Efficient ROBDD based computation of common decomposition functions of multi-output boolean functions *

Christoph Scholl ‡, Paul Molitor ‡
‡ Universität des Saarlandes
Department of Computer Science, D 66041 Saarbrücken, FRG.
‡ Martin-Luther Universität Halle
Department of Computer Science, D 06099 Halle (Saale), FRG.

Abstract
One of the crucial problems multi-level logic synthesis techniques for multi-output boolean functions \(f = (f_1, \ldots, f_m) : \{0, 1\}^n \rightarrow \{0, 1\}^m \) have to deal with is finding sublogic which can be shared by different outputs, i.e., finding boolean functions \(\alpha = (\alpha_1, \ldots, \alpha_h) : \{0, 1\}^p \rightarrow \{0, 1\}^h \) which can be used as common sublogic of good realizations of \(f_1, \ldots, f_m \).

In this paper we present an efficient ROBDD based implementation of this COMMON DECOMPOSITION FUNCTIONS PROBLEM (CDF).

Formally, CDF is defined as follows: Given \(m \) boolean functions \(f_1, \ldots, f_m : \{0, 1\}^n \rightarrow \{0, 1\} \), and two natural numbers \(p \) and \(h \), find \(h \) boolean functions \(\alpha_1, \ldots, \alpha_h : \{0, 1\}^p \rightarrow \{0, 1\} \) such that \(\forall 1 \leq k \leq m \) there is a decomposition of \(f_k \) of the form

\[
f_k(x_1, \ldots, x_n) = g^{(k)}(\alpha_1(x_1, \ldots, x_p), \ldots, \alpha_h(x_1, \ldots, x_p), \alpha_{h+1}(x_1, \ldots, x_p), \ldots, \alpha_{r_k}(x_1, \ldots, x_p), x_{p+1}, \ldots, x_n)
\]

using a minimal number \(r_k \) of single-output boolean decomposition functions.

1 INTRODUCTION

The long term goal for logic synthesis is the automatic transformation from a behavioral description of a boolean function to near-optimal netlists, whether the goal is minimum delay, minimum area, or some combination. Most of the approaches attacking the multi-level logic synthesis problem use gate count as optimization criterion. A survey can be found in Brayton (1990). Alternatively, some recent papers (e.g. Hwang (1992), Lai (1993), Schlichtmann (1993)) propose an approach different from the one addressed above. This approach to multi-level logic synthesis which originates from Ashenhurst (1959), Curtis (1961), and Karp (1963) is based on minimizing communication complexity. The methods

*This work was supported in part by DFG grant SFB 124 and the Graduiertenkolleg of the Universität des Saarlandes
used to reduce communication complexity employ functional decomposition, i.e., given a boolean function \(f : \{0, 1\}^n \rightarrow \{0, 1\} \) they are looking for boolean functions \(\alpha \) and \(g \), such that \(f(x_1, \ldots, x_n) = g(\alpha(x_1, \ldots, x_p), x_{p+1}, \ldots, x_n) \) holds for all \((x_1, \ldots, x_n) \in \{0, 1\}^n \) (see Figure 1). \(\alpha = (\alpha_1, \ldots, \alpha_r) \); \(\{0, 1\}^p \rightarrow \{0, 1\}^r \) is a multi-output boolean function. The goal is to find decompositions where the number \(r \) of decomposition functions (i.e. the number of wires between block \(\alpha \) and block \(g \)) is minimal. (If \(r < p \), then the decomposition is called non-trivial.)

A fundamental step in logic synthesis is the identification of common sublogic. Methods to identify common sublogic by (algebraic or boolean) division were developed by Brayton et al. and included in the SIS package (Sentovich (1992)). In this paper we present a method to identify common sublogic for the case that boolean functions are realized by decomposition. This method comes into play when we have to process multi-output boolean functions \(f = (f_1, \ldots, f_m) : \{0, 1\}^n \rightarrow \{0, 1\}^m \). Note that even if the original function \(f \) has only 1 output \((m = 1) \), in most cases we need a generalization to multi-output boolean functions when we apply functional decomposition recursively to \(\alpha \) and \(g \).

All \(f_i \) are decomposed as single-output functions, but in order to identify common sublogic we make use of our freedom in the choice of the decomposition functions to compute such decomposition functions which can be used in the decomposition of as many \(f_i \) as possible. Unlike Lai (1994) we avoid to compute the huge set of all possible decomposition functions for all \(f_i \) to choose common decomposition functions of the functions \(f_i \) from these sets. We present an algorithm which directly computes a maximum number of common decomposition functions of \(f_1, \ldots, f_m \).

In contrast to Molitor/Scholl (1994), which was based on function tables and decomposition charts, we efficiently make use of REDUCED ORDERED BINARY DECISION DIAGRAMS (ROBDD) during the computation of common decomposition functions. ROBDDS (Bryant (1986)) are compact representations for many of the boolean functions encountered in typical applications. In this paper we show that it is possible to carry out all necessary steps based on ROBDDS. This increases the efficiency of the approach in a high degree. In particular, we show that the computation of common decomposition functions for the decomposition of several single-output functions can be performed efficiently based on ROBDD’s.

Benchmarking results show the new method to be efficient with respect to layout size, signal delay and running time.

Figure 1 Decomposition of a boolean function \(f : \{0, 1\}^n \rightarrow \{0, 1\} \)
with functions associated with a distinct assignment of values to the inputs in \(M \)/2.

** BASIC DEFINITIONS **

Definition 1 A decomposition of a multi-output boolean function \(f : \{0, 1\}^n \rightarrow \{0, 1\}^m \) with respect to the input partition \(\{X_1, X_2\} \) \((X_1 = \{x_1, \ldots, x_p\}, X_2 = \{x_{p+1}, \ldots, x_{p+q}\}) \), \(p+q=n \) is a representation of \(f \) of the form

\[
f_k(x_1, \ldots, x_n) = g^{(k)}(X_1), \ldots, \alpha^{(k)}(X_1, X_2) \quad (\forall k \in \{1, \ldots, m\}),
\]

with functions \(\alpha^{(k)} : \{0, 1\}^p \rightarrow \{0, 1\} \), \(X_1 \) and \(g^{(k)} : \{0, 1\}^{p+q} \rightarrow \{0, 1\} \). \(\alpha^{(k)} \) are called decomposition functions of \(f_k \). \(g^{(k)} \) is called composition function of \(f_k \).

With respect to a given input partition \(\{X_1, X_2\} \), a single-output function \(f_k \) can be represented as a \(2^p \times 2^q \) matrix \(M(f_k) \), the decomposition matrix of \(f_k \) or the chart of \(f_k \) with respect to \(\{X_1, X_2\} \). (For illustration see Figure 2.) Each row and column of \(M(f_k) \) is associated with a distinct assignment of values to the inputs in \(X_1 \) and \(X_2 \), respectively, such that \(f_k(X_1, X_2) = M(f_k)[X_1, X_2] \) where \(M(f_k)[X_1, X_2] \) represents the element of \(M(f_k) \) which lies in the row associated with \(X_1 \) and the column associated with \(X_2 \).

Note that \((\alpha^{(k)}_1, \ldots, \alpha^{(k)}_{r_k}) \) of definition 1 encodes the rows of chart \(M(f_k) \). Of course, the following property has to hold.

Encoding Property: If the row pattern of row \((v_1, \ldots, v_p) \in \{0, 1\}^p \) differs from the row pattern of row \((v'_1, \ldots, v'_p) \in \{0, 1\}^p \), then \((\alpha^{(k)}_1, \ldots, \alpha^{(k)}_{r_k}) \) has to assign different codes to \((v_1, \ldots, v_p) \) and \((v'_1, \ldots, v'_p) \).

The minimum number of communication wires required between the subcircuit which encodes the rows of \(M(f_k) \) and the composition function \(g^{(k)} \) is \(\lfloor \log p^{(k)} \rfloor \) where \(p^{(k)} \) is the number of distinct row patterns in \(M(f_k) \). \(r_k \) will denote value \(\lfloor \log p^{(k)} \rfloor \) in the following. In the following we will always consider decompositions with minimal number \(r_k = \lfloor \log p^{(k)} \rfloor \) of decomposition functions.

If \(f_k \) is given by a ROBDD \(bdd_k \), the minimal number of decomposition functions can be determined in an easy way too: For all \((v_1, \ldots, v_p) \in \{0, 1\}^p \) the row pattern belonging to row \((v_1, \ldots, v_p) \) of \(M(f_k) \) equals the function table of the cofactor of \(f_k \) \(x_1^{v_1} \ldots x_p^{v_p} \) (with \(x_0^0 = x_1^1 \ldots x_p^1 = x_0 \)). Thus the problem of determining the number \(p^{(k)} \) of different row patterns of \(M(f_k) \) is equivalent to the problem of computing the number of different cofactors \((f_k)_{x_1^{v_1} \ldots x_p^{v_p}} \). The ROBDD of the cofactor \((f_k)_{x_1^{v_1} \ldots x_p^{v_p}} \) is given by the sub-bdd of \(bdd_k \) whose
root is reached by starting at the root of \(\text{bdd}_k \) and then following the path corresponding to \((v_1, \ldots, v_p)\). The roots of these cofactors are called linking nodes (the shaded nodes in Figure 2). Since \(f_k \) is given by a ROBDD, the number of different linking nodes of \(\text{bdd}_k \) obviously equals the number of different cofactors. The computational complexity of determining the number of different linking nodes is at most linear in the size of \(\text{bdd}_k \) since it can be determined by traversing \(\text{bdd}_k \) in a depth first search manner.

The rows of chart \(M(f_k) \) induce a partition of \(\{0, 1\}^p \) into equivalence classes \(K_1^{(k)}, \ldots, K_p^{(k)} \) such that \(v, v' \in \{0, 1\}^p \) belong to the same class \(K_p^{(k)} \) if and only if the two corresponding row patterns of \(M(f_k) \) are identical. We denote the corresponding equivalence relation by \(\equiv_k \) and the set of the equivalence classes \(\{K_1^{(k)}, \ldots, K_p^{(k)}\} \) by \(\{0, 1\}^p /_{\equiv_k} \).

Since every equivalence class \(K_j^{(k)} \) is associated to exactly one linking node \(n_j^{(k)} \) and vice versa, we are able to compute \(K_j^{(k)} \) from the ROBDD \(\text{bdd}_k \) for \(f_k \). We receive a BDD for the characteristic function of \(K_j^{(k)} \) if we replace \(n_j^{(k)} \) by the constant 1 and all other linking nodes by constant 0.

3 CDF

To compute decomposition functions (with domain \(X_1 \)) of a multi-output function \(f \) which are used by different single-output functions \(f_k \), we have to consider the following problem which will be denoted by \(\text{CDF} \).

Given: Let \(f = (f_1, \ldots, f_m) : \{0, 1\}^n \rightarrow \{0, 1\}^m \) be a multi-output boolean function, \(A = \{X_1, X_2\} \) with \(X_1 = \{x_1, \ldots, x_p\} \) and \(X_2 = \{x_{p+1}, \ldots, x_n\} \) be an input partition, and \(h \) be a natural number with \(h \leq r_k \left(= \lceil \log p_1^{(k)} \rceil \right) \) (\(\forall k \)).

Find: \(h \) single-output boolean functions \(\alpha_1, \ldots, \alpha_h \), which can be used as decomposition functions of every single-output function \(f_k \) for \(k = 1, \ldots, m \) such that there is a decomposition of \(f_k \) with minimal number \(r_k \) decomposition functions of the form

\[
\begin{align*}
f_k(x_1, \ldots, x_n) &= g^{(k)}(\alpha_1(X_1), \ldots, \alpha_h(X_1), \alpha_{h+1}(X_1), \ldots, \alpha_k(X_1)) \end{align*}
\]

Of course, such \(h \) boolean functions need not to exist. We have proven the problem whether such functions \(\alpha_1, \ldots, \alpha_h \) exist to be NP-complete. Nevertheless, we have to solve \(\text{CDF} \). An algorithm which is applicable from the practical point of view (as shown by the benchmarking results) is presented in this section.

3.1 Theoretical Background

We start with a theoretical result working towards a solution to \(\text{CDF} \). It gives a condition necessary and sufficient that \(h \) single-output functions \(\alpha_1, \ldots, \alpha_h : \{0, 1\}^p \rightarrow \{0, 1\} \) are common decomposition functions of \(f_1, \ldots, f_m \). It is a generalization of a lemma shown by Karp (1963). For this, we need the following notations: Let \(\theta^{(k)} : \{0, 1\}^p \rightarrow \{1, \ldots, p_1^{(k)}\} \) be the function which maps \(v \in \{0, 1\}^p \) to the index \(j \) of the class \(K_j^{(k)} \) to which it belongs.

\(^1 \)The (maximal) value of parameter \(h \) of \(\text{CDF} \) is determined by logarithmic search. After that we solve \(\text{CDF} \) for subsets of \(\{f_1, \ldots, f_m\} \), but only for such subsets \(\{f_i, \ldots, f_i\} \) where all pairs \(f_i \) and \(f_k \) have at least one common decomposition function. Note that this question is \(\text{not} \) NP-complete, but can be decided efficiently by dynamic programming. Also note that the algorithms for the computation of common decomposition functions given in this paper can be generalized in a canonical manner for the case that some of the decomposition functions \(\alpha_i^{(k)} (i > h) \) are already predetermined. More details of how the \(\text{CDF} \) algorithm is integrated in the tool can be found in Molitor/Scholl (1994).

Furthermore, for given \(\alpha_{1,\ldots, h} \)\(^4\) and all \(a \in \{0,1\}^h \), let \(S_a^{(k)} \) be the set \(\{g^{(k)}(v) ; \alpha_{1,\ldots, h}(v) = a\} \) of those classes which contain a row mapped to \(a \) by \(\alpha_{1,\ldots, h} \). (\(\alpha_{1,\ldots, h} \) is not able to tell these rows apart (see the Encoding Property).) Note that \(S_a^{(k)} \) and \(S_{a'}^{(k)} \) need not to be disjoint for \(a \neq a' \), and that the number \(|S_a^{(k)}| \) of elements of \(S_a^{(k)} \) equals the number of distinct row patterns of \(M(f_k) \) mapped to \(a \) by \(\alpha_{1,\ldots, h} \).

Lemma 1 \(\alpha_{1,\ldots, h} \) are common decomposition functions of \(f_1, \ldots, f_m \) with respect to \(\{X_1, X_2\} \) such that there is a decomposition of \(f_k \) with minimal number of decomposition functions of the form

\[
f_k(x_1, \ldots, x_n) = g^{(k)}(\alpha_1(X_1), \ldots, \alpha_{h}(X_1), \alpha_{h+1}(X_1), \ldots, \alpha_{k}(X_1), X_2) \quad \forall k \in \{1, \ldots, m\}
\]

if and only if \(\max\{|S_a^{(k)}|; a \in \{0,1\}^h\} \leq 2^{n-k} \) (\(\forall k \)).

Proof. Since \((\alpha_{1,\ldots, h}, \alpha_{h+1,\ldots, r_k}) \) has to assign different values to rows of chart \(M(f_k) \) with different row patterns (see the Encoding Property), \(\alpha_{h+1,\ldots, r_k} \) has to assign different values to those rows which cannot be told apart by \(\alpha_{1,\ldots, h} \). As \(\alpha_{h+1,\ldots, r_k} \) can produce at most \(2^{r-k-h} \) different values, the statement of the lemma follows. \(\square \)

3.2 Solution

\(h \) common decomposition functions \(\alpha_{1,\ldots, h} \) can be computed (on principle) by a (simplified) branch and bound algorithm (see also Molitor/Scholl 1994). It constructs the function table of \(\alpha_{1,\ldots, h} \) row by row (assigning function values to all elements of \(\{0,1\}^p \)). Branches are pruned as soon as the condition of lemma 1 is violated for the initial part of the function table of \(\alpha_{1,\ldots, h} \) constructed so far.

In order to speed up the branch and bound algorithm and to receive ‘simpler’ decomposition functions we restrict our search for common decomposition functions to a subclass of functions, which we will call ‘equivalence preserving decomposition functions’\(^5\):

Definition 2 A decomposition function \(\alpha_i : \{0,1\}^p \rightarrow \{0,1\} \) of a boolean function \(f_k : \{0,1\}^n \rightarrow \{0,1\} \) is said to preserve equivalences if \(\alpha_i(v) = \alpha_i(v') \) holds for every \(v, v' \in \{0,1\}^p \) with \(v \equiv_k v' \).

Common equivalence preserving decomposition functions \(\alpha_{1,\ldots, h} \) of \(f_1, \ldots, f_m \) have to assign the same value to \(v \) and \(v' \in \{0,1\}^p \) whenever there is a \(k \in \{1, \ldots, m\} \) such that the rows of \(M(f_k) \) corresponding to \(v \) and \(v' \) have identical row patterns. More formally, let

\[
v \sim v' \overset{\text{def}}{\iff} (\exists 1 \leq k \leq m) \ v \equiv_k v',
\]

then the corresponding equivalence relation partitions the rows, i.e. \(\{0,1\}^p \), into equivalence classes \(E_1, \ldots, E_l \) such that common equivalence preserving decomposition functions have to assign the same value to each \(v \in E_i \). We will denote the set of these equivalence classes by \(\{0,1\}^p/\sim \).

Now we can modify our branch and bound algorithm, such that it makes assignments not to single elements of \(\{0,1\}^p \) but to whole classes \(E_i \). Since \(l \) mostly is much smaller than \(2^p \), this approach considerably reduces the running time (see also section 4).

\(^4\)\(\alpha_{1,\ldots, h} \) denotes the tuple \((\alpha_{1}, \ldots, \alpha_{h}) \).

\(^5\)In practical applications functions \(f_k \) often have some desirable properties like symmetry in some variables or independence of some variables. Equivalence preserving decomposition functions ‘preserve such properties’.
As already mentioned in section 2 ROBDDs \(\text{bdd}^{(k)}_1, \ldots, \text{bdd}^{(k)}_{p_i} \) for the characteristic functions of the equivalence classes \(K^{(k)}_1, \ldots, K^{(k)}_{p_i} \) with respect to \(\equiv_k \) can easily be computed from the ROBDDs of the \(f_k \). To compute the characteristic functions of the equivalence classes with respect to \(\sim \), we implicitly construct a graph \(G = (V, E) \) where the set \(V \) of vertices is given by the ROBDDs \(\text{bdd}^{(k)}_j \) representing the equivalence classes \(K^{(k)}_j \). At the end, there is an undirected edge \(\{ \text{bdd}^{(k)}_{j_1}, \text{bdd}^{(k)}_{j_2} \} \) if and only if \(\text{bdd}^{(k)}_{j_1} \land \text{bdd}^{(k)}_{j_2} \neq \emptyset \), i.e., if \(K^{(k)}_{j_1} \cap K^{(k)}_{j_2} \neq \emptyset \). Obviously, there is a one-to-one relation between the set of the connected components (in the graph-theoretical sense) of \(G \) and the set of the equivalence classes \(\{0, 1\}^{p_i} /\sim \). For every class \(E_i \), there is a connected component \(CC_i \) of \(G \) such that the logical-or of the ROBDDs \(\text{bdd}^{(k)}_j \) (for any fixed \(k \)) corresponding to vertices of \(CC_i \) results in a representation of \(E_i \) and vice versa.

4 EXPERIMENTAL RESULTS

We applied our tool, which uses the CDF algorithm described above as basis, to a number of benchmarks of the 1991 MCNC multi-level logic benchmark set. We will call the ROBDD based implementation of our tool \textit{mulopII}. Our former implementation working on charts will be called \textit{mulop} (Molitor/Scholl 1994).

Columns 1–3 of Table 1 show running times (in CPU seconds, measured on a SPARCstation 10/30 (64 MByte RAM)) of our ROBDD based implementation \textit{mulopII} compared to those of our former version \textit{mulop}. Experiments prove our ROBDD based version to be much more efficient than the former version.

The next column of Table 1 shows the fraction of running time which is used in the computation of common decomposition functions compared to the total running time of the tool \textit{mulopII}. It shows that only a very small fraction of the total running time is used for the computation of common decomposition functions. The running time is dom-
inated by the computation of good input partitions, not by the computation of common decomposition functions. This confirms our approach to compute common decomposition functions rather than to encode linking nodes in a straightforward manner.

Columns 5-7 of Table 1 show a comparison between sis (Sentovich (1992)) and mulopH with respect to layout size. For almost two thirds of the benchmark set, our approach dominates (or is as good as) that of sis with respect to layout size. Nevertheless, the signal delays of our realizations for more than two thirds of the circuits considered are better (or equal) than those of the realizations synthesized by sis (see columns 8–10 of Table 1).

5 CONCLUSION

We have presented a ROBDD based technique for computing common decomposition functions of multi-output boolean functions. This algorithm has been integrated in our multilevel synthesis tool which has been presented in Molitor/Scholl (1994) where more details of how the CDF algorithm is integrated can be found. The benchmarking results show that most of the circuits constructed by our synthesis tool are very efficient. They also prove it to be applicable in terms of running time.

REFERENCES

The technology library consists of the 2-input gates from stdcell2_2_genlib available in octtools. Placement and routing was done by TimberWolf integrated in octtools.