Communication based multilevel synthesis
for multi-output boolean functions

Paul Molitor Christoph Scholl

Informatik—Bericht Nr. 29
Humbold—Universitat zu Berlin

Abstract

A multilevel logic synthesis technique for multi-output boolean functions is presented which
is based on minimizing the communication complexity. Unlike the approaches known from
literature [1, 8,9, 10, 11] which in the final analysis decompose each single-output function f;
of a multi-output function f = {f1,..., fin} independently of the other single-output functions
fi (5 # 1), the approach presented in this paper gives special attention to the fact that there
possibly exist some decomposition functions which can be used by different outputs during
the decomposition of the single-output functions of f. The benchmarking results (taken from

1991 MCNC multilevel logic benchmarks) which close the paper are promising.

Key Words

Combinational Logic Synthesis, Multi-output Boolean Functions

An extended abstract of the paper will appear in the Proceedings of the jth Great Lakes
Symposium on VLSI, Notre Dame, Indiana, March 4-5, 1994.
Research has been supported in part DFG grant SFB 124 Entwurfsmethoden und Parallelitdt

and the Graduiertenkolleg of the University of Saarbriicken.

1 Introduction

The long term goal for logic synthesis is the automatic transformation from a behavioral
description of a boolean function to near-optimal netlists, whether the goal is minimum delay,
minimum area, or some combination. The logic synthesis area is usually divided into two-
level synthesis and multilevel synthesis. Solutions to the two-level logic minimization problem
have matured and are used to synthesize PLAs for control logic (see e.g. [2]). Synthesizing
multilevel logic (which is useful for both control and data-flow logic) at a level competitive
with manual synthesis is much more difficult than in the PLA case because of the increased

potential for reusing sublogic.

Most of the approaches attacking the multilevel logic synthesis problem use gate count as
optimization criterion. A survey can be found in [3]. This is based on the belief that gate
count is a good estimator for layout area. However, in many cases, this criterion may not
be the best estimator. Some recent papers [8, 9, 11] propose an approach different from
the one addressed above. This approach to multilevel logic synthesis which originates from
Ashenhurst [1], Curtis [6], Hotz [7], and Karp [10] is based on minimizing communication
complexity. The methods used to reduce communication complexity employ functional de-
composition, i.e., given a boolean function f : {0,1}" — {0,1} they are looking for (multi-
output) functions a, # und g, such that f(xy,...,2,) = gla(xr, ... 2,), B(Tps1s. .oy 20))
holds for all (xq,...,2,) € {0,1}". Applying functional decomposition recursively to the
decomposition functions o and 3 demands a generalization to multi-output boolean functions.
Of course the approaches of the papers above can also be applied to multi-output boolean
functions f = (f1,..., fm) : {0,1}" — {0,1}™ either by considering multi-output boolean
functions as single-output multi-value functions [’ : {0,1}" — {0,...,2™ — 1} defined by
fzr, . z,) = S0, flzy, ... 2,)271 or by decomposing each single-output boolean func-
tion f; independently of the other single-output functions f; (j # ¢) and only then testing
whether they use some identical decomposition functions by accident. The first method has
the drawback that it decomposes each single-output function f; with respect to the same in-
put partition which can result in poor realizations. It does not take into consideration that

there possibly exist single-output functions f; and f; such that there does not exist an input

partition good for both f; and f;. Furthermore, even in case that there is an input partition
good for every single-output function of f, it is unlikely that there is a decomposition where
function ¢ has much less inputs than f (if m is large enough), i.e., g is not much easier than f
to synthesize. The drawback of the second method is clear. In the final analysis, it does not

use the potential of reusing subcircuits for different outputs of f.

In this paper we present a multilevel synthesis method for multi-output boolean functions
based on communication complexity which avoids both drawbacks. The method can be di-
vided into two steps. In the first step, output partitioning is performed, i.e., {f1,..., fin} is
partitioned into disjoint sets Y7,...,Y,. Single-output functions f; and f; of the same set Y},
will be decomposed with respect to the same input partition. The partitioning is executed
such that for every Y} there is an input partition which is 'near-optimal’ for every f; € Y). The
crucial point is the choice of u. If u is about n, each set Y} only consists of 1 or 2 single-output
functions so that there are no great possibilities of finding common decomposition functions. If
u is too small, many of the single-output functions have to be decomposed with respect to the
same input partition. We meet with this problem by introducing a variable parameter which
is set by the designer, and which defines the notion 'near-optimal” above and thus determines
value u. In the second step, a branch and bound algorithm constructs the decomposition
functions of the single-output functions of each class Y3 giving special attention to generate

these functions in such a way that many can be used in the decomposition of different elements

of Y.

Experimental results close the paper. They are promising. In particular, we present an 8-
bit adder constructed by our algorithm which has the overall structure of the well-known
conditional-sum adder [13], but which uses different encodings in different levels resulting in
less decomposition functions, and thus, in a smaller number of gates although the optimization

goal used is not gate count but communication complexity.

2 Basic definitions

A multi-output boolean function f with n inputs is represented as a set { f1, ..., [, } of boolean-
valued output functions. We denote the set of functions with n inputs and m outputs by

Bum. Let B, be an abbreviation for B,i. f; ; (i < j) denotes the multi-output function

{fisor s fi}
As already mentioned, the first step of the algorithm partitions {fi,..., f,,} into disjoint sets
Yy, ..., Y,. Single-output functions of the same set Y3 will be decomposed with respect to the

same input partition. Thus, we need the following definition.

Definition 1 A decomposition of a multi-output boolean function f € B, ., with respect to the
input partition { X1, Xo} (Xa={x1,..., 2}, Xo={a,41,. ., 2p1q}, prg=n) is a representation
of of the form

filwa, oo x,) = g(i)(agi)(:pl, R I ,ozgﬂi)(:zjl, cey X)),

5{i)($p+17 ey Tpg)s - '76£j)(xp+1’ s k)

(¥i € {1,...,m}), where o} € B, (Vi,k), 3 € B, (Vi,j), and ¢ € B,y) (¥, k) and
ﬂ](i) (Vi,5) are called decomposition functions of f. ¢ (Vi) is called composition function.

With respect to a given input partition { X7, X3}, a single-output function f; can be represented
as a 2P x 29 matrix M(f;), the decomposition matriz of f; or the chart of f; with respect
to {X1, X2}, Each row and column of M(f;) is associated with a distinct assignment of
values to the inputs in X; and Xy, respectively, such that f;(Xy, X2) = M(f;)[X1, X2] where
M(f;)[X1, X3] represents the element of M(f;) which lies in the row associated with X; and
the column associated with X,. Then the minimum number r; of interconnections between

oD and ¢ is [log pgi)w where pgi) is the number of distinct row patterns in M(f;). Likewise,

(1)

the minimum number s; of interconnections between) and ¢\ is [log py’] where p(;) is the

number of distinct column patterns.
Then, the output partitioning problem (OP) is defined as follows.

Given: Let f={fi,..., fm} € Bnm, p be anatural number with 1 < p < n—1, and parameter
a real number with 0 < parameter < 1.

Find: a partition of {f1,...,f} in disjoint sets Y7,...,Y, such that, for all k€ {1,... u}, there
is an input partition {Xl(k),Xz(k)} where the size of Xl(k) equals p, and which is 'near-optimal’
for every f; € Y, i.e., for which there exists a decomposition of every f; € Y, where r; + s; is

near-minimal’.

The values p and parameter are determined by the designer. p defines the size |X1(k) | of Xl(k)

(VE). If p is about %, the partition scheme tends to lead to fast tree circuits. If p is about 1
or n — 1, it tends to lead to smaller and slower circuits. The value of parameter determines

the notion of 'near-optimal” and, thus, influences the value of u (see section 3).

After output partitioning, we have to compute decomposition functions of f which are used by
different single-output functions f; of a class Y;. Thus, we have to pose the following problem

which we denote by CDF (common decomposition functions problem).

Given: Let f={fi,..., fn} € Bum, {X1, Xo} with X;={21,...,2,} and Xo={azp1,...,2,}

an input partition, and A be a natural number with & <r; (= [log pf)}) (V).

Find: h single-output boolean functions «y, ..., o, € B,, which can be used as decomposition

functions of every single-output function f; for 2 = 1,...,m such that there is a decomposition

of f of the form

flay, o) = g Noq(er, ... x,), .. an(e, ..., xp),
ozg_l(xl,...,:L'p),...,ozﬁ?(:z;l,...,:sz),:sz+1,...,:1;n)
(Vie {l,....,m})
C'DF can be posed for X3 in an analogous manner.

Unfortunately, there is no great hope of finding an efficient algorithm solving C'DF'.
Lemma 1 CDF is NP-complete.

Proof: Reduction from the 3-partition problem [12].

3 A heuristic for OP

In this section, we present a heuristic which partitions F' = {fi1,..., f»} in disjoint sets
Yi,....Y,. To each set Y, the algorithm assigns an input partition {Xl(k),Xz(k)} which is

near-optimal’ for each f; €Y.

Let 1P, be a subset of all possible input partitions {Xy, Xo} with | X; |= p computed in
a preprocessing step. Furthermore, let df;(A) be the minimum number of decomposition

functions required by a decomposition of f; with respect to the input partition A € I'P,. We

4

define df™" = min{df;(A); A € IP,} to be the minimum of these values df;(.). An input
partition A € IP, is said to be near-optimal for f; if df;(A) — df™"™ < parameter - (n — df ™),
where 0 < parameter <1 is given by the designer. Then, the following heuristic algorithm

solves the output/input partitioning problem as defined above.

l.Let u=0, F={fi,....fu}-

2. For all A € IP, and for all f; € I', compute dfi(A), df™", and the differ-
ence diffi(A) = dfi(A) — df™" between the number of decomposition functions
required by a decomposition of f; w.r.t. A and the minimum number of decom-

position functions required by a decomposition of f; w.r.t. [F,.

3. If there is an f; € I/ with dflmm =n, i.e., which cannot be decomposed with
respect to any partition of [P, with less than n decomposition functions,

then let
Vi={fiel; df""=n}, F=F\Y; u=1.
(These single-output functions will be decomposed by applying the well-known Shannon

expansion which is a nontrivial decomposition* for n > 4.)

4. Determine the input partition A* such that Y ;cpdiff;(A*)" is minimal. (If
L =1 (L =+40c0), then A* is the input partition for which the sum (maximum) of the

deviations is minimal. L is a parameter of the heuristic.)

5. Let u=wu+1, determine Y, which is the set of those single-output funct-
ions f; € F' for which A* is near-optimal, i.e., diff;(A*) < parameter - (n —
dfn), and let I'=F\Y,.

6. If Y, =0, then let Y, ={f; € I; diff;j(A*) is minimal}, F' = F'\Y,.
7. If I'# (), then goto 4.

The running time of the algorithm heavily depends on the choice of subset [P, of all possible
input partitions {X1, Xo} with | Xy |= p. For the computation of I P, we use heuristics like

*A decomposition is said to be nontrivial if its composition function ¢ has less than n inputs.

iterative improvement (or simulated annealing) in the following way: start with any input
partition Ap; form a new input partition Axyq by exchanging a pair of variables in A as long
as there is an f; € F such that df;(Ax) can be decreased by such an exchange. Then, the set
I P, of the input partitions which are processed by the algorithm above consists of the input
partitions Ag, Aq,..., Ak, ... computed.

Note that the decomposition algorithm is recursively applied to the decomposition functions
and the composition functions. This makes step 3 of the algorithm reasonable as subtunctions
obtained by Shannon expansion often are nontrivially decomposable even though the function

itself is not nontrivially decomposable.

4 An algorithm for CDF

We now concentrate on the problem of finding common decomposition functions. In the follow-
ing,let f ={fi,..., fn} € Bnm be amulti-output function. Each of the single-output functions
fr has to be decomposed with respect to the same given input partition A = {Xy, Xy} € [P,
which will be fixed in the following.

We start by a theoretical result working towards a solution to CDF. It gives a condition neces-
sary and sufficient that £ single-output functions «q, ..., «; € B, are common decomposition
functions of fi,..., fin. It is a generalization of a lemma shown by Karp [10]. For this, we

need the following notations. The rows of M(f;) induce a partition of {0, 1}? into equivalence

classes Kl(k), e ,K((kk)) such that v,v" € {0,1}? belong to the same class [(](k) if and only if the
P
two corresponding row patterns of M(f;) are equal. Let 6% : {0,1}? — {1,... ,pgk)} be the

function where 8% (v) is the index j of the class [(](k) to which v belongs. Furthermore, for

all a€{0,11" let S be the set {0 (v); oy, 4(v) = a} of those classes which contain a row
mapped to a by a;,._ . Note that, for given ay ., Sék) and Sff) need not to be disjoint for

a # a', and that | SP) | equals the number of distinct row patterns of M(fi) mapped to a by
ay . n(v). Let dr(A, fi,01,..1) be defined as max{| S(gk) l; a € {0, 1}h}.

Lemma 2 «y,...,qp € B, are decomposition functions of f1,..., f, with respect to A, i.e.,

there is a representation of f of the form

felay, ..o x,) = g(k)(ozl(xl, ey)y (@, X)),

k
ozg_gl(xl, R .,ozgfz)(xl, ey)y Lpty ey L)

(Vke{l,....m}) if and only if dr(A, fr,{ca1,...,an}) <270 (k).

(%)

Proof: A decomposition of the above form exists if and only if (a17~~~7h7ah+1,...,rk) assigns
different values to rows of chart M(fy) with different row patterns (Vk). As ozﬁlw“ can

produce at most 27+~ different values, the statement of the lemma follows. q.e.d.

Then CDF can be solved by computing a4, 5, by a branch and bound algorithm. The sets
S are constructed step by step. In the initialization phase, ay, () is set to undef for
all z € {0,1}7, and S is set to the empty set for all @ and k. Each time we enter the
main loop there is an = € {0,1}? and a vector value; € {0,1}" such that a;__,(v) is defined
for all v with int(v) < int(z)," and there is no extension of the present function table with
int(aq, p(x)) < int(values) which does not violate the condition of lemma 2. In this step,
we test whether the condition of lemma 2 is violated if ay _p(x) is set to values. If the
condition is violated, we have to backtrack if int(value;) = 2" — 1, i.e., value; = (1,...,1). If
int(values) < 2" — 1, enter the loop once again with value; incremented by 1. The sets S

are updated in each step.

4.1 Integration of CDF in the multilevel synthesis tool

We apply the branch and bound algorithm solving CDF in an heuristic manner in order to

solve the multilevel synthesis problem for multi-output boolean functions.

Let f={f1,..., fm} be a multi-output function where each of the single-output functions fy
has to be decomposed with respect to the same input partition A€ IP,.

First, we apply CDF to compute (by binary search) a maximum number A of common decom-

position functions of fi,..., f,u. Then, CDF is applied to subsets of {fi,..., fn} beginning

with subsets of size m—1, m—2 down to size 2. During this iteration, decomposition functions

already found for f; are used in the decomposition of f; in any case in order to reduce the

running time of the multilevel synthesis tool. Note that the branch and bound algorithm can

be generalized in a canonical manner for the case that some of the decomposition functions
(k)

a; ' (i > h) are already predetermined.

Tint(y) denotes the natural number represented by the boolean vector y

Obviously, we have not to consider every subset of { fi,..., f,.}. First of all, if r;, decomposition
functions are already found for function fi, we can omit the remaining subsets containing fy.
Furthermore, it often happens that there is no common decomposition function for two single-
output functions f; and f;. Of course, in this case, we have not to consider subsets containing
fi and f;. Therefore, in a first step, for all f;, f;, we test whether f; and f; have a common

decomposition function, at all.

Another aspect of our synthesis algorithm will only be sketched: Functions which possess
special properties like independence of some variables or symmetry in some variables often
occur in practical applications and often have ’simple’ realizations. As the decomposition

(k)

functions o3, . . ., ozgfz) of such a single-output function f; are allowed to assign different values
to rows with identical row pattern, they do not need to have these special properties too. In
order to compute ’simple’ decomposition functions, we are first looking for decomposition
functions which assign an identical value to all those v € {0, 1} for which the corresponding
row patterns of M(fy) are identical. Thus, we first make use of a modified branch and
bound algorithm to compute common decomposition functions, which have this property.
Subsequent to this step, the original branch and bound algorithm is applied to compute the
lacking decomposition functions. The modified branch and bound algorithm has still another
advantage concerning the running time of the synthesis tool. Common decomposition functions
ay,...,ap of fi,..., [, have to assign an identical value to v and v € {0,1}? whenever there
is a k€ {l,...,m} such that the rows of M(f)) corresponding to v and v’ have identical row
patterns. Note that maximal subsets Fy,..., F; € {0,1}? can easily be computed such that
a1,...,qp have to assign an identical value to each v € E;. Thus, the modified branch and
bound algorithm assigns values to the subsets Fy,...., E;. Because [mostly is much smaller

than 27, this approach considerably reduces the running time compared to the original branch

and bound algorithm described in the subsection above.

5 An efficient adder generated by the synthesis tool above

We have applied the algorithm above to several multi-output boolean functions. An overview
of the benchmarking results can be found in section 6. The example we comment in detail

for illustration is the 8-bit adder generated by our synthesis tool when considering balanced

x

7 Y7 XI6 Vg X|5 Y5 X4 Yy X3 Yq Xy Yy X1 Y Xo Yo

] |] |]
EXOR|| AND |[EXOR|| AND |EXOR|| OR || AND |[EXOR AND |EXOR|| AND [[EXOR|/| AND | EXOR|| AND |[EXOR
1

F_

L L
I
EXOR AND | |[anD | ExoR EXOR EXOR]

Olj @R AND || OR OR

L J _
AND AND
EXOR [EXOR \ExIOR\ \ExIOR\ OR XOR| [EXOR

AND
MUX XOR| EXOR
fo

f7 f5 f4 f3 fz fl fo

Figure 1: Realization of an 8-bit adder by using balanced input partitions. The dark faces
illustrate the decomposition functions of the first recursion level.

input partitions. By having a closer look at figure 1, one recognizes that its overall structure
is that of the well-known conditional-sum adder (CSA) [13]. Our adder consists of 49 2-input
gates (if a multiplexer is realized by 3 2-input gates) whereas CSA requires 90 2-input gates.
The depth of both adders is 7.

In the first recursion level, the algorithm partitioned the inputs into the sets X; = {a;,y;; 0<
i <3} and Xy = {aj,y;; 4 <7 < T7}. There is one decomposition function defined on Xj,
namely the carry function of the binary addition of xsxsxi2¢ and y3y2y1y0, which is used as

decomposition function of fy, f5, fs and f.

The main difference between our adder and CSA is that, for every subfunction f;, the algorithm
tries to realize f; with the minimum number of decomposition functions. For illustration,
consider the decomposition of f; on the first recursion level. f; is realized by using only one
decomposition function defined on X, whereas CSA uses two decomposition functions, namely
that computing the less significant bit of the binary addition of z;xgrsx4 and yrysysys and
that computing the less significant bit of the binary addition of zrxgrsx4, yrysysys, and 1.
Both CSA and the adder generated by our tool use two decomposition functions defined on X,
for the decomposition of f5, f¢ and f; which encode four different informations. CSA always
uses the same encoding scheme, namely the 4 informations are encoded by the corresponding

bits of the sum and the sum plus 1. Our adder changes the encoding scheme. Function fs

uses another code than fg and f;. The reason is that f5 can use the identical decomposition

function as fj.

6 Benchmarking results

Several examples of the 1991 MCNC multilevel logic benchmark set were synthesized to com-

pare factor [8, 9] and misll [4] to our tool, which we will call mulop in the following.

First, we compared our tool mulop to factor. We ran the experiments with the technology
mapping used in [8]. The technology file can be found in [8]. A comparison to factorll was
not possible because the corresponding technology file has not been specified in [9]. However,
a comparison of factor and factorll is done in [9] showing that the quality of the layouts
synthesized by factorll approximately equals the quality of the layouts synthesized by factor.
However, the running time of factorllis much better than that of factor. Table 1 summarizes
the results of the comparison of mulop and factor. For every circuit, the entries of the table
correspond to the minimal number of gates obtained by the synthesis tools. Compared to
factor, our approach generates realizations with a smaller (or equal) number of gates for
every circuit but em138a and parity. The improvement the most dramatic has been reached
for circuit 9symml which is a symmetric function. It confirms the approach of searching
simple decomposition functions as explained in section 4.1. The circuit parity is a symmetric
function, too. The reason why the number of gates of the realization synthesized by our
approach is greater than the number of gates of the realization synthesized by factor is due
to the technology mapping used, because mulop (without technology mapping) realizes parity

by a balanced exor-tree which is optimal at the design level considered.

As layout considerations motivate the approach of minimizing communication complexity, we
compared layout sizes in the following. A comparison to factor with respect to cell area and
layout size was not possible because Hwang et al. used in their paper a layout tool named
artist which was not at our disposal. We used the standard cell place and route package wolfe
which is integrated in octtools. Table 2 shows the comparison between mulop and mesll with

respect to the number of gates, the cell area, and the layout size. The technology library used

10

Number of No. of gates
Circuit inputs outputs | factor mulop ratio
9symm 1 9 1 82 38 2.15
C17 5 2 11 6 1.83
b1l 3 4 8 8 1.00
cm138a 6 8 19 21 0.90
cmlbla 12 2 55 43 1.28
cm1H2a 11 1 30 29 1.03
cm162a 14 5 89 44 2.02
cm163a 16 5 49 37 1.32
cm82a 5 3 20 16 1.25
cm8ha 11 3 56 44 1.27
cmb 16 4 31 29 1.07
majority) 1 12 12 1.00
parity 16 1 30 40 0.75
z4dm1 7 4 26 25 1.04

Table 1: Comparison between our tool mulop and factor with respect to the number of gates
used. The technology file used is taken from the paper of Hwang et al.

consists of the set of the 2-input gates.*

For about half of the benchmark set, our approach dominates that of misll with respect to
layout size which is the crucial optimization criterion. The signal delays of our realizations
for most of the circuits considered are better (or almost equal) than those of the realizations
synthesized by misll (see table 2) although the layout sizes of half of the benchmark set are
smaller (or equal) than those of misl/l. However, on the other hand the results confirm the
observation already made in [8, 9] that some circuits, e.g., bl, em15la, and em152a, are not

suited for being decomposed with respect to disjoint input partitions.

7 Conclusion

We have presented a multilevel logic synthesis tool based on communication complexity which
eliminates the drawbacks of similar approaches known from literature with respect to multi-
output functions. Our method consists in two steps: output/input partitioning and construc-

tions of decomposition functions while paying special attention that many of them can be used

tFor the technology file itself see stdcell2_2.genlib available in octtools.

11

No. of gates Sum of the cell areas Layout size Signal delay
Circuit misll mulop ratio misll mulop ratio misll mulop ratio | misll mulop ratio
9symm1 175 40 4.38 | 426360 110048 3.87 | 917928 183840 4.99 | 26.0 16.6 1.56
C17 7 6 1.17 | 16568 14288 1.16 | 28800 25704 1.12 4.2 4.2 1.00
bl 4 9 044 | 12160 20520 0.59 | 24000 33600 0.71 3.0 5.6 0.53
cm138a 22 20 1.10 | 59280 58368 1.02 | 101528 98784 1.03 5.8 4.6 1.26
cml1bla 26 48 0.54 | 57456 115520 0.50 | 102528 194712 0.53 | 12.6 17.0 0.74
cm1b2a 24 34 0.70 | 52896 81776 0.65 | 90360 144008 0.63 | 10.0 14.6 0.68
cm162a 33 46 0.72 | 93480 121904 0.76 | 149736 210912 0.71 13.8 11.0 1.25
cm163a 32 38 0.84 | 82080 97584 0.84 | 153272 165000 0.93 | 11.0 11.8 0.93
cm82a 13 13 1.00 | 41304 38760 1.07 | 83104 63360 1.32 8.2 7.0 1.17
cm8ha 40 42 0.95 | 98496 106704 0.92 | 171584 189472 0.91 10.2 134 0.76
cmb 48 24 2.00 | 112480 59584 1.89 | 198616 103896 1.91 14.8 9.0 1.64
decod 32 31 1.03 | 72352 72504 0.99 | 133496 129000 1.03 6.2 6.0 1.03
f51m 123 64 1.92 | 289560 164160 1.76 | 536016 280160 1.91 | 51.0 23.0 2.21
majority 9 9 1.00 | 23560 25384 0.93 | 42200 42224 1.00 7.8 7.8 1.00
parity 15 15 1.00 | 61560 61560 1.00 | 96976 96976 1.00 6.2 5.0 1.24
X2 45 38 1.18 | 103208 89072 1.16 | 180776 143864 1.26 | 13.0 124 1.04
z4dm1 44 20 2.20 | 111264 57760 1.93 | 176160 101088 1.74 | 18.0 9.8 1.74

Table 2: Comparison between mulop and misll with respect to gate count, cell area, layout
size, and signal delay.

in the realization of different outputs.

The benchmarking results are promising. However, they also confirm the observation already
made in [8, 9] that some boolean functions seem to be not suited for being decomposed with
respect to disjoint input partitions. This is the reason why, for certain benchmarks, masi/
produces smaller circuits than our approach. Nevertheless, for nearly almost benchmarks our
tool leads to better realizations than factor does. For every benchmark we have considered, the
running time of the tool itself (measured on a SPARC2) was much better than that of factor
without however coming up to the excellent running time of factorll. Here, we are investing

further work, especially, using BDDs in the implementation of our synthesis tool.

Our system will be extended so that it will make use of ’don’t cares’. As shown in [5, 11, 12],
this problem is equivalent to the problem of partitioning graphs into a minimum number
of cliques. Thus, we can apply the matured heuristics for the clique cover problem during

multilevel synthesis of partially defined boolean functions.

12

References

1]

[10]

R.L. Ashenhurst. The decomposition of switching functions. In Proceedings on an Interna-
tional Symposium on the Theory of Switching held at Comp. Lab. of Harvard University,
pages 74-116, 1959.

R.K. Brayton, C.T. McMullen G.D. Hachtel, and A.L. Sangiovanni-Vincentelli. Logic
Minimization Algorithms for VLSI Synthesis. The Kluwer International Series in Engi-

neering and Computer Science. Kluwer Academic Publishers, 1984.

R.K. Brayton, G.D. Hachtel, and A. L.. Sangiovanni-Vincentelli. Multilevel logic synthesis.
Proceedings of the IEEFE, T8(2):264-300, February 1990.

R.K. Brayton, R. Rudell, A. L.. Sangiovanni-Vincentelli, and A.R. Wang. MIS: A multiple-
level logic optimization system. [EEFE Transactions on Computer Aided Design, CAD-
6(11), November 1987.

S. Chang and M. Marek-Sadowska. BDD representation of incompletely specified func-
tions. In Notes of the International Workshop on Logic Synthesis held in Tahoe City,
California, 1993.

H.A. Curtis. A generalized tree circuit. J. Assoc. Comput. Mach., 8:484-496, 1961.

G. Hotz. Zur Reduktionstheorie der booleschen Algebra. In Colloguium iber Schaltkreis-
und Schaltwerk-Theorie, 1960.

T. Hwang, R.M. Owens, and M.J. Irwin. Exploiting communication complexity for mul-
tilevel logic synthesis. IEEE Transactions on Computer Aided Design, CAD-9(10):1017—
1027, October 1990.

T. Hwang, R.M. Owens, and M.J. Irwin. Efficient computing communication complexity
for multilevel logic synthesis. [EFEE Transactions on Computer Aided Design, CAD-
11(5):545-554, May 1992.

R.M. Karp. Functional decomposition and switching circuit design. Journal of Society of

Industrial Applied Mathematics, 11(2):291-335, June 1963.

13

[11]

[12]

[13]

Y. Lai, M. Pedram, and S. Vrudhula. BDD based decomposition of logic functions with
application to FPGA synthesis. In ACM/IEEFE Design Automation Conference (DAC93),
pages 642-647, 1993.

P. Molitor and Ch. Scholl. Mehrstufige Logiksynthese unter Ausnutzung von Symmetrien
und nichttrivialen Zerlegungen. Technical Report TR-02/1993, Sonderforschungsbereich
124 VLSI Entwurfsmethoden und Parallelitat, Fachbereich Informatik, Universitat des
Saarlandes, Im Stadtwald, W-6600 Saarbriicken 11, FRG, 1993.

J. Slansky. Conditional-sum addition logic. IEEFE Transactions on Electronic Computers,
EC-9:226-231, 1960.

14

