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Abstract

We present a method computing a minimum sized

partition of the variables of an incompletely speci-

�ed Boolean function into symmetric groups. The

method can be used during minimization of robdds

of incompletely speci�ed Boolean functions. We ap-

ply it as a preprocessing step of symmetric sifting pre-

sented by Panda [24] and M�oller [20] and of tech-

niques for robdd minimization of incompletely spec-

i�ed Boolean functions presented by Chang [6] and

Shiple [28]. The technique is shown to be very e�ec-

tive: it improves robdd sizes of symmetric sifting by

a factor of 51% and by a factor of 70% in combina-

tion with a slightly modi�ed version of the technique

of Chang and Shiple.

1 Introduction

Binary Decision Diagrams (BDDs) as a data struc-

ture for representation of Boolean functions were �rst

introduced by Lee [17] and further popularized by

Akers [1] and Moret [21]. In the restricted form

of reduced ordered BDDs (robdds) they gained

widespread application because robdds are a canon-

ical representation and allow e�cient manipulations

[4]. Some �elds of application are logic veri�cation,

test generation, fault simulation, and logic synthesis

[18, 5]. Most of the algorithms using robdds have

running time polynomial in the size of the robdds.

The sizes depend on the variable order used.

The existing heuristic methods for �nding good

variable orders can be classi�ed into two categories:

initial heuristics which derive an order by inspection

of a logic circuit [18, 11, 12] and dynamic reorder-

ing heuristics which try to improve on a given order

[14, 25, 10, 2, 9]. Sifting introduced by Rudell [25]

has emerged so far as the most successful algorithm

for dynamic reordering of variables. This algorithm is

based on �nding the optimum position of a variable,

assuming all other variables remain �xed. The posi-

tion of a variable in the order is determined by moving

the variable to all possible positions while keeping the

other variables �xed. As already observed in [23], one

limitation of sifting, however, is that it uses the ab-

solute position of a variable as the primary objective,

�
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and only considers the relative positions of groups of

variables indirectly.

Recently, it has been shown in [20] and [24] that

symmetry properties can be used to e�ciently con-

struct good variable orders for robdds using modi�ed

gradual improvement heuristics. The crucial point is

to locate the symmetric variables side by side and to

treat them as a �xed block. This results in symmetric

sifting which sifts symmetric groups simultaneously

�

.

Regular sifting usually puts symmetric variables to-

gether in the order, but the symmetric groups tend

to be in sub-optimal positions. The sub-optimal solu-

tions result from the fact that regular sifting is unable

to recognize that the variables of a symmetric group

have a strong attraction to each other and should be

sifted together. When a variable of a symmetric group

is sifted by regular sifting, it is likely to return to its

initial position due to the attraction of the other vari-

ables of the group [23].

The papers mentioned above only handle com-

pletely speci�ed functions. But in many applications

(e.g. checking the equivalence of two �nite state ma-

chines (FSMs) [7], minimizing the transition relation

of an FSM or logic synthesis for FPGA realizations

[16, 31, 27]) incompletely speci�ed Boolean functions

play an important role. In applications where robdd

sizes have a large inuence on the quality of the results

(such as logic synthesis for FPGA realizations) there

is a strong need for robdd minimization techniques

for incompletely speci�ed functions.

To the best of our knowledge, no variable ordering

algorithm exploiting don't cares has been presented

in literature. A couple of papers, e.g., [6] and [28]

investigate the robdd minimization problem for in-

completely speci�ed Boolean functions. They start

with a �xed variable order obtained by any ordering

heuristics and greedily minimize the number of nodes

at every level by assigning as few don't cares as pos-

sible to either the on-set or the o�-set. The variable

order remains �xed during this process. However, the

resulting robdd sizes heavily depend on the variable

order. Thus, there is a need to determine good vari-

able orders in the case of incompletely speci�ed func-

tions, too.

�

Symmetric sifting is very e�cient but does not result in

optimal orders in any case as proven in [20] and [29]



As determining the symmetric groups before apply-

ing sifting has been proven to result in good variable

orders for completely speci�ed functions, it seems to

be a good idea in the case of incompletely speci�ed

functions to �rst determine symmetric groups, then

to apply symmetric sifting and techniques as those

from [6, 28]. However, the symmetric groups of in-

completely speci�ed functions are not uniquely de�ned

(see Section 3). Therefore we have the problem to

compute good partitions into symmetric groups with

respect to robdd minimization.

In [15] an algorithm is presented, which decides

for an incompletely speci�ed Boolean function (rep-

resented by a cube array), whether a given set � of

input variables forms a symmetric group or not. How-

ever, for our problem to partition the input variables

into symmetric groups there remain two di�culties:

�rst the question, how to �nd large candidate sets �

(of course, we cannot test for each subset of the vari-

ables whether it is a symmetric group) and secondly

the question, how to combine symmetric groups to a

partition of the input variables, such that the incom-

pletely speci�ed function is symmetric in each set of

the partition at the same time (in Section 3 we will

show that this cannot be done in a straightforward

manner). To the best of our knowledge, no technique

has been developed so far that targets on computing

minimal partitions into symmetric groups for incom-

pletely speci�ed functions.

The paper is structured as follows. In Section 2 we

briey review the de�nitions of symmetric groups of

completely and incompletely speci�ed Boolean func-

tions. Section 3 studies the di�culties with symme-

try of incompletely speci�ed functions. To overcome

these di�culties we introduce strong symmetry of in-

completely speci�ed functions in Section 4. We then

concentrate on computing a minimum sized partition

of the variables of incompletely speci�ed functions into

symmetric groups exploiting strong symmetries in Sec-

tion 5. We adjust a greedy algorithm for node col-

oring to heuristically solve our problem. The paper

closes with experimental results proving our method

to be very e�ective. It improves robdd sizes of sym-

metric sifting by a factor of 51% and by a factor of

70% in combination with a slightly modi�ed version

of Chang's technique [6].

2 Symmetric groups

In the following, let X be the set of variables

fx

1

; : : : ; x

n

g of a Boolean function f and D some sub-

set of f0; 1g

n

.

2.1 Completely speci�ed functions

In this section we will briey review de�nitions and

basic properties of symmetries of completely speci�ed

Boolean functions. We start with the de�nition of

symmetry in two variables, in a set of variables, and in

a partition of the set of input variables of a completely

speci�ed Boolean function.

De�nition 1 A completely speci�ed Boolean function

f : f0; 1g

n

! f0; 1g is symmetric in a pair of in-

put variables (x

i

; x

j

) if and only if f(�

1

; : : : ; �

i

; : : : ;

�

j

; : : : ; �

n

) = f(�

1

; : : : ; �

j

; : : : ; �

i

; : : : ; �

n

) holds 8� 2

f0; 1g

n

. f is symmetric in a subset � of X i� f is

symmetric in x

i

and x

j

8x

i

; x

j

2 �. f is symmet-

ric in a partition P = f�

1

; : : : ; �

k

g of the set of input

variables i� f is symmetric in �

i

81 � i � k.

If f is symmetric in a subset � of the set of in-

put variables, then we say `the variables in � form a

symmetric group'.

It is well{known, that symmetry of a completely

speci�ed Boolean function f in pairs of input variables

of f leads to an equivalence relation onX . Thus, there

is a unique minimal partition P of X (namely the set

of the equivalence classes of this relation) such that

f is symmetric in P . The computation of a minimal

partition P such that f is symmetric in P can be done

by testing for symmetry in all pairs of input variables

[19, 30].

2.2 Incompletely speci�ed functions

The de�nition of symmetry of an incompletely spec-

i�ed Boolean function f is reduced to the de�nition of

symmetry of completely speci�ed extensions of f . An

extension of an incompletely speci�ed Boolean func-

tion is de�ned as follows:

De�nition 2 Let f : D ! f0; 1g (D � f0; 1g

n

) be

an incompletely speci�ed Boolean function. f

0

: D

0

!

f0; 1g (D

0

� f0; 1g

n

) is an extension of f i� D � D

0

and f

0

(�) = f(�) 8� 2 D.

De�nition 3 An incompletely speci�ed Boolean func-

tion f : D ! f0; 1g is symmetric in a pair of input

variables (x

i

; x

j

) (in a subset � of X / in a partition

P = f�

1

; : : : ; �

k

g of X) i� there is a completely spec-

i�ed extension f

0

of f , which is symmetric in (x

i

; x

j

)

(in � / in P ).

3 Di�culties with symmetry of incom-

pletely speci�ed functions

In order to minimize the robdd size for an incom-

pletely speci�ed Boolean function f , we are looking

for a minimal partition (or for maximal variable sets)

such that f is symmetric in this partition (or these

sets). Unfortunately there are some di�culties in the

computation of such partitions: First of all, symmetry

of f in two variables doesn't form an equivalence rela-

tion on X in the case of incompletely speci�ed Boolean

functions (see [8] or [15]).

Since symmetry in pairs of variables doesn't form

an equivalence relation, it will be much more di�cult

to deduce symmetries in larger variable sets from sym-

metries in pairs of variables in the case of incompletely

speci�ed Boolean functions.

Even if f is symmetric in all pairs of variables x

i

and x

j

of a subset � of the variable set of f , f is not

necessarily symmetric in �. This is illustrated by the

following example:

Example 1 Consider f : D ! f0; 1g, D � f0; 1g

4

.

f(�) =

8

>

>

<

>

>

:

1 for � = (0; 0; 1; 1)

dc for � = (0; 1; 0; 1); � = (0; 1; 1; 0);

� = (1; 0; 0; 1); � = (1; 0; 1; 0)

0 for � = (1; 1; 0; 0)

0 otherwise



x1 x2

x3 x4

Figure 1: Symmetry graph of the function of Example

2

It is easy to see, that f is symmetric in all pairs of

variables x

i

and x

j

, i; j 2 f1; 2; 3; 4g. The symme-

try graph

y

of f is shown in Figure 1. It is a complete

graph. For each completely speci�ed extension f

0

of f ,

which is symmetric in (x

1

; x

3

), f

0

(0; 1; 1; 0) = 0 holds

and for each completely speci�ed extension f

00

of f ,

which is symmetric in (x

2

; x

4

), f

00

(0; 1; 1; 0) = 1 holds.

Hence there is no completely speci�ed extension of f

which is symmetric in (x

1

; x

3

) and (x

2

; x

4

) and there-

fore no extension which is symmetric in fx

1

; : : : ; x

4

g.

Example 1 also points out another fact: If an in-

completely speci�ed Boolean function f is symmetric

in all variable sets �

i

of a partition P = f�

1

; : : : ; �

k

g,

it is not necessarily symmetric in P (choose P =

ffx

1

; x

3

g; fx

2

; x

4

gg in the example).

4 Strong symmetry

The di�culties with the detection of large sym-

metry groups of incompletely speci�ed functions re-

sult from the fact that symmetry in pairs of variables

doesn't form an equivalence relation on the variable

set X . If we change the de�nition of symmetry of in-

completely speci�ed functions as given in De�nition

4, symmetry in pairs of variables provides an equiv-

alence relation as in the case of completely speci�ed

functions:

De�nition 4 (Strong symmetry) An incomplete-

ly speci�ed Boolean function f : D ! f0; 1g is called

strongly symmetric in a pair of input variables (x

i

; x

j

)

i� 8(�

1

; : : : ; �

n

) 2 f0; 1g

n

either (a) or (b) holds.

(a) (�

1

; : : : ; �

i

; : : : ; �

j

; : : : ; �

n

) =2 D and

(�

1

; : : : ; �

j

; : : : ; �

i

; : : : ; �

n

) =2 D

(b) (�

1

; : : : ; �

i

; : : : ; �

j

; : : : ; �

n

) 2 D and

(�

1

; : : : ; �

j

; : : : ; �

i

; : : : ; �

n

) 2 D

and f(�

1

; : : : ; �

i

; : : : ; �

j

; : : : ; �

n

)

= f(�

1

; : : : ; �

j

; : : : ; �

i

; : : : ; �

n

).

In contrast to the strong symmetry of incompletely

speci�ed functions the symmetry de�ned so far is

called weak symmetry.

The following lemma holds for strong symmetry:

y

The symmetry graph G

f

sym

= (X;E) of a Boolean function

f : D ! f0; 1g is a undirected graph with node set X (the set of

input variables of f) and edges fx

i

; x

j

g 2 E i� f is symmetric

in (x

i

; x

j

).

Lemma 1 Strong symmetry in pairs of variables of

an incompletely speci�ed Boolean function f : D !

f0; 1g forms an equivalence relation on the variable

set X of f .

Due to Lemma 1 there is a unique minimal parti-

tion P of the set X of input variables such that f is

strongly symmetric in P . As in the case of completely

speci�ed Boolean functions, f is strongly symmetric in

a subset � of X i� 8x

i

; x

j

2 � f is strongly symmet-

ric in (x

i

; x

j

). f is strongly symmetric in a partition

P = f�

1

; : : : ; �

k

g of X i� 81 � i � k f is strongly

symmetric in �

i

.

Of course, if a function f is weakly symmetric in a

partition P , it needs not to be strongly symmetric in

P , but it follows directly from De�nition 3 that there

is an extension of f which is strongly symmetric in P .

5 Minimum sized partition of the vari-

ables of an incompletely speci�ed

function into symmetric groups

We have to solve the following problem MSP

(Minimal Symmetry Partition):

Given: Incompletely speci�ed function f : D !

f0; 1g, represented by robdds for f

on

and f

dc

.

z

Find: Partition P of the set X = fx

1

; : : : ; x

n

g

such that

� f is symmetric in P and

� for any partition P

0

of X in which f is sym-

metric, the inequation jP j � jP

0

j holds.

We can prove the following theorem [26]:

Theorem 1 MSP is NP-hard.

To solve the problem heuristically, we use a heuris-

tic for the problem `Partition into Cliques (PC)' [13]

for the symmetry graph G

f

sym

of f . However, the ex-

amples in Section 3 showed that f is not symmetric in

all partitions into cliques of G

f

sym

. The heuristic has

to be changed in order to guarantee that f is symmet-

ric in the resulting partition P .

The heuristic to solve the problem PC makes use

of the following well{known lemma:

Lemma 2 A graph G = (V;E) can be partitioned into

k disjoint cliques i�

�

G = (V;

�

E) can be colored with k

colors. (

�

G is the inverse graph of G, which has the

same node set V as G and an edge fv; wg between two

nodes v and w i� there is no edge fv; wg in G, i.e.,

�

E = ffv; wgjfv; wg =2 Eg.)

Thus, heuristics for node coloring can be directly

used for the solution of partition into cliques. Nodes

with the same color in

�

G form an `independent set'

and thus a clique in G. Our implementation is based

z

f

on

is the completely speci�ed Boolean function with the

same on-set as f and f

dc

is the completely speci�ed function

with f0; 1g

n

nD as on-set.



Input: Incompletely speci�ed function f : D ! f0; 1g, D � f0; 1g

n

, represented

by f

on

and f

dc

Output: Partition P of fx

1

; : : : ; x

n

g, such that f is symmetric in P

Algorithm:

1 Compute symmetry graph G

f

sym

= (V;E) of f (or G

f

sym

= (V;

�

E)).

2 81 � k � n : color(x

k

) := undef:

3 P = ffx

1

g; fx

2

g; : : : ; fx

n

gg

4 node candidate set := fx

1

; : : : ; x

n

g

5 while (node candidate set 6= ;) do

6 /* f is strongly symmetric in P */

7 Choose x

i

2 node candidate set according to Br�elaz/Morgenstern criterion

8 color candidate set := fc j 1 � c � n; 6 9x

j

with fx

i

; x

j

g 2

�

E and color(x

j

) = cg

9 while (color(x

i

) = undef:) do

10 curr color := min(color candidate set)

11 color(x

i

) := curr color

12 if (9 colored node x

j

with color(x

j

) = color(x

i

))

13 then

14 if (f symmetric in (x

i

; x

j

))

15 then

16 P := P n f[x

j

]; fx

i

gg

S

f[x

j

] [ fx

i

gg

17 /* f is symmetric in P */ (*)

18 Make f strongly symmetric in P . (**)

19 else

20 color candidate set := color candidate set n fcurr colorg

21 color(x

i

) := undef:

22 �

23 �

24 od

25 node candidate set := node candidate set n fx

i

g

26 od

Figure 2: Algorithm to solve MSP.

on Br�elaz algorithm for node coloring [3] which has a

running time of O(N) in an implementation of Mor-

genstern [22] (N is the number of nodes of the graph

which has to be colored). It is a greedy algorithm,

which colors node by node and doesn't change the

color of a node which is already colored. In the al-

gorithm there are certain criteria to choose the next

node to color and the color to use for it in a clever way

[3, 22]. Figure 2 shows our heuristic for the problem

MSP, which is derived from the Br�elaz/Morgenstern

heuristic for node coloring.

First of all the symmetry graph G

f

sym

of f (or the

inverse graph G

f

sym

) is computed. The nodes of G

f

sym

are the variables x

1

; : : : ; x

n

. These nodes are colored

in the algorithm. Nodes with the same color form a

clique in G

f

sym

. Note that partition P (see line 3) has

the property that it contains set fx

k

g for any uncol-

ored node x

k

and that nodes with the same color are in

the same set of P , at any moment. The crucial point

of the algorithm is that the invariant `f is strongly

symmetric in P ' of line 6 is always maintained.

Now let us take a look at the algorithm in more de-

tail. At �rst glance, the set of all admissible colors for

the next node x

i

is the set of all colors between 1 and n

except the colors of nodes which are adjacent to x

i

in

G

f

sym

. In the original Br�elaz/Morgenstern algorithm

the minimal color among these colors is chosen for x

i

(curr color in lines 10, 11). However, since we have to

guarantee that f is symmetric in the partition P which

results from coloring, it is possible that we are not al-

lowed to color x

i

with curr color. If there is already

another node x

j

which is colored by curr color, then f

has to be symmetric in the partition P

0

which results

by union of fx

i

g and [x

j

]

x

. If there is such a node

x

j

, we have to test whether f is symmetric in (x

i

; x

j

)

(line 14) (this test can have a negative result, since the

don't care set of f is reduced during the algorithm). If

f is not symmetric in (x

i

; x

j

), curr color is removed

from the set of color candidates for x

i

(line 20) and

the minimal color in the remaining set is chosen as the

new color candidate (line 10). If the condition of line

14 is true, the new partition P results from the old

partition P by union of fx

i

g and [x

j

] (line 16). Now

f is symmetric in the new partition P (invariant (*)

from line 17, see Lemma 3), and we can assign don't

cares of f such that f is strongly symmetric in P (line

18).

At the end we receive an extension of the origi-

nal incompletely speci�ed Boolean function which is

strongly symmetric in the resulting partition P .

To prove invariant (*) in line 17, we need the fol-

lowing lemma [26]:

Lemma 3 Let f : D ! f0; 1g be strongly symmetric

in P , [x

i

]; [x

j

] 2 P two subsets with j[x

i

]j = 1, and

let f be symmetric in (x

i

; x

j

), then f is symmetric in

P

0

= P n f[x

j

]; fx

i

gg

S

f[x

j

] [ fx

i

gg.

Note that the lemma cannot be proved if we replace

`f strongly symmetric in P ' by `f (weakly) symmet-

ric in P ' or if we don't assume j[x

i

]j = 1. However

x

If P = f�

1

; : : : ; �

k

g is a partition of fx

1

; : : : ; x

n

g, then [x

j

]

denotes �

q

with x

j

2 �

q

.



Procedure make strongly symm

Input: f : D ! f0; 1g, represented by f

on

, f

off

, f

dc

. f is (weakly)

symmetric in (x

i

; x

j

).

Output: minimal extension f

0

of f (represented by f

0

on

, f

0

off

,

f

0

dc

), which is strongly symmetric in (x

i

; x

j

).

Algorithm:

1. f

0

on

= x

i

x

j

f

on

x

i

x

j

+x

i

x

j

f

on

x

i

x

j

+(x

i

x

j

+x

i

x

j

)(f

on

x

i

x

j

+

f

on

x

i

x

j

)

2. f

0

off

= x

i

x

j

f

off

x

i

x

j

+ x

i

x

j

f

off

x

i

x

j

+ (x

i

x

j

+

x

i

x

j

)(f

off

x

i

x

j

+ f

off

x

i

x

j

)

3. f

0

dc

= f

0

on

+ f

0

off

Figure 3: Procedure make strongly symm

the given conditions coincide exactly with the condi-

tions existing in the algorithm. (Thus it is necessary

to make f strongly symmetric in P in line 18 of the

algorithm and to maintain the invariant `f is strongly

symmetric in P ' of line 6.)

Next we have to explain how f is made strongly

symmetric in the partition P in line 18 of the algo-

rithm. From the de�nition of symmetry of incom-

pletely speci�ed functions it is clear that it is possible

to extend a function f , which is (weakly) symmetric in

a partition P , to a function which is strongly symmet-

ric in P . From the set of all extensions of f which are

strongly symmetric in P we choose the extension with

a maximum number of don't cares. If f is (weakly)

symmetric in a pair of variables (x

i

; x

j

), the extension

f

0

of f , which is strongly symmetric in (x

i

; x

j

) and

which has a maximal don't care set among all exten-

sions of f with that property, can be easily computed

from the robdd representations of f

on

, f

dc

and f

off

by the procedure make strongly symm in Figure 3.

We can prove that a sequence of at most j[x

j

]j calls

of the procedure make strongly symm is enough to

make f strongly symmetric in the partition P in line

18 of the algorithm.

6 Experimental results

We have carried out experiments to test the al-

gorithms described above. To generate incompletely

speci�ed functions from completely speci�ed func-

tions, we used a method proposed in [6]: After col-

lapsing each benchmark circuit to two level form, we

randomly selected minterms in the on-set with a prob-

ability of 40% to be included into the don't care set.

The last three Boolean functions in Table 1 are partial

multipliers partmult

n

{

.

We performed three experiments: First of all, we

applied symmetric sifting to the robdds representing

the on-set of each function. The results are shown

in column 5 (sym sift) of Table 1. The entries are

robdd sizes in terms of internal nodes.

{

The n

2

inputs are the bits of the n partial products and the

2n outputs are the product bits. The don't care set contains

all input vectors which cannot occur for the reason that the

input bits are not independent from each other, because they

are conjunctions a

i

b

j

of bits of the operands (a

1

; : : : ; a

n

) and

(b

1

; : : : ; b

n

) of the multiplication.

In a second experiment, we applied our algorithm

to minimize the number of symmetric groups followed

by symmetric sifting. Column 6 (sym group) of Table

1 shows the results. sym group provides a partition

P = f�

1

; : : : ; �

k

g and an extension f

0

of the original

function f , such that f

0

is strongly symmetric in P .

The variable order of the robdd representing f

0

is

a `symmetric order' [24, 20] with the variables in �

i

before the variables in �

i+1

(1 � i < k). On the

average, we can improve the robdd size by 51%.

In a last experiment we started with the results of

sym group and then went on with a slightly modi-

�ed version of the technique of Chang [6] and Shiple

[28]. This technique minimizes the number of nodes at

every level of the robdd by an operation remove z as-

signing as few don't cares as possible to either the on-

set or the o�-set, i.e., the number of so-called linking

nodes immediately below a cut line between 2 adja-

cent variables is minimized. After the minimization of

nodes at a certain level of the robdd they use the re-

maining don't cares to minimize the number of nodes

at the next level. The cut line is moved from top

to bottom in the robdd. Under certain conditions,

this method does preserve strong symmetry: Let f

be an incompletely speci�ed Boolean function which

is strongly symmetric in P = f�

1

; : : : ; �

k

g and as-

sume that the variable order of the robdd represent-

ing f is a `symmetric order' with the variables in �

i

before the variables in �

i+1

(1 � i < k). If we re-

strict the operation remove z presented in [6] to cut

lines between 2 symmetric groups �

i

and �

i+1

, then it

preserves strong symmetry in P . Since our technique

to restrict remove z to cut lines between symmetric

groups doesn't destroy the symmetric groups, we can

perform symmetric sifting after the node minimization

with the same symmetric groups as before. Column

7 (sym cover) of Table 1 shows the resulting robdd

sizes. On the average, the technique leads to an im-

provement of the robdd sizes by 70%.

A comparison to the results of the restrict operator

[7] (applied to robdds whose variable order was opti-

mized by regular sifting) in column 4 of Table 1 shows

that our robdd sizes are on the avarage 44% smaller.

7 Conclusions

In this paper we presented algorithms to mini-

mize robdd sizes for incompletely speci�ed Boolean

functions based on the exploitation of strong symme-

tries. Incompletely speci�ed Boolean functions which

are represented by robdds play an important role in

many applications of CAD. Looking for extensions of

such functions with small robdd representations can

have a large e�ect on the quality of the results (e.g.

in logic synthesis for FPGA realizations where there

is a direct relationship between robdd sizes and the

number of CLBs needed to realize the function). Ex-

perimental results prove our approach to be very ef-

fective.
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