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Abstract

Functional decomposition is an important technique in logic synthesis, especially for the design of lookup

table based fpga architectures. We present an approach how to compute test information, e.g. a complete test

set (according to the stuck-at-fault model or the cellular fault model), for functionally decomposed circuits. We

are able to compute this test information in parallel with logic synthesis by (recursive) functional decomposition.

1 Introduction

Functional decomposition was introduced by Ashenhurst [1], Curtis [4], Roth and Karp [11, 6]. During last

years functional decomposition attracted a lot of interest especially in connection with the design of lookup table

based fpga architectures [10, 7]. There were considerable improvements on the basic decomposition techniques,

e.g. with respect to the extraction of common sublogic in the decomposition of multi-output boolean functions

[9, 13, 12].

In [8] a simple test generation algorithm was given for a restricted class of decomposed circuits, the so{called

cascaded Reed Muller circuits. However, to the best of our knowledge there has not been any general approach

so far which generates test sets in parallel with functional decomposition. In this paper we give basis for the

computation of test information in the general case.
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is called decomposition function and the function g : f0; 1g

r+q
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is called composition function.

If the boolean function is to be realized by an fpga with n

LUT

-input lookup tables and if p � n

LUT

, � can

be realized by r lookup tables (similarly for g). If the number of inputs of � or g is still too large, decomposition

has to be applied recursively to � and g.

In this paper we propose a method to compute test information for a functionally decomposed circuit. The

underlying fault model can be the (single) stuck-at fault model or the cellular fault model. We show how to

extract test information in parallel with the recursive decomposition using a bottom-up computation.

2 Boolean relations

To compute test sets for functionally decomposed circuits we need the concept of boolean relations which was

introduced by Cerny [3].

De�nition 1 A relation F � f0; 1g

n

� f0; 1g

m

is called boolean relation with n inputs and m outputs. Each

boolean function f : f0; 1g

n

! f0; 1g

m

can be viewed as a boolean relation R(f) with

(�; �) 2 R(f) () f(�) = � (8 � 2 f0; 1g

n

; � 2 f0; 1g

m
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Figure 1: Decomposition of f : f0; 1g

n
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with respect to fx
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; : : : ; x

p

g.

If R(f) � F for some boolean function f : f0; 1g

n

! f0; 1g

m

and some boolean relation F , we say: `f

implements the boolean relation F '.

A boolean relation F can be represented by its characteristic function, i.e. a boolean function �

F

with �

F

(�; �) =

1 i� (�; �) 2 F .

3 Recursive test pattern generation

In order to compute a complete test set for a functionally decomposed circuit S we make use of so{called freedom

relations for subcircuits T of S.

De�nition 2 Let S be a circuit and T a subcircuit of S with n

T

inputs and m

T

outputs. Let FR

T

be the maximal

relation with n

T

inputs and m

T

outputs, such that the following holds for all boolean functions f : f0; 1g

n

T

!

f0; 1g

m

T

which implement FR

T

:

If we replace T in S by a realization T

0

of f , then the function computed by S does not change.

Under these conditions FR

T

is called freedom relation of T with respect to S.

Now we have a close connection between freedom relations and redundant faults: Again let S be a circuit and

T a subcircuit of S. Let F be a fault in T and T

F

the circuit T with fault F .

F is redundant (i.e. there is no input vector for S which makes the fault observable at the outputs)

i� the function realized by T

F

implements the freedom relation of T with respect to S.

To compute test sets in parallel with the recursive decomposition of boolean functions we have to meet the

following conditions:

1. For each function that has to be realized by a recursive call of the decomposition procedure we need not

only the speci�cation of the function, but also the corresponding freedom relation with respect to the overall

circuit.
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2. For a bottom-up test generation we must be able to compute tests for function f (see Figure 1) from tests

for functions � and g.

The freedom relation of a subcircuit T is the amount of information we need about the behavior of the

`environment' of T in order to generate tests for faults in T . Note that the freedom relation is valid for all faults

in T , i.e. it does not depend on the choice of a fault F .

We have derived boolean equations to compute freedom relations of subcircuits (condition 1) and to achieve a

bottom-up test generation (condition 2). These equations are applied in parallel with logic synthesis by decom-

position.

We use Binary Decision Diagrams (bdds) [2] to represent the characteristic functions of freedom relations.

bdds are directed acyclic graphs where a Shannon decomposition is carried out in each node. They have the

advantage that not only manipulations on functions represented by bdds can be performed e�ciently but also

bdd representations for many boolean functions occurring in practical examples are of moderate size.

3.1 Details on boolean relations for testing

In the following we will just give a brief impression of how the equations to meet conditions 1. and 2. will look

like:

We assume that we decompose a boolean function f : f0; 1g

n

! f0; 1g

m

into � : f0; 1g

p

! f0; 1g

r

and

g : f0; 1g

r+q

! f0; 1g

m

(see Figure 1).

ad 1. In the �rst step the freedom relation of the completely speci�ed boolean function f is given by R(f):
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ad 2. If the number of inputs of the function f we have to realize is small enough (e.g. when we stop the recursion),

we can compute for each non{redundant fault in the realization of f a test by complete simulation and

comparison with the freedom relation of f (with respect to the overall circuit).

Otherwise we have to derive tests vectors for f from test vectors for � and g (see Figure 1):
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and choose ( ~y
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) 2 ON(T ).
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) is a test for F .
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and choose ( ~x

1

; : : : ; ~x

p

) 2 ON(T ).

Then ( ~x
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p

; ~y

1

; : : : ; ~y

q

; ~o

1

; : : : ; ~o
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) =2 FR
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and ( ~x

1

; : : : ; ~x

p

; ~y

1

; : : : ; ~y

q

) is a test for F .

Using the formulas above we can use robdd operations to compute representations for the characteristic

functions of the freedom relations for each recursive call of the decomposition procedure and we can eventually

compute tests (with respect to the overall circuit) for each single stuck-at (or cellular) fault in the circuit. This

can be done in parallel with logic synthesis by decomposition.
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4 Extensions

The method presented so far provides the basis for several interesting extensions.

In the previous section we computed a complete test set for functionally decomposed circuits without giving

attention to the size of the generated test set. To minimize the test size we can also recursively compute symbolic

representations of the set of all test vectors for each fault by slight modi�cations of equations 4 and 5. To compute

a minimal test set we have to solve a covering problem. This problem can be solved heuristically by repeated use

of the Lmax algorithm recently suggested by Kam [5].

Application of the presented methods to random pattern testability are focus of current work. An advantage

of the methods is the possibility to do an `incremental' estimation of random testability at various levels of

the recursion. If random testability appears to be too bad at some level we can use degrees of freedom in the

decomposition process to improve testability: We can choose another `information encoding' provided by the

decomposition function � (i.e. we change � and g in Figure 1 to �

0

and g

0

with better testability properties) and

we can exploit don't cares to improve testability. Another possibility is the insertion of `test points' at levels

where random testability is not good enough.
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