Preprint from Proceedings of IFIP Workshop on Logic and Architecture Synthesis,

pp.61-70, Grenoble, France, December 1994

Efficient ROBDD based computation of common

decomposition functions of multi-output boolean functions ¥

Christoph Scholl

Department of Computer Science
Universitat des Saarlandes

D 66041 Saarbricken, FRG

Abstract

One of the crucial problems multi-level logic synthe-

sis techniques for multi-output boolean functions [=

(fry-oos fm) : {0,137 — {0,1}™ have to deal with is finding

sublogic which can be shared by different outputs, i.e., find-

ing boolean functions o« = (an, ..., o) : {0,117 — {0,1}"

which can be used as common sublogic of good realizations

of fi, ooy fm-

In this paper we present an efficient ROBDD based imple-
mentation of this COMMON DECOMPOSITION FUNCTIONS
PROBLEM (¢DF). The key concept of our method is the
exploitation of “equivalences” of the functions f1,..., fm
which considerably reduces the running time of the tool.

Formally, cDF is defined as follows: Given m boolean
s fo 2 {0,137 — {0,1}, and two natural

functions f1,...
numbers p and h, find h boolean functions aq,..., o :
{0,1}? — {0,1} such that V1 < k < m there is a decom-
position of fi of the form

.7.7773)7...70/}7,(.7717...7.’1713)7

7,’1773)7...70/5];)(.’1717...7.’1713)7,’17734_17...7.’1777,)

fk(T1 goeeey .’I?n) = q(k)(ry1 ('1717
(k)

Ypgq (1,00
using a minimal number vy of single-output boolean decom-
position functions.

1 Introduction

The long term goal for logic synthesis is the antomatic
transformation from a behavioral description of a boolean
function to near-optimal netlists, whether the goal is min-
imum delay, minimum area, or some combination. Most
of the approaches attacking the multi-level logic synthesis
problem use gate connt as optimization criterion. A survey
can be found in [4]. Alternatively, some recent papers [10,
11, 13, 15] propose an approach different from the one ad-
dressed above. This approach to multi-level logic synthe-
sis which originates from Ashenhurst [1], Curtis [8], Hotz
[9], and Karp [12] is based on minimizing communication
complexity. The methods used to reduce communication
complexity employ functional decomposition, i.e., given a

*This work was supported in part by DFG grant SFB 124
and the Graduiertenkolleg of the Universitat des Saarlandes

Paul Molitor

Department of Computer Science
Martin-Tuther Universitat Halle
D-06099 Halle (Saale), FRG

boolean function f : {0,1}" — {0,1} they are looking for
(multi-ontput) boolean functions «, 8, and g, such that

f(zr,.. o zn) =gla(z1,...,7p), B(Tps1,...,7n)) holds for
all (z1,...,72,) € {0,1}" (see Figure 1). Tf one
X, X X X

f

Figure 1: Decomposition of a boolean function f
fo, 13" —{o, 1}

wants to apply functional decomposition recursively to
the decomposition functions o and 3, a generalization to
multi-ontpnt boolean functions is required. Of course,
the approaches of the papers above can also be applied
to multi-output boolean functions f = (fi,..., fm)

{0,1}" — {0,1}™ either by considering mnulti-ontput
boolean functions as single-output multi-valne functions
FrAo 1y —{o,...,2” — 1} defined by f'(z1,...,5,) =
2:11 filza, ... mn) - 2'=" or by decomposing each single-
ontput boolean function f; independently of the other
single-ontput functions f; (7 # 1) and only then testing
whether they use some identical decomposition functions
by chance. The first method has the drawback that it de-
composes each single-ontput function f; with respect to the
same input partition which can result in poor realizations.
Tt does not take into consideration that there possibly exist
single-output boolean functions f; and f; such that there
does not exist one input partition good for both, f; and f;.
Furthermore, even in case that there is an input partition
good for every single-ontput function of f, it is unhkely

that there is a decomposition where function ¢ has much
less inputs than f (if m is large enough), i.e., g is not much
easier to synthesize than f. The drawback of the second
method is clear. Tn the final analysis, it does not nse the
potential of rensing subcircuits for different ountputs of f.

Tn [14] the anthors presented a multi-level synthesis
method for multi-ontpnt boolean functions based on com-
munication complexity which avoids both drawbacks. The
method can be divided into two steps. In the first step,
\ fm} s par
, Y. Single-outpnt func-

ontput partitioning is performed, i.e., {f1,...
titioned into disjoint sets Vi, ...
tions f; and f; of the same set Y, will be decomposed
with respect to the same inpnt partition. The partition-
ing is executed such that for every Yi there is an input
partition which is 'near-optimal’ for every f; € Yi. 1In
the second step, the decomposition functions of the single-
output functions of each class Vi are constructed giving
special attention to generate these functions in such a way
that many of them can be nsed in the decomposition of
different elements of Yiz. Benchmarking results of circuits
taken from 1991 MCNC benchmark set have shown the
technigque to be effective with respect to layout size and
signal delay.

The paper in hand presents a much more efficient ver-
sion of our algorithms from [14]. During the computation
of common decomposition functions we efficiently make
use of REDUCED ORDERED BINARY DECISTON DIAGRAMS
(ROBDD), which are compact representations for many of
the boolean functions enconntered in typical applications
[6]. Tn this paper we show that it is possible to carry out all
necessary steps based on ROBDD’s. In particnlar we show
that the computation of common decomposition functions
for the decomposition of several single-output functions,
which is the basis of step 2 of the technique above [14], can
be performed efficiently based on ROBDD’s. (The crucial
point of this method is the exploitation of “equivalences”
of the functions fy,..., fm which resnlts in the compu-
tation of connected components (in the graph-theoretical
sense)).

Benchmarking resnlts show the new method to be effi-
cient with respect to layont size, signal delay and running
time.

We start by giving some basic definitions (section 2)
and summarize the algorithm for computing common de-
composition functions (section 3). Tn section 4 we demon-
strate how to apply ROBDDs to implement this algorithm.
Fxperimental results close the paper (section 5).

2 Basic definitions

A multi-ontput boolean function ¢ with n inputs is rep-
resented as a set {¢1,...,dm} of boolean-valued output
functions. We denote the set of completely defined boolean
functions with n inputs and m outputs by B, ... Let B,
be an abbreviation for Bni1. ¢: .. ; (i < j) denotes the

tuple (¢4,..., ;).

Definition 1 A decomposition of a multi-output boolean
function f € B, . with respect to the input partition
(X0, Xob (X ={zr, .. mp b Xo={mppa, . 2pgql, pHe=

n) is a representation of f of the form

g P (X0, 0B),

k

P, (X))

fk(.’lﬁ,...,fl?n)

(Vk € {1,...,m}), where rygk) € B, (Y1), 65k> € By (Yy),

and g(k) € BT;_H;. ng) and 65k> are called decomposition

k)

functions of f3. g(1s called composition function of f5. &

With respect to a given input partition {X7, X2}, a
single-output function fi can be represented as a 27 x 29
matrix M (fi), the decomposition matriz of fi or the chart
of fx with respect to { X1, X2}. (For illustration see Figure
2.) Fach row and column of M(fi) is associated with a
distinct assignment of values to the inputs in X7 and Xo,
respectively, such that fi.(X1, X2) = M(fi)[X1, X2] where
M (fr)[X1, X2] represents the element of M (fi) which les
in the row associated with X; and the column associated

with X5.
Note that (rygk),...,ry(j)) of definition 1 encodes the

k
rows of chart M(fi). Of course, the following property
has to hold.

Encoding Property If the row pattern of row
(v1,...,vp) € {0,1}7 differs from the row pattern of row
(v1,...,v,) € {0,1}7, then (rygk), el

W(j)) has to assign
k
different codes to (v1,...,v,) and (v, ..., 1,1’3)_ o

The minimum number of communication wires required
between the subcircuit which encodes the rows of M (fx)
and the composition function g(k) is [log pgk)] where pgk)
is the number of distinct row patterns in M(fx). 7 will
denote value [log pgk)] in the following. *

Definition 2 A decomposition of fi : {0,1}" — {0,1} s
optimal (for X7 with respect to a given input partition A =
{X1, X2}) if it uses only ri (= [log pgk)]) decomposition

functions rygk), AU ry(rlz) with domain X, . <&

To compute decomposition functions (with domain X7)
of a multi-output function f which are used by different
single-output functions fx, we have to consider the follow-
ing problem which will be denoted by ¢DF. (CDF can be
posed for X3 in an analogous ma.nner.)

Given: Tet f={f1,..., fm} € Bum be a multi-ontput
boolean function, A = {X7, X2} with X7 = {z1,...,75,}
and Xo={7p41,...,7,»} be an input partition, and h be a
natural number with k& < rp (= [log pgk)]) (Yk).

Find: h single-output boolean functions aq,..., a5 €
By, which can be used as decomposition functions of every

*Tikewise, the minimum number s, of interconnections be-
tween ﬁ(k) and ,q(k) is ﬂogpgk)] where p(Qk) is the number of

distinct column patterns in M (fy).

X, | 00 1 X, | 00 1
Xg | 00 1 Xg | 00 1
f1 f2
Xp | 01 1 Xp | 01 1
X1X2X3 X1X2X3
00 row pattern 1 000 row pattern 1
001 row pattern 1 001 row pattern 2
010 row pattern 2 010 row pattern 3
011 row pattern 2 011 row pattern 4
100 row pattern 3 100 row pattern 2
101 row pattern 3 101 row pattern 2
110 row pattern 3 110 row pattern 1
111 row pattern 2 111 row pattern 4

Figure 2: Charts M(f1) and M(f2) of the multi-ontput
boolean function {f1, f2} which will be used to illustrate
the ideas of the paper. The input partition A is given by
({z1, 22,23}, {74, ...
of 8 rows. A row pattern is associated to each row. There
are three (four) different row patterns in M(f1) (M(f2))
denoted by the numbers 1, 2, and 3 (1 to 4). Thus, ri =
ro = 2 holds.

,n}). Fach chart obviously consists

single-output function fir for Kk =1,... m such that there
is an optimal decomposition of fi of the form

fk(mh"'vm") g(k)(ry1(X1),...,ryh,(X1),

LX), el (X)), X)),

Yy

&

Of course, such h boolean functions need not to ex-

ist. We have proven the problem whether such functions

o1, ...,ap exist to be NP-complete. Nevertheless, we have

to solve ¢nF. An algorithm which is applicable from the

practical point of view (as shown by the benchmarking
results) is presented in the next two sections.

3 An algorithm for CDF

Tn the following, let f = {f1,..., fm} € Bn,m be a multi-
output boolean function. FEach single-output function fx
has to be decomposed with respect to the same given in-
put partition A = {X1, X2} (computed during ountput par-
titioning (see [14])) which will be fixed in the following.
3.1 Theoretical background

We start with a theoretical result working towards a
solution to ¢pF. Tt gives a condition necessary and suf-
ficient that h single-output functions aq,...;a5 € B,
are common decomposition functions of f1,..., fm. Tt
is a generalization of a lemma shown by Karp [12]. For
this, we need the following notations. The rows of chart
M (fr) induce a partition of {0,1}” into equivalence classes

f\/}(k),..., f\’(]:,z) such that v»,0" € {0,1}” belong to the
4

1
same class K if and only if the two corresponding row

patterns of M(fx) are identical. We denote the corre-
sponding equivalence relation by =5 and the set of the

equivalence classes {[(1(14)7 R f\’(]:,z)} by {0,1}7/=,. Tet
p1

gl {0,1}7 — {1,...,pgk)} be the function which maps
v € {0,1}7 to the index j of the class ng) to which it
belongs.

Continued ezample: (see Figure 2) {0,1}*/=, con-
sists of 3 elements, namely f\’1(1) = {000,001}, [(S) =
{010,011,111}, and K" = {100,101,110}. Tt follows
that 80(000) = 8 (001) = 1, 8 (010) = 8 (011) =
#(111) = 2, and 9 (100) = 8V (101) = 8V (110) = 3.
{0,1}* /=, consists of 4 classes, namely f\’1(2) = {000,110},
K& = fo01, 100,101}, K = {010}, and KP =
{011,111} <&

Furthermore, for given aq 5 tand all a € {0, 1}}7', let
Sf,,k) be the set {H(k)(11); a1, n(v) = a} of those classes
which contain a row mapped to a by a1, 5. (rthh, is
not able to tell these rows apart (see the Fncoding Prop-

erty).) Note that Sf,,k) and 3217) need not to be disjoint
for a # a’, and that the number
Sf,,k) equals the number of distinct row patterns of M(fi)
SENs e {0,117
denotes the “inability to distinguish’ of aq . 5 with respect
S5 a e

5’2’“) | of elements of

mapped to a by a1, 5. Thus, max{

to fr. 1td(A, fr, @1, ») will denote value max{
{071}}7'} in the following.

Continued example: T.et h be equal 2.
that Y(v1,v2,v3) € {0,1}3 a1 (v, v2,v3) = w2 and
a2(v1,v2,v3) = wa. Tt follows that S(():)) = {1,3} holds
becanse aq5(000) = aq5(100) = 00 and 877 (000) = 1,
9(1)(100) = 3. Furthermore the following equalities hold:
S0 = (1,3}, S4) = {2,3}, and 51} = {2)}. Thus the
inability to distingnish #td(A, f1, a1 2) of a1 2 with respect
to fi 1s equal to 2. <&

Assume

Lemma 1 aq,...,a, € B, are common decomposition
, fm with respect to A such that there
1s an optimal decomposition of fi of the form

fk(m17' - '7'1771)

functions of f1,...

g(k)(r“ (X1)7 Sy ryh(X1)7
KX)o, of (X)), X)

Yy

(Vk € {1,...,m}) if and only if the inability to dis-
tinguish itd(A, fx,aq1, . n) of ar, . n with respect to fi is
< 2P (WE). &
(k)

UL TSI
values to rows of chart M(fi) with different row patterns

Proof: Since (a1, Ark) has to assign different

0(}721 o has to assign dif-

ferent values to those rows which cannot be told apart by
(k)

h+41,...,r
values, the statement of the lemma follows. |

3.2 The basic algorithm

CDF can be solved by computing a1, 5 by a (simplified)
branch and bound algorithm. The sets Sf,,k) which de-
termine the inability to distinguish itd(A, fi, o1, n) with

(see the Fncoding Property),

—h 7.
arhe Asa can produce at most 2% different

)

respect to fx, are constructed step by step. In the initial-
ization phase, rthh,(?)') is set to undeffor all ' € {0,117,

tRemember that aq .» denotes the tuple (a1, ..., ap).

and 3217) is set to the empty set for all @’ and k. Fach time
we enter the main loop (step 4 of the algorithm; see Figure
3) there is a v € {0,1}” and a vector a € {0,1}" snch that
rthh(?)') is defined for all ¥’ with int(’n') < 1711,1‘,('11),I and
there is no extension of the present function table with
@, n(v) = a’ and im‘,(a') < int(a) which does not violate
the condition of lemma 1. Tn this step we test whether
the condition of lemma 1 is violated if aq . »(v) is set to
a. If the condition is violated, we have to backtrack if
int(a) = 2" — 1, e, a = (1,...,1). Tfint(a) < 2" — 1,
we enter the loop once again with a incremented by 1.
The sets Sf,,k) are updated in each step. (Thus, the num-
bers itd(A, fx, a1, ») of lemma 1 are implicitely updated,
too.) For detailed information of the algorithm see the
pseudo code shown in Figure 3.

Continued example: Assume h = 1, and remember that
ri = ro = 2 holds. The ¢nF algorithm above computes
a1 2 40,1 = {0,1} defined by ai(v) = 1 <= v €
{010,011,111} as common decomposition function of fi
and fo. The inability to distinguish with respect to fx
(k =1,2) is equal to 2 as Sg” = {1,3}, SSU = {2}, and
S = 1,2}, S = (3,4} o

4 A ROBDD based implementation

Assume the function f={f1,..., fm} € Bn.m we want
to decompose 1s given by m ROBDDs bdds, ..., bdd,, and
that the ordering of the variables is given by (z1,...,%5)
(for illustration see Figure 4). Then, the following obser-
vations result in an efficient implementation.

4.1 Some observations

The first observation, already made in [7, 13], is that
for all (v1,...,v5) € {0,1}” the row pattern belonging to
row (v1,...,v) of M(fi) equals the function table of the
cofactor (fi)

N v (with) =27 and 2] = x;). Thus
) z,

the problem of determining the number pgk) of different
row patterns of M(fx) is equivalent to the problem of

computing the number of different cofactors (fi) = »».

»
The ROBDD of the cofactor (fi) R is given by the
ey

sub-bdd of bdd; whose root is re;).ched by starting at the
root of bddy and then following the path corresponding to
(v1,...,vp). The roots of these cofactors are called linking
nodes (the shaded nodes in Figure 4). Since fi is given
by a ROBDD, the number of different linking nodes of bddj,
obviously equals the number of different cofactors. The
compntational complexity of determining the number of
different linking nodes is at most linear in the size of bddy
since it can be determined by traversing bddy in a depth
first search manner.

i7777,7‘,(1/) denotes the natural number represented by the
boolean vector y
$Because of 1td(A, fr, 1) = 2, there obviously exists a de-

composition function (y(;) : 40,1} — {0,1} such that Vo, €

{0,1}? (eva (v), (y(;)(w)) # (a1 (v), (y(;)(w')) if the row patterns
of chart M (fi) corespondingto v and v’ are different (k = 1,2).

1o Tet SU =0 (VI<k<m, a' €{0,1}"),
ry{vwh,(?)') =undef (Yo' €{0,1}"),
v=1(0,...,0)€{0,1}" and
a=1(0,...,0)e{0,1}".

2. TLet o, n(v)=a, [* a1 #(0,...,0)=(0,...,0) */
S =48 (0)} (V).

3. Increment wv.

4. Tet aq,. n(v) = a.
If (Vk) S U{o®) (w)}|< 2m "
/* test whether the condition of lemma 1 is
not violated */
then let 5% = S0 U {85 (v)} (k).
Increment o.
Tet a=(0,...,0)e{0,1}".
else while oy n(v)==(1,...,1)
do let a1, n(v) = undef.

Decrement v;
” (k) — (k)
Sm AAAAA n(v) Sm AAAAA (v
od

a=o1, . n(v).
Tncrement a.
Tet a1, . n(v) = undef.

N

)\ {009 (v)}” VE.

fi
5. If (Vo e{0,1}7) a1, n(v) # undef
then retnrn aq, ..., ap.

else if v =(0,...,0)
then return ”There is no solution”

else goto 4 fi
fi

Figure 3: Pseudo code of the algorithm solving cpr. In
70) =

(0,...,0) without loss of generality because if there exist

step 2 of the algorithm, we can set ry1w,h,(0,...

h common decomposition functions then there also exist h

common decomposition functions with aq . x(0,...,0) =

(0,...,0).
(k)

Serl (o) \ {8 (0)} in step 4 is somewhat more complex

Furthermore, the operation S*Ey]: ()

than common set difference: the index H(k)(11) is only re-

moved from Sfﬁ) () if there is no v’ # v with int(v') <

int(v), ry1w,h,(11') = a1, n(v), and H(k)(11') = H(k)(11).

The second observation is that encoding the linking
nodes of bddyx with a code of length rj (Which is the log-
arithm of the number of linking nodes of bddk) results in
an optimal decomposition of fiz. (Of course this simple
approach does not lead to common decomposition func-
tions.) For 1 < 1 < r the corresponding decomposition
function rygk) is given by substituting the linking nodes of
bddi by the ith bits of the codewords belonging to the
linking nodes. The composition function g(k) is given by

Figure 4: Continued example: The ROBDDs of f1 and f>.
The left (right) ontgoing edge of node z; corresponds to

the case ; = 0 (z; = 1).

substituting the part of bddy, which corresponds to the
variables #1,...,x,, by the corresponding code-tree. For
illustration see Fignre 5.

A decomposition constructed in this way leads to de-
composition functions ry(]k) of fr which assign the same

value to all those (v1,...,v,) € {0,1}” for which the cor-
responding row patterns of M(fy) are identical. (Note
that till now the decomposition functions rygk), AU ry(rlz) of

a single-ontput function fi are allowed to assign different
values to rows with identical row patterns in the case that
the total number of different row patterns is less than 27%.)

In order to use this simple method of constructing the
decomposition functions and composition functions, the
branch and bound algorithm above 1s modified so that only
equivalence preserving decomposition functions are consid-
ered. We will name the modified algorithm "ROBDD based
branch and bound algorithm™.

Definition 8 A decomposition function o; € B, of a
boolean function fi € B, 1s said to preserve equivalences if
ai(v) = a;(v") holds for everyv,v' € {0,1}" withv =5 v'.O

Thus, common equivalence preserving decomposition
functions aq, ..., ap of f1,..., fm have to assign the same
valne to v and @' € {0,1}” whenever there is a k €
{1,...,m} such that the rows of M(fx) corresponding to
v and v’ have identical row patterns. More formally, let

v~ &L (F1< k<m) v =5 v,

then the corresponding equivalence relation partitions the
rows, i.e. {0,1}”, into equivalence classes F1,..., F; such
that common equivalence preserving decomposition func-
tions have to assign the same value to each v € F;. We will
denote the set of these equivalence classes by {0,1}7/~.

Continued example: Fignre 6 illustrates the definition of
this equivalence relation. Consider a graph whose vertices
are the 8 rows 000,...,111. (Note that this graph will not
be constructed by the algorithm presented in subsection
4.2.2.) There is an edge between two rows v and v’ if the

corresponding row patterns in M(f1) or M(f2) are identi-
cal, i.e., if v =1 v' or v =5 v'. (Fdges resulting from f; are
drawn in bold.) This results in a graph whose connected
components determine the equivalence classes F,. There
are two classes, namely 7 = {000,001,100,101,110} and
P> ={010,011,111}. F4 is marked by shaded nodes. <

Figure 6: Continued example: Tllustration of the defini-

tion of the equivalence classes F;.

Thus, the ROBDD based branch and bound algorithm as-
signs values to the snbsets Fi,..., Fi. Because | mostly is
much smaller than 27, this approach considerably redunces
the running time compared to the original branch and
bound algorithm (see subsection 3.2). (The benchmarking
resnlts will also show that this reduction of the running
time can be achieved withont reducing the quality of the
circuits constructed.) During the ROBDD based branch and
bound algorithm, every time a value a € {0, 1}" is assigned
to an equivalence class F; by a1, 5, the sets Sf,,k) (Yk),
which contain the different row patterns of M (fi) mapped
to a by a1, ., have to be npdated by Sf,,k) = SE,,]{)US FJTTM)
SFfTi(k) denotes the set {j; ng) C Fi}, i.e., the set which
consists of the indices (with respect to H(k)) of the different
row patterns of M (f) belonging to F;. Note that the sets

SET™® and SET™) are disjoint if 1 # j.

Continued example: SF)T1(1) = {1,3}, SF)T2(1) = {2},
SET? = {1,2}, and SETS?) = {3,4}. o

Of course, the ROBDD based branch and bound algo-
rithm requires a preprocessing and postprocessing phase
described in the following.

4.2 Preprocessing steps

In the first preprocessing step we have to efficiently de-
termine the minimum number r; of decomposition func-
tions required for a decomposition of fi (Vk). Tn the second
preprocessing step we construct ROBDDs representing the
equivalence classes ng) € {0,1}"/=,. Then, we deter-
mine the ROBDDs of the equivalence classes {0,1}? /. cor-
responding to {f1,..., fm} and thus also the corresponding

sets SF)TT.G) the algorithm requires.

xe)

/@\

k9 K9 9 ()

ANAYRYA

Figure 5: Continued evample: Optimal decomposition of f> by encoding the first linking node by 00, the second by 01,

the third by 10 and the fourth by 11. (To make things clear the 0BDDs shown are not reduced.)

Note that all these computation steps have to be done
without constructing the charts M(fx). Since we have al-
ready explained in section 4.1 how to efficiently determine
the minimum number r; of decomposition functions re-
quired for a decomposition of a function fy, it remains to
show how to efficiently compute the equivalence classes.

4.2.1 Computation of the equivalence classes
with respect to =

As already mentioned, identical row patterns of M (fx)
correspond to the same linking node of bddy. Thus every

equivalence class K% s associated to exactly one linking

(%)

node n;"’ and vice versa. f\’(k) is given by the set of the

paths from the root of bddy to linking node 17(). Thus,

substituting the snb-bdd of bdd; with root 17() by constant
(k)

to constant 0 results in a ROBDD, whose ON-set 1s given by
f\(k). We call this ROBDD bdd(k). The cone of node n(k)

is deﬁned to be the set of thoqe nodes x of bddy such that
(k)

1 and connecting every edge which leaves the cone of n;

there is a path from = to n;

7.

For illustration see Fignre

4.2.2 Computation of the equivalence classes
with respect to ~

We implicitely construct a graph G = (V,) where the set

V of vertices is given by the ROBDDs bdd(]k) representing the
equivalence classes K B At the end, there is an undirected

edge {bdd*"), bdd“?)} if and only if bdd\"") A bdd' ") 20,
i.e., iff their ON-sets are not disjoint (qee Figure 8) Ob-
Vions]y7 there is a one-to-one relation between the set of
the connected components (in the graph-theoretical sense)
of (¢ and the set of the equivalence classes {0,1}7/.. For
every class F;, there is a connected component CC; of G
such that the logical-or of the ROBDDs bdd() (for any fixed
k) corresponding to vertices of C'C; reqn]tq in a represen-
tation of F; and vice versa.

Continued example: Fq is represented by the ROBDD
bdd(" v bdd'" which is the same ROBDD as bdd(> v bdd'?).

Fl5 is represented by bdd(;) which is the same ROBDD as
bdd\? v bdd?. o

Figure 8: Continued evample: Computation of the equiv-
alence classes {0,1}7/~. The connected components of

graph (& represent the classes F;.

Note that the algorithm described below does not have
to test each pair of ROBDDs bdd(]ﬁ) bdd(]kQ) whether their
ON-sets are disjoint. Vlrtna”y, it performs depth first
search on graph G. Tn each step we compute a connected
component which contains a node bdd(;) not yet tonched
by calling procedure search(bddg), 1). This procedure re-
cursively constructs ROBDDs eet), AU ecl™) . At each mo-
ment cc® equals the ROBDD representing the logical-or of
all the nodes bdd() of the present connected component
which have a]ready been touched. At the end of procedure
call search(bddg),ﬂ, the equation cc” = ... = ™
holds, and eclD represents the connected component com-
puted. The exact implementation of search is shown in

Figure 9. Note that, if the ROBDD notcovered is non-

()] 1
bdd bdd(z)

(x1)
"’
‘ &
(0] [o]

)
bdd®

OBDDs bdd(jz)specifying the rows with identical row patterns in M(f,)

Figure 7: Continued example: Tustration of how to efficiently compute the equivalence classes {0,1}7/=,. (Note that

the OBDDs shown still have to be reduced.)

procedure search (bdd b, int k)

mark b as touched;
cc®) = ™ v b, /¥ logical-or of two RORDDS */
for 3 =1 to m do
if j # k then
notcovered = b A ccl); [* logical-and */
while notcovered # 0 do
let v be element of ON(notcovered).
let bdd’ be the RORDD
with v € ON(bdd'})).
call search(bddﬁp,j);

notcovered = b A ccl); [* logical-and */

od;
fi;
od;

Figure 9: Pseudo code of the algorithm compnting the

equivalence classes {0,1}7 /.

empty during a step, there is a row » belonging to the
present connected component which is not in the ON-set
of ecl?) vet, so that the ROBDD bddﬁ;,’) which describes the
set of the rows which have identical row patterns as v in

M(f;) has to be joined to ecl?),

Procedure search is called exactly once for every node
of GG. During the execution of the body of procedure
search(b, k) (without the recursive calls) there are one ap-

ply operation (see [2, 6]) performing the logical-or of two
ROBDDs and at most m — 1+ degree(h) apply operations
performing logical-and of two ROBDDs, where degree(b) de-
notes the degree of vertex b with respect to (7. This resnlts
in a number of apply operations which is linear in the size
of G as m — 1 < degree(h) holds. The running time of the
remaining operations is linear in the size of the relevant
ROBDD.

4.3 Postprocessing steps

After the execution of the preprocessing steps, the
ROBDD based branch and bound algorithm encodes the
equivalence classes as already described.

4.3.1 Computation of the ROBDDs of the de-
composition functions

Assume that a single-output function «o; has been found
by the ROBDD based algorithm which can be nsed as de-
composition function of fi. Note that the algorithm does
not explicitly assign values to every v € {0, 1}” but only to
the equivalence classes {0,1}”/~. As the ROBDD of these
equivalence classes are known, we only have to connect by
logical-or those ROBDDs whose corresponding equivalence
classes are mapped to valune 1 by a; in order to obtain the
ROBDD representing ;.

Continued example: Assnme h = 1. The ROBDD based
branch and bound algorithm constructs o : {0,1}" —
{0,1} defined by a1(F1) = 0 and a1 (F2) = 1 as common
decomposition function of f; and fo. Thus the ROBRDD of o,
is ggven by the ROBDD specifying F>, and equals function
rng of Figure 5. <&

4.3.2 Computation of the ROBDDs of the
composition functions

Once that rz boolean valued functions rygk), AU ry(rlz) which
can be nsed to decompose function f are determined, we
have to compute the ROBDD of the corresponding composi-
tion function g(k). This is done as (informally) described in
section 4.1 (second observation). For illustration see Fig-

ure 5 once again. The ROBDD of ¢ can be constructed
(%)
7

tors through the codetree with if-then-else-operations of

the ROBDD-package [2].

using the linking nodes »’"’ and combining these cofac-

5 Benchmarking results

We have synthesized several examples of the 1991
MCNC multi-level logic benchmark set in order to com-
pare factor, factorIT [10, 11], which are communication
based multi-level synthesis tools developed at PennState
University, and misIT[5], sis 1.1 [16] to onr tool which uses
the ¢DF algorithm described above as basis.® We will call
the ROBDD based implementation of our tool mulop/l. The
former implementation working on charts will be called
mulop.

As running time considerations motivate this paper, we
compared the running times of onr ROBDD based imple-
mentation mulop/l to those of our former version mulop.
Table 1 shows gate connts’ and running times for some
of the MCNC multi-level logic benchmark circuits. The
running times are measured on a SPARCstation 10/30
(64 MByte RAM). The experiments show that the ROBDD
based implementation is much faster than the former ver-
sion. For these examples mulop has running times up to
about 50 CPU minntes while the running time of muloplT
is at most a few seconds. In particular, these experiments
prove our synthesis tool to be applicable in terms of run-
ning time. Althongh the running times of mulopll are
much smaller than those of onr former version mulop, in
almost all cases the numbers of gates of the computed cir-
cnits are not larger.

We compared muloplTto factor, factorIl. We ran the ex-
periments with the technology mapping used in [11]. Since
the quality of the layonts synthesized by factoriT approx-
imately equals the quality of the layonts synthesized by
factor (see [11]), Table 2 only reports the results of the
comparison of mulop/T and factorIl. (The results concern-
ing factorIT are those which are published in [11].) Com-
pared to factorl] onr approach generates realizations with
a smaller (or equal) number of gates for almost all cir-
cuits. As layout considerations motivate the approach of
minimizing communication complexity, we compared lay-
out sizes in the following. A comparison to factor/T with
respect to layout size was not possible because factor/Tand

*The (maximal) value of parameter h of CDF is determined
by logarithmic search. More details of how the ¢DF algorithm
is integrated in the tool can be found in [14].

tThe library consists of the 2-input gates from
stdcell2 2.genlih available in octtools.

Number of No. of gates
Circnit inputs outputs | factorll mulopll ratio
9symm 1 9 1 75 52 1.44
cm138a 6 8 21 21 1.00
cm15Ta 12 2 37 40 0.93
cm162a 14 5 80 41 1.95
cm163a 16 5 47 36 1.31
cm82a 5 3 18 14 1.29
cmb 16 4 33 34 0.97
decod 5 16 31 32 0.97
f51m 8 8 107 54 1.98
X2 10 7 65 51 1.27
7z4m1 7 4 25 21 1.19

Table 2: Comparison between onr tool mulopll and fac-
torIT with respect to the number of gates nsed. The tech-
nology file used is taken from the paper of Hwang et al.
Note that it is different from the technology file in the

other comparisons.

the layout tool used in the paper of Hwang et al. was not
at onr disposal. We nsed the standard cell place and route
package wolfe which is integrated in octtools. Table 3 shows
the comparison between mulopll, misITand sis 1.1 with re-
spect to layout size. The technology library used consists
of the set of the 2-input gates.! For almost two thirds of
the benchmark set, our approach dominates (or is as good
as) that of mis/T and sis with respect to layout size. The
signal delays of our realizations for more than two thirds of
the circuits considered are better (or equal) than those of
the realizations synthesized by mis/T and sis. However, on
the other hand the results confirm the observation already
made in [10, 11] that some circuits, e.g., cm151a, are not
suited for being decomposed with respect to disjoint in-
put partitions. The most dramatic improvement has been
obtained for circnit 9symm1 which is a symmetric func-
tion. This confirms the approach of searching equivalence

preserving decomposition functions. ¥

6 Conclusion

We have presented a ROBDD based technique of com-
puting common decomposition functions of multi-ontput
boolean functions. This algorithm has been integrated in
onur multi-level synthesis tool which has been presented in
[14] where more details of how the ¢DF algorithm is inte-
grated can be fonnd. The benchmarking results show that
most of the circnits constructed by our synthesis tool are
very efficient. They also prove it to be applicable in terms
of running time.

{For the technology file itself see stdcell2 2.genlib available
in octtools.

ilet f: {0,1}™ — {0,1}” be a boolean function which is
symmetricin some variables. Then, each equivalence preserving
decomposition function of f is symmetricin these variables, too.

No. of gates Running time
Circnit mulop muloplT ratio mulop muloplT ratio
9symm 1 40 45 0.89 1.40 sec 1.23 sec 1.14
c17 6 7 0.86 0.32 sec 0.15 sec 2.13
cm138a 20 18 1.11 1.01 sec 0.18 sec 5.61
cml1bla 48 41 117 4.16 sec 1.09 sec 3.82
cm152a 34 27 1.26 2.15 sec 0.50 sec 4.30
cm162a 46 44 1.05 350.65 sec 3.32 sec 105.62
cm163a 38 34 1.12 | 2923.31 sec 2.35 sec 1243.96
cm82a, 13 13 1.00 0.38 sec 0.21 sec 1.81
cm85a 42 42 1.00 7.46 sec 3.73 sec 2.00
cmb 24 29 0.83 | 1836.13 sec 2.52 sec 728.62
decod 31 28 1.11 26.15 sec 2.56 sec 10.21
f51m 64 56 1.14 3.14 sec 1.83 sec 1.71
majority 9 9 1.00 0.44 sec 0.08 sec 5.50
parity 15 15 1.00 111.06 sec 1.37 sec 81.07
74m1 20 20 1.00 0.66 sec 0.76 sec 0.87

Table 1: Comparison between the (prototype) ROBDD based implementation of our synthesis tool mulop/T and the former
version mulop working on decomposition charts. The technology file consists of the 2-input gates from stdcell2 2.genlib

available in octtools.

Layout size ratio Signal delay ratio
Circnit mislT sis mulopll | misIT sis mislT sis mulopllT | misiT sis
9symm 1 917928 1194336 201400 4.56 5.93 26.0 27.6 13.6 1.91 2.03
c17 28800 28800 31744 0.91 0.91 4.2 4.2 4.2 1.00 1.00
cm138a 101528 103896 87480 1.16 1.19 5.8 5.8 6.8 0.85 0.85
cm15Ta 102528 95312 177712 0.58 0.54 12.6 12.6 16.4 0.77 0.77
cm152a 90360 85536 106704 0.85 0.80 10.0 10.0 13.2 0.76 0.76
cm162a 149736 131976 192000 0.78 0.69 13.8 12.0 13.2 1.05 0.91
cm163a 153272 144008 164416 0.93 0.88 11.0 13.0 10.4 1.06 1.25
cm82a 83104 74784 61600 1.35 1.21 8.2 7.2 7.0 1.17 1.03
cm85a 171584 165456 180000 0.95 0.92 10.2 10.2 11.0 0.93 0.93
cmb 198616 204792 123496 1.61 1.66 14.8 9.4 6.8 2.18 1.38
decod 133496 140448 119496 1.12 1.18 6.2 6.2 5.0 1.24 1.24
f51m 536016 561184 251392 2.13 2.23 51.0 51.0 18.4 2.77 2.77
majority 42200 42200 39168 1.08 1.00 7.8 7.8 6.6 1.18 1.18
parity 96976 99408 96976 1.00 1.03 6.2 5.0 5.0 1.24 1.00
7z4m1 176160 156288 103896 1.70 1.50 18.0 16.2 9.8 1.74 1.65
Z 2982K 3228K 1937K 1.54 1.67 205.8 198.2 147.4 1.40 1.34

Table 3: Comparison between mulopll, misIT and sis1.1 with respect to layont size, and signal delay.

References

(1]

[10]

[11]

[12]

[13]

R.T.. Ashenhurst.

functions. In Proceedings on an International Sympo-

The decomposition of switching

stum on the Theory of Switching held at Comp. Lab.
of Harvard University, pages 74 116, 1959.

K. Brace, R. Rudell, and R. Bryant. Efficient imple-
mentation of a BDD package. In TEEE/ACM Design
Automation Conference DACI0, pages 40 45, 1990.

R.K. Brayton, C.'T. McMullen G.D). Hachtel, and A.T..
Sangiovanni-Vincentelh. Logic Minimaization Algo-
rithms for VIL.ST Synthesis. The Kluwer International
Series in Fngineering and Computer Science. Klnwer
Academic Publishers, 1984.

R.K. Brayton, G.D. Hachtel, and A. .. Sangiovanni-
Vincentelli. Multilevel logic synthesis. Proceedings of
the TEEFE, 78(2):264 300, February 1990.

R.K. Brayton, R. Rudell, A. T. Sangiovanni-
Vincentelli, and A.R. Wang. MIS: A multiple-level
TEFEFE Trans. on CAD,

logic optimization system.

CAD-6(11), November 1987.
R.E. Bryant.

function manipulation. TFFEFE Trans. on Computers,
(-35(8):677 691, August 1986.

S. Chang and M. Marek-Sadowska. BDD representa-

tion of incompletely specified functions. Tn Notes of

Graph-based algorithms for boolean

the International Workshop on Logic Synthesis held
i Tahoe City, California, May 1993.

H.A. Curtis. A generalized tree circuit.
Comput. Mach., 8:484 496, 1961.

J. Assoc.

G. Hotz. 7Zur Reduktionstheorie der booleschen Alge-
bra. Tn Colloguium tiber Schaltkreis- und Schaltwerk-
Theorie, 1960.

T. Hwang, R.M. Owens, and M.J. Trwin. Exploiting
communicaton complexity for multilevel logic synthe-
sis. IEEE Trans. on CAD, CAD-9(10):1017 1027, Oc-
tober 1990.

T. Hwang, R.M. Owens, and M.J. Trwin. Effi-
cient computing communication complexity for mul-
tilevel logic synthesis. TEFE Trans. on CAD, CAD-
11(5):545 554, May 1992.

R.M. Karp. Functional decomposition and switching
circuit design. Journal of Society of Industrial Applied
Mathematics, 11(2):291 335, June 1963.

Y. Lai, M. Pedram, and S. Vrndhula. BDD based
decomposition of logic functions with application to
FPGA synthesis. ITn TEEE/ACM Design Automation
Conference DAC93, pages 642 647, 1993.

P. Molitor, C. Scholl.

tilevel synthesis for multiontput boolean functions.

Communication based mul-

In Proceedings of the 4th Great Lakes Symposium on
VILSI, Notre Dame, Indiana, March 1994.

[15]

U. Schlichtmann. Boolean Matching and Disjoint De-
composition for FPGA Technology Mapping. Tn Pro-
ceedings of the TFIP Workshop on Logic and Archi-
tecture Synthesis, pages 83 102, 1993.

. Sentovich et al. SIS: a system for sequential circuit
synthesis. Department of EE and CS, UC Berkeley,
May 1992.

