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Abstract

In many veri�cation techniques fast functional evaluation of a Boolean network is needed.

We investigate the idea of using Binary Decision Diagrams (BDDs) for functional simu-

lation. The area-time trade-o� that results from di�erent minimization techniques of the

BDD is discussed. We propose new minimization methods based on dynamic reordering that

allow smaller representations with (nearly) no runtime penalty.

1 Introduction

One of the most important tasks during the construction and design of Integrated Circuits (ICs)

is the proof of correctness, i.e. the check whether a design ful�lls its speci�cation. Simulation

is a basic task of many veri�cation tools. Recently, methods based on decision diagrams have

been proposed [1, 5] to speed up cycle based functional simulation. Decision diagrams are

used to reduce the runtime, which is proportional to the number of logic gates in traditional

approaches (like event driven simulation or levelized compiled code simulation), to runtimes

which are proportional to the sum of the number of inputs and the number of outputs of the

circuit. In [1] a BDD is translated into a C program. The number of operations to evaluate

an input vector in the resulting program is very small, but the program has the drawback of

being large in size. In practice for such large programs memory bandwidth becomes a problem.

An access to memory can take many clock cycles if the requested item resides in a level of the

memory hierarchy which is very slow [6, 5]. Therefore in our approach to functional simulation

a central problem is to minimize the amount of memory needed and to optimize memory tra�c.

In this paper we investigate how the drawback of large simulation programs can be avoided,

if we allow the number of operations of the simulator to evaluate an input vector to slightly

increase. We apply (restricted) dynamic reordering techniques and study the e�ect on the trade-

o� between the average number of operations to evaluate an input vector and the size of the

resulting simulator.
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Figure 1: BDDs for function f
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The paper is structured as follows: In Section 2 we review basic notations and de�nitions. Our

approach to functional simulation is presented in Section 3. In Section 4 experimental results

are given. Finally, we give conclusions and discuss future work.

2 Preliminaries

In this section we introduce basic notations and de�nitions that are needed for the understanding

of the paper.

2.1 Ordered Binary Decision Diagrams

Each boolean function f : B

n

! B can be represented by a Binary Decision Diagram (BDD)

[2], i.e. a directed acyclic graph where a Shannon decomposition is carried out in each node.

A BDD is called ordered if each variable is encountered at most once on each path from the

root to a terminal and if the variables are encountered in the same order on all such paths. A

BDD is called reduced if it does not contain vertices either with isomorphic sub-graphs or with

both edges pointing to the same node.

For functions represented by reduced, ordered BDDs e�cient manipulations and evaluations

are possible [2]. In the following only reduced, ordered BDDs are considered and for briefness

these graphs are called BDDs.

An example from [2] shows the importance of the variable ordering for BDDs:

Example 1 Let f
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. If the variable ordering is given by (x

1

; x
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)

the size of the resulting BDD is 2n + 2. On the other hand if the variable ordering is chosen



as (x
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) the size of the BDD is 2

n+1

. Thus the number of nodes

in the graph varies from linear to exponential depending on the variable ordering. In Fig. 1

the BDDs of the function f
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with variable orderings (x
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) are illustrated. The left (right) outgoing edge of each node x

i

denotes

the cofactor f

x

i

=1

(f

x

i

=0

). The example proves that the choice of the variable ordering largely

in
uences the size of the BDDs.

2.2 Boolean Relations

Each boolean function f : B

n

! B

m

can be viewed as a boolean relation which can be represented

by its characteristic function:

De�nition 1 A relation F � f0; 1g

n

� f0; 1g

m

is called boolean relation with n inputs and m

outputs. Each boolean function f : f0; 1g

n

! f0; 1g

m

can be viewed as a boolean relation R(f)

with

(�; �) 2 R(f) () f(�) = � (8 � 2 f0; 1g

n

; � 2 f0; 1g

m

):

A boolean relation F can be represented by its characteristic function, i.e. a boolean function

�

F

with �

F

(�; �) = 1 i� (�; �) 2 F .

If f has input variables i

1

; : : : ; i

n

and we introduce additional output variables o

1

; : : : ; o

m

(for

f

1

; : : : ; f

m

respectively), �

R(f)

can be computed by the following formula [3]:

�

R(f)
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1
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n

; o

1

; : : : ; o

m

) =

m

^
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(o
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� f

i
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1

; : : : ; i

n

)): (1)

3 Functional Simulation

We brie
y review previous work and then describe our approach.

3.1 Previous Work

3.1.1 Single-Output Circuits

If we transform a circuit into an (ordered) BDD, we can evaluate the corresponding function for

a given input vector in time O(#I), if #I is the number of inputs of the circuit. Since in typical

circuits the number of gates #G is much larger than the number of inputs, this method is (at

least asymptotically) much faster than traditional approaches, like event driven simulation or

levelized compiled code simulation.

3.1.2 Multi-Output Circuits

If a multi-rooted BDD, i.e. a BDD representing a function f with #O outputs, is evaluated, the

straightforward method would require time O(#I �#O). If we represent the functional behavior

by using the characteristic function of the relation R(f) of f , the evaluation time can be reduced

to O(#I +#O) as follows [1]:



� Compute a BDD representation for the characteristic function of the relation R(f) of f .

The characteristic function can be represented by a BDD with #I `input variables' and

#O `output variables'. The BDD is constructed with the restriction that all the input

variables occur in the ordering before the output variables.

� If we want to evaluate the characteristic function, we have the problem that we do not

know the output vector, rather we need to determine it. But since all input variables occur

in the ordering before the output variables, we can make use of the fact that each input

vector produces a unique output vector: The evaluation can simply be done by starting

from the single root of the BDD for the characteristic function and evaluating this BDD

according to the values of the input variables. A unique path to the terminal 1 determines

the values of the outputs. It is easy to �nd this path, because each node which is labeled

by an output variable has exactly one outgoing edge to the terminal 0 and one edge to

another node.

The major drawback of this method is that the number of nodes at the cut line between the

input and the output variables is equal to the number of di�erent combinations that can occur

at the outputs. Since this number often is exponential in the number of outputs the restriction

can be infeasible for practical applications. For this reason Ashar and Malik [1] proposed two

methods.

One is based on an interleaving of input and output variables. An output variable is located

in the ordering directly after the last input variable on which this output depends. To determine

an ordering of the input and output variables under this restriction Ashar and Malik [1] use a

heuristic from [8]. Since there is no output variable before any input variable it depends on,

nodes labeled with output variables still have the property that there is exactly one outgoing

edge to the terminal 0 and one edge to another node. Therefore it is still possible to evaluate

the multi-output function in time O(#I +#O).

The second method to reduce the number of nodes of BDD representations uses a partition of

the circuit. Then their method is applied only to the subcircuits of this partition. To evaluate the

overall circuit for some input vector BDDs for several subcircuits have to be evaluated. Obviously

the partitioning method may increase the runtime, because the same input values are read more

than once and/or intermediate variables are introduced.

McGeer et al. [5] also use a variable order with all input variables before the output variables

they depend on. To optimize memory tra�c they translate the decision diagram into an array,

and a special-purpose program is automatically generated to traverse the array. In addition they

use MDDs (multi-valued decision diagrams) instead of BDDs, where several BDD variables are

combined into one MDD variable, such that the number of variables, which have to be evaluated,

is reduced.

3.2 Optimization by Reordering

Reordering the variables of a BDD may have a large in
uence on the size of the representation

(see e.g. Example 1).



We now study the e�ect of using dynamic variable ordering methods [4], like sifting [7], to

reduce the size of the BDD representing the characteristic function. Here, we make no longer

use of the restriction that the input and output variables should not be mixed.

If BDD sizes for these unrestricted reordering methods are smaller, we can choose larger

subcircuits of the original circuit to be represented by BDDs for their characteristic functions,

such that the number of evaluations of subcircuits is reduced.

However, in general, by dropping the ordering restriction above we can not further guarantee

the time of O(#I +#O) to evaluate a multi-output function f which is represented by a BDD

for �

R(f)

.

3.3 Changed Evaluation Procedure

If we evaluate the BDD for the characteristic function, it is now possible to reach a node labeled

by an output variable before all input variables are read, which this output depends on. Therefore

we are not able to decide at this point which outgoing edge we have to follow. Both successors

of this node can be di�erent from the terminal 0. If we have reached such a node, we have to

choose an arbitrary edge which we will follow. Thus, it is possible that we have to backtrack

when it turns out that the decision at this output node was wrong. This is the case if we follow

an edge starting from a node labeled by an input variable and reach terminal 0. Figure 2 shows

the changed evaluation procedure.

4 Experimental Results

We performed experiments to demonstrate the e�ect of unrestricted sifting compared to other

variable ordering strategies: The �rst was the ordering strategy from [8, 1] and the second was

block sifting, where the input variables are located before the output variables and input variables

and output variables are sifted separately.

Apart from BDD sizes for the di�erent strategies, we also determined the average number

of read accesses to BDD nodes in the evaluation procedure of Figure 2, which were needed to

evaluate random input vectors. Read accesses to BDD nodes constitute critical operations when

the BDDs are large and memory management e�ects are of importance. Finally we compared

runtimes for the evaluation of random input vectors.

Our goal is to answer the following questions:

� How do the numbers of nodes for the three variable ordering strategies compare? Is it

worthwhile accepting the risk of increasing evaluation time when we use unrestricted sifting?

� To what extent do read accesses to BDD nodes increase when unrestricted sifting is applied?

Is the number of read accesses for unrestricted sifting much larger than for the other

approaches where output variables are located after all input variables they depend on?

The sizes of the resulting BDDs are given counted in number of nodes in Table 1. in (out)

denotes the number of inputs (outputs). The number of nodes of the BDDs for the characteristic

functions of the relations are given in the last three columns. In column block sift we give the



Given: Boolean function f : f0; 1g

n

! f0; 1g

m

,

BDD with node set V and root v

root

for characteristic function �

R(f)

input variables i

1

; : : : ; i

n

, output variables o

1

; : : : ; o

m

,

label function l : V ! fi

1

; : : : ; i

n

; o

1

; : : : ; o

m

g [ f0; 1g

input vector (�

1

; : : : ; �

n

)

Find: Output vector (�

1

; : : : ; �

m

) = f(�

1

; : : : ; �

n

)

Algorithm:

1 /* Let v

0

be the 0-son of a node v, v

1

the 1-son */

2 var stack outstack /* Stack with maximum depth m for nodes labeled with output variables */

3 v := v

root

;

4 while (l(v) 6= 1) do

5 if (l(v) input variable)

6 then

7 /* Let l(v) be i

j

*/

8 v := v

�

j

;

9 if (l(v) = 0)

10 then

11 v := pop(outstack);

12 /* Let l(v) be o

k

*/

13 �

k

:= 0; v := v

0

;

14 �

15 else

16 /* l(v) output variable, let l(v) be o

k

*/

17 if (l(v

1

) = 0)

18 then

19 �

k

:= 0; v := v

0

;

20 else

21 if (l(v

0

) 6= 0) then push(outstack; v); �

22 �

k

:= 1; v := v

1

; /* guess f

k

(�

1

; : : : ; �

n

) = 1 */

23 �

24 �

25 od

Figure 2: Evaluation procedure.

number of nodes for block sifting (i.e. restricted sifting), in column TSLBS-ord the number of

nodes for the variable ordering strategy from [8, 1] and in column unrestr sift the number of

nodes for unrestricted sifting.

As can easily be seen there are some examples where the partitioning techniques proposed in

[1] and [5] are needed for their method, since the BDDs for the characteristic function of the

relation can not be constructed

1

both for block sifting (input and output variables not mixed) and

for the variable ordering method of [8, 1]. In contrast, unrestricted sifting can build the BDDs

in all considered cases. Beside the cases where the other methods fail the results of unrestricted

sifting are up to a factor of 9 better than the results of the ordering heuristic from [8, 1]. (The

size reduction is even more dramatic in comparison to block sifting.)

1

We aborted the construction of the BDD for the relation, when more than 2,000,000 nodes were needed.



circuit in out block sift TSLBS-ord unrestr sift

5xp1 7 10 623 93 71

alu2 10 8 414 289 279

apex7 49 37 > 2,000,000 4,665 2,323

b9 41 21 43,102 1,582 663

c432 36 7 2,154 9,530 1,584

c499 41 32 > 2,000,000 > 2,000,000 14,235

c880 60 26 > 2,000,000 467,346 367,863

c1355 41 32 > 2,000,000 > 2,000,000 15,957

c1908 33 25 > 2,000,000 > 2,000,000 109,042

clip 9 5 171 171 103

count 35 16 262,159 145 142

e64 65 65 2,339 258 258

f51m 8 8 765 75 63

misex1 8 7 58 66 58

misex2 25 8 339 333 221

rd73 7 3 42 42 36

rd84 8 4 55 55 49

sao2 10 4 106 106 85

term1 34 10 4,040 5,541 578

vg2 25 8 528 171 140

z4ml 7 4 78 30 29

Table 1: Node counts for characteristic function

For this reason we can expect that we will need substantially less subcircuits in the partition

for larger circuits when we apply unrestricted sifting (and this will lead to reduced evaluation

times as explained in Section 3.1).

We now study the e�ect of the size reduction with respect to evaluation time for the circuits

which could be represented in one partition. The average number of read accesses (column r.a.)

to evaluate an input vector and the simulation times in CPU seconds (column time) for 500,000

random input patterns measured on a SUN Sparc 20 workstation (256 MB physical memory)

are given in Table 2. In the last column the number of input/output violations is given, i.e. the

number of times how often an input variable occurred after the variable of an output, which the

input variable depends on. (Input/output violations can potentially lead to backtracking steps

in the evaluation procedure due to wrong decisions at nodes corresponding to output variables.)

On a �rst view we can observe the `surprising' result that the average number of read accesses

to BDD nodes increases in the worst case only by a factor of 1.5 for unrestricted sifting, but on

the other hand in many cases there are even less read accesses for unrestricted sifting. This is

even more surprising if we consider the large number of violations that result from unrestricted

sifting.



block sift TSLBS-ord unrestr sift

circuit r.a. time r.a. time r.a. time viol.

5xp1 22.50 3.07 22.50 2.94 25.49 3.81 7

alu2 18.78 2.67 18.68 2.67 19.09 2.52 1

apex7 - - 86.65 12.70 107.67 15.25 69

b9 50.89 11.96 53.29 8.07 74.99 10.28 39

c432 26.53 4.81 28.64 7.99 30.06 4.49 41

c499 - - - - 259.44 71.00 615

c880 - - 86.11 20.08 85.00 34.75 27

c1355 - - - - 274.50 67.19 617

c1908 - - - - 323.81 137.55 371

clip 16.50 2.27 16.50 2.25 17.84 2.52 10

count 29.75 10.08 30.75 4.82 29.75 4.57 0

e64 132.00 12.69 131.00 12.27 131.00 12.20 0

f51m 20.00 2.91 20.00 2.85 17.71 2.76 4

misex1 15.64 1.94 15.89 1.98 16.77 2.16 3

misex2 39.80 4.10 39.98 4.07 46.21 4.95 14

rd73 11.50 1.62 11.50 1.61 12.87 1.85 4

rd84 14.40 1.93 14.40 1.95 15.64 2.16 4

sao2 13.59 1.70 13.59 1.70 10.18 1.23 0

term1 28.89 3.81 30.01 3.99 31.18 4.02 12

vg2 25.69 3.15 22.98 3.05 21.63 2.60 0

z4ml 13.00 1.79 13.00 1.82 13.25 1.86 1

Table 2: Average number of read accesses and evaluation times for 500,000 random patterns

These unexpected results can be explained by the following observation:

In an optimized BDD it often occurs that less variables are tested until a terminal node is

reached (see e.g. function from Example 1.) This e�ect compensates the additional read accesses

due to `wrong decisions' (see Section 3.3).

In addition there are examples (e.g. c432) where the runtime in the case of unrestricted sifting

is smaller even though the number of read accesses is larger. This can be explained by memory

management e�ects: If the code to be executed is larger in size the probability of page faults

and cache misses during the execution of the program increases.

5 Conclusions and Future Work

We discussed the use of dynamic variable ordering for functional simulation. It turned out that

the use of dynamic reordering has a large potential in this area.

Finally, we discuss some possible further extensions of our presented approach. If we want to



further keep the good runtimes implied by restricted sifting or the ordering method of [8, 1] and

allow some more space for the BDD representation compared to unrestricted sifting we can also

apply the following basic methods:

All inputs before the corresponding outputs [1]: In many cases not all outputs depend on all

inputs. Thus, the sifting algorithm can be modi�ed in such a way that it is allowed to

move an output variable before an input variable, if this output does not depend on this

input.

Only a constant number of output variables is allowed to occur before their input variables (and

of course only if the resulting size reduction of the BDD is large enough): If only a constant

number of output variables are allowed to occur before the input variables the asymptotic

worst case behavior does not change, i.e. the evaluation time is also given by O(#I +#O).

Obviously, for `real world' applications this number must not be too large.

Apply sifting with a di�erent cost function. Until now the cost function of sifting is the size of

the resulting BDD. We can change this cost function to take the expected number of read

accesses to BDD nodes (in the evaluation of a random input vector) into consideration.

The cost function is now a combination of BDD size and this expected value. Changing

the weights for these two components of the cost function gives an immediate in
uence to

the trade-o� between BDD sizes and read accesses in the evaluation.

First experiments using this modi�ed version of sifting are promising: We have to allow

only a few more BDD nodes compared to the original sifting algorithm and at the same

time we are able to even reduce the number of read accesses to BDD nodes in the evaluation

procedure compared to the approaches where all output variables are located after the input

variables they depend on (this is possible because on a path in the BDD not necessarily

all input variables are tested, see Example 1). Whereas experimental results of Section 4

show that the increase of the number of read accesses is surprisingly small for unrestricted

sifting, it turns out that we can even reduce this number while keeping small BDD sizes.

It is focus of current work to integrate all methods proposed above in the sifting algorithm

and to evaluate their quality with respect to size and evaluation time.

Finally, it should be mentioned that the partitioning technique proposed in [1, 5] can also be

used in combination with the ideas presented above. Since the numbers of BDD nodes in our

approach are much smaller, we can expect that we will need substantially less subcircuits in the

partition for larger circuits (and this will lead to reduced evaluation times as explained in Section

3.1).
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