of the operands

(a

1

; : : : ; a

n

) and (b

1

; : : : ; b

n

)
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Figure 2: Automatically generated circuit for a 8-bit adder.

out this don't care assignment leads to a circuit with

75% more gates for pm

4

, e.g..

A generalization of the principle to various

operand lengths leads to a multiplier with 8

1

3

� n

2

+

O(n log

2

n) two-input gates and depth 5:13 � logn +

O(log

?

n log logn) (compared to 10n

2

� 20n gates for

the Wallace tree multiplier [23] with depth 5 logn�5).

z

6.2 Benchmark Circuits

We applied the decomposition procedure described

above to several MCNC and ISCAS benchmarks to

compute FPGA realizations for Xilinx XC3000 device

(where the number of inputs of the lookup tables is

n

LUT

= 5).

We compared the numbers of CLBs for our new al-

gorithm mulop-dc to the results of mulopII [21], where

we didn't use any don't care assignment procedure

x

.

The results of Table 1 show a considerable reduc-

tion of CLB counts for our new algorithm. There are

z

log

?

n := minfm j log

(m)

(n) � 1g with log

(0)

(n) := n and

log

(i)

(n) := log(log

(i�1)

(n)) for i 2 N

x

All don't cares were assigned to 0.

reductions of CLB counts of up to 35% for alu2 and

the overall reduction is more than 10%. Note that

the benchmark functions are all completely speci�ed

functions and don't cares occur only at higher levels of

the recursion. For this reason it is clear that improve-

ments can be obtained only for larger benchmarks.

Finally, Table 2 shows a comparison between our

tool mulop-dcII

{

, FGMap [8], mis-pga(new) [14, 17]

and IMODEC [24] proving the advantages of our pro-

cedure.

7 Conclusions

We presented a method for functional decomposition

which combines the exploitation of don't cares with

the exploitation of symmetries of Boolean functions

and the extraction of common subfunctions for multi-

output Boolean functions.

Applied to FPGA synthesis, our methods to ex-

ploit don't cares lead to considerable reductions of

{

CLB counts ofmulop-dcII in Table 2 di�er from CLB counts

of mulop-dc in Table 1 because of a changed procedure to merge

LUTs into CLBs (the merging problem is formulated as a max-

imum cardinality matching problem, as proposed in [13]).
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Figure 3: Automatically generated circuit for a partial 4-bit multiplier.



Number of CLBs

Circuit i o mulopII mulop-dc

5xp1 7 10 9 9

9sym 9 1 7 7

alu2 10 6 51 33

apex7 49 37 45 41

b9 41 21 30 28

C499 41 32 65 50

C880 60 26 87 71

clip 9 5 14 13

count 35 16 26 26

duke2 22 29 114 108

e64 65 65 55 55

f51m 8 8 8 8

misex1 8 7 9 8

misex2 25 18 24 24

rd73 7 3 5 5

rd84 8 4 8 8

rot 135 107 146 135

sao2 10 4 20 18

vg2 25 8 18 18

z4ml 7 4 4 4

P

(total) 745 669

Table 1: Comparison of CLB counts for XC3000 de-

vice without and with don't care exploitation.

Number of CLBs

Circuit mulop-dcII

{

FGMap mis-pga(new) IMODEC

5xp1 9 15 13 9

9sym 7 7 7 7

alu2 33 53 96 46

apex7 39 47 43 41

b9 28 27 32 -

C499 50 49 66 50

C880 71 74 72 81

clip 13 20 23 12

count 24 24 30 26

duke2 101 178 94 122

e64 50 55 56 55

f51m 8 11 15 8

misex1 8 8 9 9

misex2 23 21 25 21

rd73 5 7 5 5

rd84 8 12 9 8

rot 123 194 143 127

sao2 18 27 28 17

vg2 18 23 18 19

z4ml 4 5 4 4

P

(subtot.) 612 830 756 667

P

(total) 640 857 788 -

Table 2: Comparison of CLB counts for XC3000 de-

vice between mulop-dcII, FGMap, mis-pga(new) and

IMODEC

CLB counts even for completely speci�ed benchmark

functions, since incompletely speci�ed functions arise

during the recursive application of the decomposition

procedure.
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