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Abstract

In many veri�cation techniques fast functional eval-

uation of a Boolean network is needed. We investigate

the idea of using Binary Decision Diagrams (BDDs)

for functional simulation. The area-time trade-o�

that results from di�erent minimization techniques of

the BDD is discussed. We propose new minimiza-

tion methods based on dynamic reordering that al-

low smaller representations with (nearly) no runtime

penalty.

1 Introduction

One of the most important tasks during the con-

struction and design of Integrated Circuits (ICs) is the

proof of correctness, i.e. the check whether a design

ful�lls its speci�cation. Simulation is a basic task of

many veri�cation tools. Recently, methods based on

decision diagrams have been proposed [1, 5] to speed

up cycle based functional simulation. Decision dia-

grams are used to reduce the runtime, which is pro-

portional to the number of logic gates in traditional

approaches (like event driven simulation or levelized

compiled code simulation), to runtimes which are pro-

portional to the sum of the number of inputs and the

number of outputs of the circuit. In [1] a BDD is trans-

lated into a C program. The number of operations to

evaluate an input vector in the resulting program is

very small, but the program has the drawback of be-

ing large in size. In practice, for such large programs

memory bandwidth becomes a problem. An access to

memory can take many clock cycles if the requested

item resides in a level of the memory hierarchy which

is very slow [6, 5]. Therefore in our approach to func-

tional simulation a central problem is to minimize the

amount of memory needed and to optimize memory

tra�c.

In this paper we investigate how the drawback of

large simulation programs can be avoided, if we al-

low that the number of operations of the simulator to

evaluate an input vector slightly increases. We apply

(restricted) dynamic reordering techniques and study

the e�ect on the trade-o� between the average number

of operations to evaluate an input vector and the size

of the resulting simulator.

2 Preliminaries

In this section we introduce basic notations and def-

initions that are needed for the understanding of the

paper.

2.1 Ordered Binary Decision Diagrams

Each Boolean function f : B

n

! B can be repre-

sented by a Binary Decision Diagram (BDD) [2], i.e. a

directed acyclic graph where a Shannon decomposition

is carried out in each node.

A BDD is called ordered if each variable is encoun-

tered at most once on each path from the root to a

terminal and if the variables are encountered in the

same order on all such paths. A BDD is called reduced

if it does not contain vertices either with isomorphic

sub-graphs or with both edges pointing to the same

node.

For functions represented by reduced, ordered

BDDs e�cient manipulations and evaluations are pos-

sible [2]. In the following only reduced, ordered BDDs

are considered and for briefness these graphs are called

BDDs.

An example from [2] shows the importance of the

variable ordering for BDDs:
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n+1

. Thus the number of nodes in the graph

varies from linear to exponential depending on the

variable ordering. In Fig. 1 the BDDs of the func-
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lustrated. The left (right) outgoing edge of each node

x

i

denotes the cofactor f

x

i

=1

(f

x
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). The example

proves that the choice of the variable ordering largely

inuences the size of the BDDs.

2.2 Boolean Relations

Each Boolean function f : B

n

! B

m

can be viewed

as a Boolean relation which can be represented by its

characteristic function:



X6

5X

X2

X4

3X

3X3X

X1

5X 5X

X2 X2 X2

X6

X4 X4

5X5X

X2

X1

1 01 0

Figure 1: BDDs for function f
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De�nition 1 A relation F � f0; 1g

n

� f0; 1g

m

is

called Boolean relation with n inputs and m outputs.

Each Boolean function f : f0; 1g

n

! f0; 1g

m

can be

viewed as a Boolean relation R(f) with

(�; �) 2 R(f) () f(�) = � (8 � 2 f0; 1g

n

; � 2 f0; 1g

m

):

A Boolean relation F can be represented by its

characteristic function, i.e. a Boolean function �

F

with

�

F

(�; �) = 1 i� (�; �) 2 F .

If f has input variables i

1

; : : : ; i

n

and we introduce

additional output variables o

1

; : : : ; o

m

(for f

1

; : : : ; f

m

respectively), �

R(f)

can be computed by the following

formula [3]:

�
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n
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1

; : : : ; o

m

) =

m

^

i=1

(o

i

� f

i

(i

1

; : : : ; i

n

))

(1)

3 Functional Simulation

We briey review previous work and then describe

our approach.

3.1 Previous Work

3.1.1 Single-Output Circuits

If we transform a circuit into an (ordered) BDD, we

can evaluate the corresponding function for a given

input vector in time O(#I), if #I is the number of in-

puts of the circuit. Since in typical circuits the num-

ber of gates #G is much larger than the number of

inputs, this method is (at least asymptotically) much

faster than traditional approaches, like event driven

simulation or levelized compiled code simulation.

3.1.2 Multi-Output Circuits

If a multi-rooted BDD, i.e. a BDD representing a func-

tion f with #O outputs, is evaluated, the straightfor-

ward method would require time O(#I � #O). If we

represent the functional behavior by using the charac-

teristic function of the relation R(f) of f , the evalu-

ation time can be reduced to O(#I +#O) as follows

[1]:

� Compute a BDD representation for the charac-

teristic function of the relation R(f) of f . The

characteristic function can be represented by a

BDD with #I `input variables' and #O `output

variables'. The BDD is constructed with the re-

striction that all the input variables occur in the

ordering before the output variables.

� If we want to evaluate the characteristic function,

we have the problem that we do not know the out-

put vector, rather we need to determine it. But

since all input variables occur in the ordering be-

fore the output variables, we can make use of the

fact that each input vector produces a unique out-

put vector: The evaluation can simply be done by

starting from the single root of the BDD for the

characteristic function and evaluating this BDD

according to the values of the input variables. A

unique path to the terminal 1 determines the val-

ues of the outputs. It is easy to �nd this path,

because each node which is labeled by an output

variable has exactly one outgoing edge to the ter-

minal 0 and one edge to another node.

The major drawback of this method is that the num-

ber of nodes at the cut line between the input and the

output variables is equal to the number of di�erent

combinations that can occur at the outputs. Since this

number often is exponential in the number of outputs

the restriction can be infeasible for practical applica-

tions. For this reason Ashar and Malik [1] proposed

two methods.

One is based on an interleaving of input and output

variables. An output variable is located in the order-

ing directly after the last input variable on which this

output depends. To determine an ordering of the in-

put and output variables under this restriction Ashar

and Malik [1] use a heuristic from [9]. Since there is no

output variable before any input variable it depends

on, nodes labeled with output variables still have the

property that there is exactly one outgoing edge to the

terminal 0 and one edge to another node. Therefore it

is still possible to evaluate the multi-output function

in time O(#I +#O).

The second method to reduce the number of nodes

of BDD representations uses a partition of the cir-

cuit. Then the method from [1] is applied only to the

subcircuits of this partition. To evaluate the overall

circuit for some input vector BDDs for several subcir-

cuits have to be evaluated. Obviously, the partitioning

method may increase the runtime, because the same

input values are read more than once and/or interme-

diate variables are introduced.

McGeer et al. [5] also use a variable order with

all input variables before the output variables they

depend on. To optimize memory tra�c they trans-

late the decision diagram into an array, and a special-

purpose program is automatically generated to tra-

verse the array. In addition they use MDDs (multi-



valued decision diagrams) [8] instead of BDDs, where

several BDD variables are combined into one MDD

variable, such that the number of variables, which have

to be evaluated, is reduced.

3.2 Optimization by Reordering

Reordering the variables of a BDD may have a large

inuence on the size of the representation (see e.g. Ex-

ample 1).

We now study the e�ect of using dynamic variable

ordering methods [4], like sifting [7], to reduce the size

of the BDD representing the characteristic function.

Here, we make no longer use of the restriction that

the input and output variables should not be mixed.

If BDD sizes for these unrestricted reordering meth-

ods are smaller, we can choose larger subcircuits of the

original circuit to be represented by BDDs for their

characteristic functions, such that the number of eval-

uations of subcircuits is reduced.

However, in general, by dropping the ordering re-

striction above we can not further guarantee the time

of O(#I +#O) to evaluate a multi-output function f

which is represented by a BDD for �

R(f)

.

3.3 Changed Evaluation Procedure

If we evaluate the BDD for the characteristic func-

tion, it is now possible to reach a node labeled by

an output variable before all input variables are read,

which this output depends on. Therefore we are not

able to decide at this point which outgoing edge we

have to follow. Both successors of this node can be

di�erent from the terminal 0. If we have reached such

a node, we have to choose an arbitrary edge which

we will follow. Thus, it is possible that we have to

backtrack when it turns out that the decision at this

output node was wrong. This is the case if we follow

an edge starting from a node labeled by an input vari-

able and reach terminal 0. Figure 2 shows the changed

evaluation procedure.

3.4 Evaluation Sifting

As explained in the previous section the number of

steps in the evaluation can be increased if we drop the

ordering restriction that all output variables should

appear after the input variables they depend on. On

the other hand, experimental results (see Section 4)

show that the BDD sizes are reduced to a large extent

if we apply sifting without this ordering restriction.

For this, it would be desirable to combine the two

advantages of small BDDs and a few evaluation steps.

To estimate the cost to evaluate an arbitrary in-

put vector we determine for a BDD the average num-

ber of read accesses to BDD nodes in the evaluation

procedure of Figure 2, which are needed to evaluate

a random input vector. Read accesses to BDD nodes

constitute critical operations when the BDDs are large

and memory management e�ects (e.g. page faults and

cache misses) are of importance. The expected value

Given: Boolean function f : f0; 1g
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! f0; 1g
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,

BDD with node set V and root v

root

for characteristic

function �

R(f)

input variables i
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n
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Algorithm:

/* Let v

0

be the 0-son of a node v, v

1

the 1-son */

var stack outstack /* Stack with maximum depth m

for nodes labeled with output variables */

v := v

root

;

while (l(v) 6= 1) do

if (l(v) input variable)

then

/* Let l(v) be i

j

*/

v := v

�

j

;

if (l(v) = 0)

then

v := pop(outstack);

/* Let l(v) be o

k

*/

�

k

:= 0; v := v

0

;

�

else

/* l(v) output variable, let l(v) be o

k

*/

if (l(v

1

) = 0)

then

�

k

:= 0; v := v

0

;

else

if (l(v

0

) 6= 0)

then

push(outstack; v);

�

/* guess f

k

(�

1

; : : : ; �

n

) = 1 */

�

k

:= 1; v := v

1

;

�

�

od

Figure 2: Evaluation procedure.

for this number of read accesses to BDD nodes (for a

random input vector) is denoted by E

r a

in the fol-

lowing.

Now we have two optimization goals in the compu-

tation of a variable order for the BDD of �

R(f)

: First

we would like to minimize the number of BDD nodes

to represent �

R(f)

and secondly we would like to min-

imize the expected value E

r a

.

To take account of these two goals we change the

cost function of sifting: Until now the cost function

is only the size of the resulting BDD. To determine

the optimal position of a variable in the variable or-

der it is sifted to all possible positions and then, the

position, where the resulting BDD size is minimized,

is selected. Now the cost function is changed to some

combination of BDD size and the expected value E

r a

.

For each position of the variable we determine the new

size size

new

of the resulting BDD and the new ex-

pected value E

new

r a

. Then we choose the position for



the variable where the expression

� �

size

new

size

old

+ (1� �) �

E

new

r a

E

old

r a

(2)

is minimized. (size

old

and E

old

r a

, respectively, mean

the BDD size and expected value before moving the

variable, � is a number between 0 and 1 to inuence

the trade o� between BDD sizes and read accesses in

the evaluation.)

The resulting procedure is called evaluation sifting

in the following.

3.4.1 Estimation of E

r a

To estimate E

r a

we tried out two alternatives:

� If we assume that for a node v the probability to

leave the subtree with root v

0

by a backtracking

step of the evaluation procedure is independent

from the probability to leave the subtree with root

v

1

, we can compute E

r a

bottom up in the BDD.

However, since this assumption is only true for

some special cases (e.g. when all output variables

occur after the input variables), this will give only

an estimation of E

r a

.

� To reduce the runtime for larger BDD sizes we

also use another method for the estimation: We

simulate c � n input vectors (for some small con-

stant c) and count the average number of read

accesses to the BDD in this way. (n is the num-

ber of variables in the BDD.)

4 Experimental Results

We performed experiments to compare sifting and

evaluation sifting to the ordering strategy from [9, 1],

where the input variables are located before the output

variables they depend on.

Apart from BDD sizes for the di�erent strategies,

we determined for 500,000 random input patterns the

average number of read accesses to BDD nodes in the

evaluation procedure of Figure 2, which were needed

to evaluate the input vectors, and �nally we deter-

mined runtimes for the evaluation of the 500,000 ran-

dom input vectors.

In columns TSLBS-ord of Table 1 we give results for

the variable ordering strategy from [9, 1], in columns

orig sift results for the original sifting algorithm [7]

and in columns eval sift for evaluation sifting (we

chose � = 0:5 in formula (2) and used simulation to

estimate E

r a

).

The sizes of the resulting BDDs are given counted

in numbers of nodes in Table 1 (columns `node'), the

average numbers of read accesses are given in columns

`r.a.' and the simulation times in CPU seconds for

500,000 random input patterns measured on a SUN

Sparc 20 workstation (256 MB physical memory) in

columns `time'.

As easily can be seen there are some examples

where the partitioning techniques proposed in [1] and

[5] are needed for their method, since the BDDs for

the characteristic function of the relation can not be

constructed

1

for the variable ordering method from

[9, 1].

In contrast, sifting can build the BDDs in all consid-

ered cases. Beside the cases where the other methods

fail for some examples the size results of unrestricted

sifting are up to a factor of 9 better than the results

of the ordering heuristic from [9, 1].

For this reason we can expect that we will need

substantially less subcircuits in the partition for larger

circuits when we apply sifting (and this will lead to

reduced evaluation times as explained in Section 3.1).

We now study the e�ect of the size reduction with

respect to evaluation time for the circuits which could

be represented in one partition. On a �rst view we

can observe the \surprising" result that the average

number of read accesses to BDD nodes increases for

the original sifting algorithm in the worst case only by

a factor of 1.5 compared to the variable ordering from

[9, 1]. On the other hand, already for original sifting

there are examples where the number of read accesses

is reduced.

If we compare original sifting and evaluation sifting,

we can see that it is possible to achieve a considerable

reduction of read accesses and runtimes with only a

small overhead in terms of node counts. There are

circuits (e.g. c1908, rd73, rd84), for which the numbers

of read accesses for evaluation sifting are reduced by

about one half. Surprisingly, even the numbers for

the ordering from [9, 1] (where no backtracking steps

in the evaluation procedure can occur) are improved

in most cases (while keeping the advantage of much

smaller BDD sizes).

These unexpected results can be explained by the

following observation:

In an optimized BDD it often occurs that less vari-

ables are tested until a terminal node is reached (see

e.g. function from Example 1.) This e�ect leads to the

fact that the additional read accesses due to `wrong de-

cisions' (see Section 3.3) of the evaluation procedure

are more than compensated.

5 Conclusions and Future Work

We discussed the use of dynamic variable ordering

for functional simulation. It turned out that the use of

dynamic reordering has a large potential in this area.

We developed a modi�ed version of the sifting algo-

rithm (called evaluation sifting), which is able to com-

bine advantages of sifting and variable orders with the

restriction that all output variables are located after

the input variables they depend on [9, 1]. The small

BDD sizes of sifting are almost maintained, whereas

1

We aborted the construction of the BDD for the relation,

when more than 2,000,000 nodes were needed.



TSLBS-ord orig sift eval sift

circuit nodes r.a. time nodes r.a. time nodes r.a. time

5xp1 93 22.50 2.94 71 25.49 3.81 74 23.77 3.54

alu2 289 18.68 2.67 279 19.09 2.52 295 13.49 1.99

apex7 4,665 86.65 12.70 2,323 107.67 15.25 2,479 84.44 11.96

b9 1,582 53.29 8.07 663 74.99 10.28 735 53.94 7.22

c432 9,530 28.64 7.99 1,584 30.06 4.49 1,730 26.26 4.03

c499 >2,000,000 - - 14,235 259.44 71.00 17,017 225.06 51.55

c880 467,346 86.11 20.08 367,863 85.00 34.75 393,633 70.41 29.37

c1355 >2,000,000 - - 15,957 274.50 67.19 16,926 242.76 53.20

c1908 >2,000,000 - - 109,042 323.81 137.55 117,231 159.90 71.73

clip 171 16.50 2.25 103 17.84 2.52 102 16.98 2.61

count 145 30.75 4.82 142 29.75 4.57 184 15.73 3.03

e64 258 131.00 12.27 258 131.00 12.20 258 131.00 12.21

f51m 75 20.00 2.85 63 17.71 2.76 65 17.55 2.73

misex1 66 15.89 1.98 58 16.77 2.16 59 15.64 1.95

misex2 333 39.98 4.07 221 46.21 4.95 230 40.43 4.30

rd73 42 11.50 1.61 36 12.87 1.85 42 4.98 1.16

rd84 55 14.40 1.95 49 15.64 2.16 52 8.99 1.36

sao2 106 13.59 1.70 85 10.18 1.23 86 10.18 1.26

term1 5,541 30.01 3.99 578 31.18 4.02 612 30.13 3.94

vg2 171 22.98 3.05 140 21.63 2.60 140 21.54 2.58

z4ml 30 13.00 1.82 29 13.25 1.86 30 12.01 1.98

Table 1: Node counts, average number of read accesses and evaluation times for 500,000 random patterns

evaluation times in comparison to the variable order

from [9, 1] are even improved.

Since the numbers of BDD nodes in our approach

are much smaller we can expect that we will need sub-

stantially less subcircuits in the partition for larger cir-

cuits (and this will lead to reduced evaluation times

as explained in Section 3.1).

At the moment we are integrating the concept of

[5] to reduce the number of evaluations by combining

several BDD variables into one MDD variable. Note

that we thereby adjust evaluation sifting by changing

the computation of E

r a

from Section 3.4 to estimate

the number of operations in the evaluation procedure

from [5] immediately on the basis of the BDD repre-

senting the characteristic function �

R(f)

.

References

[1] P. Ashar and S. Malik. Fast functional simulation

using branching programs. In Int'l Conf. on CAD,

pages 408{412, 1995.

[2] R.E. Bryant. Graph - based algorithms for Boolean

function manipulation. IEEE Trans. on Comp.,

35(8):677{691, 1986.

[3] E. Cerny and M.A. Marin. An approach to uni�ed

methodology of combinational switching circuits.

IEEE Trans. on Comp., 26:745{756, 1977.

[4] M. Fujita, Y. Matsunaga, and T. Kakuda. On vari-

able ordering of binary decision diagrams for the

application of multi-level synthesis. In European

Conf. on Design Automation, pages 50{54, 1991.

[5] P.C. McGeer, K.L. McMillan, A. Saldanha, A.L.

Sangiovanni-Vincentelli, and P. Scaglia. Fast dis-

crete function evaluation using decision diagrams.

In Int'l Conf. on CAD, pages 402{407, 1995.

[6] D.A. Patterson and J.L. Hennessy. Computer

Organization and Design. The Hardware/Software

Interface. Morgan Kaufman Publishers - CA, 1994.

[7] R. Rudell. Dynamic variable ordering for ordered

binary decision diagrams. In Int'l Conf. on CAD,

pages 42{47, 1993.

[8] A. Srinivasan, T. Kam, S. Malik, and R.E. Bray-

ton. Algorithms for discrete function manipula-

tion. In Int'l Conf. on CAD, pages 92{95, 1990.

[9] H. Touati, H. Savoj, B. Lin, R.K. Brayton, and

A.L. Sangiovanni-Vincentelli. Implicit enumera-

tion of �nite state machines using BDDs. In Int'l

Conf. on CAD, pages 130{133, 1990.


