
In Proceedings of the 4th Great Lakes Symposium on VLSI, pp.101{104, Indiana, March 1994 101

Communication Based Multilevel Synthesis

for Multi-output Boolean Functions

�

Paul Molitor Christoph Scholl

Department of Computer Science Department of Computer Science

Humbold{Universit�at zu Berlin Universit�at des Saarlandes

D 10099 Berlin, FRG D 66041 Saarbr�ucken, FRG

Abstract

A multilevel logic synthesis technique for multi-output

boolean functions is presented which is based on minimi-

zing the communication complexity. Unlike the approaches

known from literature [1, 5, 6, 8] which in the �nal ana-

lysis decompose each single-output function f

i

of a multi-

output function f = (f

1

; . . . ; f

m

) independently of the other

single-output functions f

j

(j 6= i), the approach presented

in this paper gives special attention to the fact that there

possibly exist some decomposition functions which can be

used by di�erent outputs during the decomposition of the

single-output functions of f . The benchmarking results (ta-

ken from 1991 MCNC multilevel logic benchmarks) which

close the paper are promising.

1 Introduction

Most of the approaches attacking the multilevel logic

synthesis problem use gate count as optimization crite-

rion. This is based on the belief that gate count is a good

estimator for layout area. However, in many cases, this

criterion may not be the best estimator. Some recent pa-

pers [5, 6, 8] propose an approach di�erent from the one

addressed above. This approach to multilevel logic synthe-

sis which originates from Ashenhurst [1], Curtis [3], Hotz

[4], and Karp [7] is based on minimizing communication

complexity. The methods used to reduce communication

complexity employ functional decomposition. A decom-

position of a boolean function f : f0; 1g

n

! f0; 1g with

respect to the input partition fX;Y g (X = fx

1

; . . . ; x

p

g,

Y = fy

1

; . . . ; y

q

g, X\Y = ;, p+q = n) is a representation

of the form

f(x

1

; . . . ; x

p

; y

1

; . . . ; y

q

) =

g(�

1

(x); . . . ; �

r

(x); �

1

(y); . . . ; �

s

(y))

for all (x

1

; . . . ; x

p

;y

1

; . . . ; y

q

) 2 f0; 1g

n

. �

i

and �

j

are cal-

led decomposition functions of f . g is called composition

function.

With respect to a given input partition fX;Y g, a single-

output function f can be represented as a 2

p

� 2

q

matrix

M(f), the decompositionmatrix of f or the chart of f with

�

This work was supported in part by DFG grant SFB 124

and the Graduiertenkolleg of the Universit�at des Saarlandes

respect to fX;Y g. Each row and column of M(f) is asso-

ciated with a distinct assignment of values to the inputs

in X and Y , respectively, such that f(x;y) = M(f)[x;y]

where M(f)[x;y] represents the element of M(f) which

lies in the row associated with x and the column associa-

ted with y. Then r � dlog p

1

e (s � dlog p

2

e) where p

1

(p

2

)

is the number of distinct row patterns (column patterns)

in M(f). In the following we always assume r = dlog p

1

e

and s = dlog p

2

e. Of course the required number of de-

composition functions depends strongly on the choice of

the input partition fX;Y g.

In many cases the e�ciency of good realizations of boo-

lean functions is based on a clever reuse of subcircuits. Our

approach takes this observation into account by a special

processing of multi-output functions

1

. The decomposition

of a multi-output function f = (f

1

; . . . ; f

m

) : f0; 1g

n

!

f0; 1g

m

has the following form:

f

i

(x

1

; . . . ; x

p

; y

1

; . . . ; y

q

) =

g

i

(�

(i)

1

(x); . . . ; �

(i)

r

i

(x);�

(i)

1

(y); . . . ; �

(i)

s

i

(y))

for all 1 � i � m. In order to reuse subcircuits our al-

gorithm tries to choose as many decomposition functions

�

(i)

j

as possible as identical functions. Unlike other approa-

ches our synthesis method doesn't decompose each single-

output function f

i

independently of the other single-output

functions f

j

(j 6= i) and only tests whether some �

(i)

j

are

identical by accident. On the contrary our approach tries

to compute common decomposition functions for di�erent

f

i

.

The computation of common decomposition functions

for some single-output functions f

i

requires a decompo-

sition of all f

i

with respect to the same input partition

fX;Y g. However we have to take into consideration that

there possibly exist single-output functions f

i

and f

j

such

that there does not exist an input partition good for both

f

i

and f

j

. That's why we have to divide our algorithm into

two steps: In the �rst step we partition ff

1

; . . . ; f

m

g into

disjoint sets Y

1

; . . . ; Y

u

(see section 2). In the second step

1

Even if the original function f is a single-output function,

applying functional decomposition recursively to the decompo-

sition functions � = (�

1

; . . . ; �

r

) and � = (�

1

; . . . ; �

s

) demands

a generalization to multi-output boolean functions.



we decompose all single-output functions f

i

of the same

set Y

k

with respect to the same input partition giving spe-

cial attention to generate these functions in such a way

that many can be used in the decomposition of di�erent

elements of Y

k

(see section 3).

2 Output/input partitioning

In this section we present a heuristic which performs

the �rst step of our algorithm by partitioning F =

ff

1

; . . . ; f

m

g into disjoint sets Y

1

; . . . ; Y

u

. To each set Y

k

,

the algorithm assigns an input partition fX

(k)

; Y

(k)

g which

is 'near-optimal' for each f

i

2Y

k

. The size jX

(k)

j of X

(k)

is given by a number p

2

.

Let IP

p

be a subset of all possible input partitions

fX;Yg with j X j= p computed in a preprocessing step.

Furthermore, let df

i

(A) be the minimum number of decom-

position functions required by a decomposition of f

i

with

respect to the input partition A 2 IP

p

. We de�ne df

min

i

=

minfdf

i

(A); A 2 IP

p

g to be the minimum of these values

df

i

(:). An input partition A 2 IP

p

is said to be near-

optimal for f

i

if df

i

(A)�df

min

i

< parameter � (n�df

min

i

),

where 0<parameter� 1 is given by the designer

3

. Then,

the following heuristic algorithm solves the output/input

partitioning problem as de�ned above.

1. Let u = 0, F = ff

1

; . . . ; f

m

g.

2. For all A 2 IP

p

and for all f

i

2 F,

compute df

i

(A), df

min

i

, and the difference

diff

i

(A)= df

i

(A) � df

min

i

between the number of

decomposition functions required by a

decomposition of f

i

w.r.t. A and the minimum

number of decomposition functions required by

a decomposition of f

i

w.r.t. IP

p

.

3. If there is an f

i

2 F with df

min

i

= n, i.e.,

which cannot be decomposed with respect to

any partition of IP

p

with less than n

decomposition functions, then let

Y

1

= ff

i

2 F ; df

min

i

= ng; F = F n Y

1

; u = 1.

(These single-output functions will be decomposed by

applying the well-known Shannon expansion which is

a nontrivial decomposition

4

for n � 4.)

4. Determine the input partition A

�

such that

P

f

i

2F

diff

i

(A

�

)

L

is minimal.

(If L = 1 (L = +1), then A

�

is the input partition

2

If p is about

n

2

, the partition scheme tends to lead to fast

tree circuits. If p is about 1 or n� 1, it tends to lead to smaller

and slower circuits.

3

If parameter is chosen closer to 1, the probability for an

input partition A to be accepted as 'near-optimal' for a func-

tion f

i

increases, i.e., possibly f

i

is decomposed with respect

to an input partition which doesn't lead to a minimal number

of decomposition functions. On the other hand the size of the

sets Y

k

then tends to be larger and we possibly have an in-

creased potential for reusing subcircuits by choosing common

decomposition functions for elements of Y

k

.

4

A decomposition is said to be nontrivial if its composition

function g has less than n inputs.

for which the sum (maximum) of the deviations is

minimal. L is a parameter of the heuristic.)

5. Let u = u + 1, determine Y

u

which is the set

of those single-output functions f

i

2 F for

which A

�

is near-optimal, i.e.,

diff

i

(A

�

) < parameter � (n � df

min

i

),

and let F = F n Y

u

.

6. If Y

u

= ;, then let

Y

u

=ff

j

2 F ; diff

j

(A

�

) is minimalg, F = F nY

u

.

7. If F 6= ;, then goto 4.

The running time of the algorithm strongly depends

on the choice of subset IP

p

of all possible input partiti-

ons fX;Y g with j X j= p. For the computation of IP

p

we use heuristics like iterative improvement (or simulated

annealing) in the following way: start with any input par-

tition A

0

; form a new input partition A

k+1

by exchanging

a pair of variables in A

k

as long as there is an f

i

2 F

such that df

i

(A

k

) can be decreased by such an exchange.

Then, the set IP

p

of the input partitions which are proces-

sed by the algorithm above consists of the input partitions

A

0

; A

1

; . . . ; A

k

; . . . computed.

3 Common decomposition functions

In this section we describe the second step of our al-

gorithm. Suppose that the �rst step gives us a set Y

i

of

single-output functions which have to be decomposed with

respect to the same input partition A = fX;Y g 2 IP

p

which will be �xed in the following. In order to choose

common decomposition functions in the decomposition of

the elements of Y

i

we have to solve the following subpro-

blem, which we denote by CDF (common decomposition

functions problem):

Given: A set Z = ff

1

; . . . ; f

l

g of single-output boo-

lean functions

5

, fX;Y g with X = fx

1

; . . . ; x

p

g, Y =

fy

1

; . . . ; y

q

g, and a natural number h � r

i

(8i). (r

i

=

dlog p

(i)

1

e), where p

(i)

1

is the number of distinct row pat-

terns in the chart M(f

i

).)

Find: h single-output boolean functions �

1

; . . . ; �

h

,

which can be used as decomposition functions of every

single-output function f

i

for i = 1; . . . ; l such that there

is a decomposition of the form

f

i

(x;y) = g

i

(�

1

(x); . . . ; �

h

(x); �

(i)

h+1

(x); . . . ; �

(i)

r

i

(x);

�

(i)

1

(y); . . . ; �

(i)

s

i

(y))

(8i 2 f1; . . . ; lg).

CDF can be posed for Y in an analogous manner.

Unfortunately, there is no great hope of �nding an e�-

cient algorithm solving CDF .

Lemma 1 CDF is NP-complete.

Proof: Reduction from the 3-partition problem [9].

We start by a theoretical result working towards a solu-

tion to CDF. It gives a condition necessary and su�cient

that h single-output functions �

1

; . . . ; �

h

are common de-

composition functions of f

1

; . . . ; f

l

. It is a generalization

5

Regard Z as a subset of Y

i

.

102



of a lemma shown by Karp [7]. For this, we need the fol-

lowing notations. The rows of M(f

k

) induce a partition of

f0; 1g

p

into equivalence classes K

(k)

1

; . . . ;K

(k)

p

(k)

1

such that

v; v

0

2 f0; 1g

p

belong to the same class K

(k)

j

if and only

if the two corresponding row patterns of M(f

k

) are equal.

Let �

(k)

: f0; 1g

p

! f1; . . . ; p

(k)

1

g be the function where

�

(k)

(v) is the index j of the class K

(k)

j

to which v be-

longs. Furthermore, for all a2f0; 1g

h

, let S

(k)

a

be the set

f�

(k)

(v); �

1;...;h

(v) = ag of those classes which contain a

row mapped to a by �

1;...;h

6

. Note that, for given �

1;...;h

,

S

(k)

a

and S

(k)

a

0

need not to be disjoint for a 6= a

0

, and that

jS

(k)

a

j equals the number of distinct row patterns of M(f

k

)

mapped to a by �

1;...;h

(v). Let dr(A; f

k

; �

1;...;h

) be de�ned

as maxfjS

(k)

a

j; a 2 f0; 1g

h

g.

Lemma 2 �

1

; . . . ; �

h

are decomposition functions of

f

1

; . . . ; f

l

with respect to A, i.e., there is a representation

of f of the form

f

k

(x;y) = g

k

(�

1

(x); . . . ; �

h

(x); �

(k)

h+1

(x); . . . ; �

(k)

r

k

(x);

�

(k)

1

(y; . . . ; �

(k)

s

k

(y))

(8k 2 f1; . . . ; lg) if and only if dr(A; f

k

; f�

1

; . . . ; �

h

g) �

2

r

k

�h

(8k).

Proof: A decomposition of the above form exists if

and only if (�

1;...;h

; �

(k)

h+1;...;r

k

) assigns di�erent values to

rows of chart M(f

k

) with di�erent row patterns (8k). As

�

(k)

h+1;...;r

k

can produce at most 2

r

k

�h

di�erent values, the

statement of the lemma follows.

Then CDF can be solved by computing �

1;...;h

by a

branch and bound algorithm. The sets S

(k)

a

are construc-

ted step by step. In the initialization phase, �

1;...;h

(x) is

set to undef for all x 2 f0; 1g

p

, and S

(k)

a

is set to the em-

pty set for all a and k. Each time we enter the main loop

there is an x 2 f0; 1g

p

and a vector value

f

2 f0; 1g

h

such

that �

1;...;h

(v) is de�ned for all v with int(v) < int(x),

7

and there is no extension of the present function table

with int(�

1;...;h

(x)) < int(value

f

) which does not violate

the condition of lemma 2. In this step, we test whether

the condition of lemma 2 is violated if �

1;...;h

(x) is set

to value

f

. If the condition is violated, we have to back-

track if int(value

f

) = 2

h

� 1, i.e., value

f

= (1; . . . ; 1). If

int(value

f

) < 2

h

�1, enter the loop once again with value

f

incremented by 1. The sets S

(k)

a

are updated in each step.

Integration of CDF in the synthesis tool We

apply the branch and bound algorithm solving CDF in an

heuristic manner in order to solve the multilevel synthesis

problem for multi-output boolean functions.

Let f = (f

1

; . . . ; f

m

) be a multi-output function where

each of the single-output functions f

k

has to be decompo-

sed with respect to the same input partition A2IP

p

.

6

We write f

i;...;j

for the function (f

i

; . . . ; f

j

).

7

int(y) denotes the natural number represented by the boo-

lean vector y

Number of No. of gates

Circuit inputs outputs factorII mulop ratio

9symm1 9 1 75 38 1.97

cm138a 6 8 21 21 1.00

cm151a 12 2 37 43 0.86

cm162a 14 5 80 44 1.82

cm163a 16 5 47 37 1.27

cm82a 5 3 18 16 1.13

cmb 16 4 33 29 1.14

decod 5 16 31 32 0.97

f51m 8 8 107 63 1.70

x2 10 7 65 47 1.38

z4m1 7 4 25 25 1.00

Table 1: Comparison between our tool mulop and factorII

with respect to the number of gates used.

First, we apply CDF to compute (by binary search)

a maximum number h of common decomposition functi-

ons of f

1

; . . . ; f

m

. Then, CDF is applied to subsets of

ff

1

; . . . ; f

m

g beginning with subsets of size m � 1, m� 2

down to size 2. During this iteration, decomposition func-

tions already found for f

k

are used in the decomposition of

f

k

in any case in order to reduce the running time of the

multilevel synthesis tool. Note that the branch and bound

algorithm can be generalized in a canonical manner for the

case that some of the decomposition functions �

(k)

i

(i > h)

are already predetermined.

Obviously, we have not to consider every subset of

ff

1

; . . . ; f

m

g. First of all, if r

k

decomposition functions are

already found for function f

k

, we can omit the remaining

subsets containing f

k

. Furthermore, it often happens that

there is no common decomposition function for two single-

output functions f

i

and f

j

. Of course, in this case, we have

not to consider subsets containing f

i

and f

j

. Therefore,

in a �rst step, for all f

i

; f

j

, we test (by dynamic program-

ming) whether f

i

and f

j

have a common decomposition

function, at all.

4 Benchmarking results

Several examples of the 1991 MCNC multilevel logic

benchmark set were synthesized to compare factor, factorII

[5, 6] and misII [2] to our tool, which we will call mulop in

the following.

First, we compared our tool mulop to factor and facto-

rII. We ran the experiments with the technology mapping

used in [6]. Since the quality of the layouts synthesized

by factorII approximately equals the quality of the layouts

synthesized by factor (see [6]), table 1 only reports the re-

sults of the comparison of mulop and factorII. For every

circuit, the entries of the table correspond to the minimal

number of gates obtained by the synthesis tools. Compa-

red to factorII, our approach generates realizations with a

smaller (or equal) number of gates for almost all circuits

considered.

Table 2 shows the comparison between mulop and mi-

sII with respect to the number of gates, the cell area, and

103



No. of gates Sum of the cell areas Layout size Signal delay

Circuit misII mulop ratio misII mulop ratio misII mulop ratio misII mulop ratio

9symm1 175 40 4.38 426360 110048 3.87 917928 183840 4.99 26.0 16.6 1.56

C17 7 6 1.17 16568 14288 1.16 28800 25704 1.12 4.2 4.2 1.00

cm138a 22 20 1.10 59280 58368 1.02 101528 98784 1.03 5.8 4.6 1.26

cm151a 26 48 0.54 57456 115520 0.50 102528 194712 0.53 12.6 17.0 0.74

cm152a 24 34 0.70 52896 81776 0.65 90360 144008 0.63 10.0 14.6 0.68

cm162a 33 46 0.72 93480 121904 0.76 149736 210912 0.71 13.8 11.0 1.25

cm163a 32 38 0.84 82080 97584 0.84 153272 165000 0.93 11.0 11.8 0.93

cm82a 13 13 1.00 41304 38760 1.07 83104 63360 1.32 8.2 7.0 1.17

cm85a 40 42 0.95 98496 106704 0.92 171584 189472 0.91 10.2 13.4 0.76

cmb 48 24 2.00 112480 59584 1.89 198616 103896 1.91 14.8 9.0 1.64

decod 32 31 1.03 72352 72504 0.99 133496 129000 1.03 6.2 6.0 1.03

f51m 123 64 1.92 289560 164160 1.76 536016 280160 1.91 51.0 23.0 2.21

majority 9 9 1.00 23560 25384 0.93 42200 42224 1.00 7.8 7.8 1.00

parity 15 15 1.00 61560 61560 1.00 96976 96976 1.00 6.2 5.0 1.24

x2 45 38 1.18 103208 89072 1.16 180776 143864 1.26 13.0 12.4 1.04

z4m1 44 20 2.20 111264 57760 1.93 176160 101088 1.74 18.0 9.8 1.74

Table 2: Comparison between mulop and misII with respect to gate count, cell area, layout size, and signal delay.

the layout size

8

. The technology library used during this

comparison consists of the set of the 2-input gates

9

. For

about half of the benchmark set, our approach domina-

tes that of misII with respect to layout size which is the

crucial optimization criterion. The signal delays of our rea-

lizations for most of the circuits considered are better (or

almost equal) than those of the realizations synthesized by

misII (see table 2). However, on the other hand the results

con�rm the observation already made in [5, 6] that some

circuits, e.g. cm151a, and cm152a, are not suited for being

decomposed with respect to disjoint input partitions.

5 Conclusion

We have presented a multilevel logic synthesis tool ba-

sed on communication complexity which eliminates the

drawbacks of similar approaches known from literature

with respect to multi-output functions. Our method con-

sists in two steps: output/input partitioning and construc-

tions of decomposition functions while paying special at-

tention that many of them can be used in the realization

of di�erent outputs.

The benchmarking results comparing our tool to misII,

factor and factorII are promising both in respect to gate

count and signal delay.

The running time of the tool itself (measured on a

SPARC2) was much better than that of factor without

however coming up to the excellent running time of facto-

rII. Here, we are investing further work, especially, using

BDDs in the implementation of our synthesis tool.

8

The layouts were generated by wolfe which is integrated in

octtools.

9

The 2-input gates are taken from stdcell2 2:genlib available

in octtools.

References

[1] R.L. Ashenhurst. The decomposition of switching

functions. In Proceedings on an International Sympo-

sium on the Theory of Switching held at Comp. Lab.

of Harvard University, pages 74{116, 1959.

[2] R.K. Brayton, R. Rudell, A. L. Sangiovanni-

Vincentelli, and A.R. Wang. MIS: A multiple-level

logic optimization system. IEEE Trans. on CAD,

CAD-6(11), November 1987.

[3] H.A. Curtis. A generalized tree circuit. J. Assoc.

Comput. Mach., 8:484{496, 1961.

[4] G. Hotz. Zur Reduktionstheorie der booleschen Alge-

bra. In Colloquium �uber Schaltkreis- und Schaltwerk-

Theorie, 1960.

[5] T. Hwang, R.M. Owens, and M.J. Irwin. Exploiting

communicaton complexity for multilevel logic synthe-

sis. IEEE Trans. on CAD, CAD-9(10):1017{1027, Oc-

tober 1990.

[6] T. Hwang, R.M. Owens, and M.J. Irwin. E�cient

computing communication complexity for multile-

vel logic synthesis. IEEE Trans. on CAD, CAD-

11(5):545{554, May 1992.

[7] R.M. Karp. Functional decomposition and switching

circuit design. Journal of Society of Industrial Applied

Mathematics, 11(2):291{335, June 1963.

[8] Y. Lai, M. Pedram, and S. Vrudhula. BDD based

decomposition of logic functions with application to

FPGA synthesis. In Proceedings of DAC'93, pages

642{647, 1993.

[9] Chr. Scholl and P. Molitor. Mehrstu�ge Logiksyn-

these durch Ausnutzung von Symmetrien und nicht-

trivialer Zerlegungen. Technical report, FB Informa-

tik, Universi�at des Saarlandes, FRG, 1993.

104


